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When I accepted the invitation to comment on the papers in this volume,
I had little idea of their diversity. Yet, that very same diversity, while
being initially overwhelming, turns out to be a considerable strength of
the collection. It is remarkable that these papers, written within diverse
traditions and disciplines, reflect a coherent theme: that experience and
conceptualization are inseparable.

In assimilating sense data or accommodating to it, we cannot
experience “the world” without already “knowing” something about it.
This is not to say that what one knows is correct, true, or even viable.
Rather, it says only that we must already know something with which
sensation or conception resonates.

In the same vein, we cannot experience the world mathematically
without using mental operations we would call mathematical. Let me
anticipate two interpretations of this statement. The first is that the
mathematics anyone comes to know is innate, ready to emerge over
time, awaiting appropriate environmental “triggers.” The second is that
no one may know or come to know mathematically, which is evidently
absurd. Neither interpretation is consistent with a constructivist
epistemology, yet the statement that led naturally to them is a hallmark
of constructivism.

Thus, there are two principal challenges implied by a constructivist
epistemology of mathematics. The first is to provide compelling
arguments that it is possible for adult mathematics to emerge as the
product of life-long constructions, where those arguments are
painstakingly, evidently, non-Chomskian. The second is to hypothesize
constructive mechanisms by which specific knowledge might be made,
and to give detailed accounts of those constructions. The papers by
Bickhard, Cooper, Steffe, and von Glasersfeld address these challenges
with remarkable clarity.

A third challenge to a constructivist epistemology of mathematics is
more practical, and at the same time it is the more important challenge.
This is the challenge of framing curriculum and pedagogy within a
constructivist tradition. It sounds quite non-constructivist to say that, as
mathematics educators, what we try to do is shape students’
mathematical experiences. Yet, that is what mathematics educators
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working within a constructivist framework try to do. We attempt to
provide occasions where students’ experiences will be propitious for
expanding and generalizing their mathematical knowledge. Not just any
experience is satisfactory.

Five papers take up the second challenge. Steffe and Dubinsky
address models of students’ knowledge in specific mathematical
domains. Hatfield addresses pedagogy. Confrey and Cooper address
both. Each paper informs our attempts to characterize curriculum and
pedagogy within a constructivist tradition.

The paper by Kieren and Pirie can be profitably viewed as
belonging to a separate, important category--methodology. I do not
mean methodology in the limited sense normally used in experimental
psychological research. Rather, I mean it in the sense of what is needed
to give sensible accounts of observations. Kieren and Pirie are concerned
with methods of explanation, and at the same time they use their
language of explanation (recursion) to describe desirable experiences
had and to be had by students.

Dubinsky raises issues quite relevant to this notion of methodology,
but his paper is not an analysis of method. Instead, it is a dialectic. He
analyzes the processes of delimiting a class of phenomena that need
explanation while constructing a framework for describing them.

Lewin’s paper was the most difficult for me. It provides a clear
demonstration of methodology in that he uses his theoretical foundations
to explain the sense-making activities of students’ readings of literary
text. However, it is more profitably viewed as a challenge to
mathematics educators to cast mathematics education as paideia, as
being fundamentally concerned with the formation of character. In later
remarks I will suggest that this challenge is entirely consistent with
mathematics educators’ concern with the provision of occasions for
students to have rich, meaningful mathematical experiences.

Construction of Mathematical Thought

Constructivism is commonly thought of as an epistemology--a theory of
knowledge. Constructivism has another face--it is a theory of the genesis
of knowledge. It is emerging as a theory of learning. It makes specific
the claim that anyone’s knowledge is the life-long product of
constructions.

As a learning theory, however, constructivism is in its infancy. It is
seen by many as being more useful as an orienting framework than as an
explanatory framework when investigating questions of learning. To say
only that we are constructivists because we believe that knowledge is
constructed and not received is less than compelling, and it is clearly not
useful. It is also insufficient to argue that a psychological theory is
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invalid if it presupposes direct access to “reality.” This argument has
been around since the Skeptics. What we need is a technical
constructivism. We need a technical constructivism that allows its
proponents to form precise, testable hypotheses and that allows its
opponents the opportunity to refute them, and to refute them on the basis
of the adequacy and viability of the system of explanations constituting
constructivism.

Taken as a collection, the five papers by Bickhard, Steffe, von
Glasersfeld and Cooper constitute a primer in constructivist learning
theory. Bickhard lays a theoretical foundation for a constructivist
learning theory, and Steffe proposes mechanisms for the construction of
arithmetical knowledge. Reflective abstraction, which is central to both
papers, is clearly explicated by von Glasersfeld, as are several other
explanatory constructs. Cooper investigates the roles of repetition and
practice as constructive mechanisms in learning. These papers are
fundamental reading for any student of mathematical learning and
cognition.

Foundations of a Constructivist Learning Theory

Bickhard and Steffe let us glimpse a technical constructivism. Their
papers attack the problem of the possibility of learning in general and of
learning mathematics in particular. That the possibility of learning is
problematic can be appreciated when considering how an individual
might construct knowledge that is not made by associations of existing
concepts. Both Bickhard and Steffe respond to Fodor’s anti-
constructivist argument: If learning must involve the construction of new
representations, then learning cannot happen; that “some basic set of
representations, combinatorically adequate to all possible human
cognitions, must be innately present” (Bickhard, this volume, p. _).

Bickhard claims that Fodor’s argument is valid only if one accepts
encodingism--the idea that humans somehow have mental symbol
systems that are isomorphic to features of reality. He argues that
encodingism is, in fact, an incoherent position, and that in this regard
Fodor’s argument for innatism is fallacious.2

Steffe takes a different approach to refuting Fodor’s innatist
conclusion. He attempts to offer a counter-example to Fodor’s argument.
It is debatable whether Steffe’s example is a counter-example to Fodor’s
argument or is instead a demonstration of an alternative framework
having its roots in constructivism. But this is a minor point. What is
clear is that Steffe offers an interpretation of one student’s learning that
is not subject to Fodor’s argument.

Both approaches succeed by denying naive realism--the idea that
somehow we are imprinted with knowledge of the real world--at the
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foundation of their theories of representation. Instead of characterizing
representations as representing something about the real world, Bickhard
and Steffe characterize them as “mental stand-ins,” made by the
individual doing the representing, for interactions with a world of
objects or ideas. That is, we can represent by re-presenting. These ideas
are new and old. They are new because of context and specificity. They
are old in the sense that Piaget (1968) anticipated the need to address
issues of representation to make specific his claim that language is just
one expression of “the general semiotic function” (Piaget, 1950).

Piaget delineated three forms of representation: indices, signs, and
symbols. An index is a re-presentation of an experience by recreating
parts of it in the absence of the actual experience (e.g., imagining an
exchange of hands in a “promenade round” to re-present a square dance,
or rhythmically nodding one’s head to re-present the experience of
counting).

A sign is a figural substitute--something that captures an essential
aspect of a class of experiences, but which is only analogous to them in
its similarity. The perception of a wavy line on a yellow board alongside
a highway signifies to many people that a bend in the road lies ahead.
The wavy line in Figure 1 has nothing to do with one’s experience with
roads as such, yet it suggests a feature of one’s experience of driving on
winding roads. Similarly, the underline character in “2 + _ = 7” is not
usually part of one’s experience in carrying out arithmetical operations,
yet it suggests that something is missing.

Figure 1: A road sign.

Signs are inferentially linked with their referents, but the inference
is much less direct than is the case with indices. I suspect that, were we
to look closely, we would find that even the most sophisticated knowers
of mathematics make abundant use of signs in organizing their
mathematical knowledge.

A symbol represents something only by way of association.
Symbols have the qualities of arbitrariness3 and, in the case of symbols
which serve a communicatory function, conventionality (Hockett, 1960;
von Glasersfeld, 1977, this volume). It would be presumptuous of me to
try to improve upon von Glasersfeld’s (this volume) discussion of
symbols.

While Bickhard focuses primarily upon issues of representation,
Steffe focuses primarily upon issues of learning, in particular on
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accommodations that can account for learning. Before judging the
success of Steffe’s attempt, we should remind ourselves of his principal
goal--to establish that learning is at least inductive inference, and to give
an existence proof that it can be more. To judge it as successful, we need
to answer two questions affirmatively: Do we accept that Steffe’s ideas
of engendering and metamorphic accommodation as viable, explanatory
constructs? Does metamorphic accommodation account for a change in
Tyrone’s behavior that inductive inference cannot? These are non-trivial
questions. When answering them for yourself you will come face-to-face
with the core of Steffe’s theory of units and operations.

One thing that seemed missing from Steffe’s analysis was
specificity. This might sound like an odd comment, especially given the
extremely small segments of behavior analyzed in great detail by him.
But the kind of specificity I have in mind is different from what Steffe
gives us. I would like to have an image of Tyrone’s knowledge. It is
evident that Steffe has such an image, but it is not well communicated
by natural language. I believe we can take advantage of decades of
research and methodology in artificial intelligence and information
processing theory. Models expressed in natural language are notoriously
poor at facilitating precise thought and communication. Also, they are
extremely cumbersome when trying to capture the dynamics of
functioning systems. I am reminded of Cobb’s (1987) well-known
remark that “it would be a tragedy if all serious students of cognition felt
compelled to express their creativity solely within the confines of
particular formalisms such as computer languages.” It would be just as
tragic if all serious students of cognition eschewed formalisms such as
computer languages.

Reflection and Repetitive Experience

Reflective abstraction is an idea that is central to constructivism.
Bickhard's and Steffe’s arguments would have gotten nowhere without
appealing to reflective abstraction. Without something like it,
constructivist theories of learning are dead in the water. In
constructivism, reflective abstraction is the motor of accommodation,
and hence of learning.

To say that reflective abstraction is central to constructivism is one
thing; to say what it is is quite another. At times, discussions of
reflective abstraction take on the character of describing the
homonculus--the little man in the mind that does all the nasty work not
accounted for by a cognitive theory. We have been much more
successful in describing mechanistic models of the products of reflection
than we have in describing how people reflect.
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All this notwithstanding, we need to have a clear idea of how any
model of reflective abstraction needs to behave, and we need to have a
clear idea of the phenomena we wish to ascribe to the operations of
reflective abstraction. Von Glasersfeld gives us a portrait of reflective
abstraction in these regards: its necessity in constructivism, its character,
its history as developed in Piaget’s genetic epistemology, and the
similarities between reflective abstraction in Piaget’s theory and in
Locke’s empiricism.

What von Glasersfeld makes clear is that reflective abstraction, re-
presentation, and representation are inseparable aspects of cognitive
functioning. If I can add to von Glasersfeld’s contribution, it is this:
Piaget gave considerable prominence in his earlier work to the
development of intuition, and I believe it was for a good reason. By
focusing on intuition, we gain additional clarification of the ideas of
reflective abstraction and at the same time push the homonculus farther
into the background.

As is frustratingly common with so many terms appearing in
Piaget’s writings, he failed to give a clear definition of what he meant by
“intuition.” The clearest statement I have found is in (Piaget, 1950).

We see a gradual co-ordination of representative relations
and thus a growing conceptualization, which leads the
child from the [signific] or pre-conceptual phase to the
beginnings of the operation. But the remarkable thing is
that this intelligence, whose progress may be observed
and is often rapid, still remains pre-logical even when it
attains its maximum degree of adaptation; up to the time
when this series of successive equilibrations culminates
in the “grouping,” it continues to supplement incomplete
operations with a semi-symbolic form of thought, i.e.
intuitive reasoning; and it controls judgments solely by
means of intuitive “regulations,” which are analogous on
a representative level to perceptual adjustments on the
sensori-motor plane. (p. 129)

To draw out the significance of intuition, I need to digress briefly.
One modern interpretation of constructivism is in terms of autopoeitec
systems (Maturana & Verela, 1980; Maturana, 1978) and as cybernetic
systems (MacKay, 1969; Powers, 1973, 1978; von Glasersfeld, 1976,
1978). Within these perspectives, cognition is viewed as the product of a
nervous system’s attempts to control and regulate its functioning. Of
course, “its functioning” is not something that happens with no
exogenous intrusions.

The primary aspect of autopoeitec or cybernetic systems is the
fundamental, overriding principle of control: the elimination of
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perturbations within the system, the resolution of unmet or unattainable
goals. Intelligence progresses through the development of Cooperative
systems, or schemes, for eliminating classes of perturbations (“classes”
from the cognizing organism’s perspective). These schemes--systems for
controlling cognition--while emerging, fit roughly with Piaget’s
description of intuitive thought.

Intuitive thought, then, is the formation of un-controlled schemes
which themselves function to control aspects of cognitive functioning.
But these un-controlled schemes are themselves part of the organism’s
cognitive functioning, and hence are something to be controlled. They
become regulated as their controlling schemes reach the level of
intuition, whence the schemes controlled by them become equilibrated.
That is, intuitive thought is actually the fodder of operative thought.
Figure 2 illustrates this discussion: the emergence of intuitive thought,
and then intuitive control of intuitive thought--operative thought.

Un-controlled
cognitive
functioning.

Intuitively-organized
cognitive functioning
(previously uncontroled
functioning now controlled
by un-controlled control
functions).

Operatively-organized
cognitive functioning
(previously un-controlled
intuitions now controlled
by un-controlled control
functions).

Figure 2. Intuitive thought.
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Attention to intuition has two benefits. First, the homonculus is now
extrinsic to our picture of the emergence of knowledge. The homonculus
is in the principles of cybernetics. The question now is one of
architecture--how are biological systems organized that they might or
might not behave like this? Second, understanding intuition as
unregulated schemes provides a connection between, on the one hand,
von Glasersfeld’s characterizations of reflective abstraction and reflected
thought and Steffe’s characterizations of metamorphic accommodation,
and, on the other hand, Cooper’s descriptions of the dramatic influence
of repetitive experience. Intuitive thought develops through recurring
experience by way of functional accommodations; it is transformed into
operative thought through reflective abstraction and metamorphic
accommodation.

Curriculum and Pedagogy

“Constructivist curriculum” and “constructivist pedagogy” sound like
oxymorons. It seems paradoxical that, on one hand, we maintain that we
are, of necessity, in the dark about how and what people think--that
people will make of their social and physical environs what they will,
while on the other hand we plan what students are to learn and attempt
to design “effective” instruction.

The paradox is in appearance only. We put on the hat of
constructivism so that we have more coherent visions of what might be
happening when students evidently learn and understand mathematics
and think mathematically. It is from a basis of coherent visions that we
are positioned to have greater confidence in our plans.

Cooper, Hatfield, and Confrey each inform our attempt to enrich
our understanding of what it means to learn, understand, and teach
mathematics. Cooper sets out to convince us that appropriately-
conceived repetitive experience can provide a strong foundation for
reflective abstraction, and hence that it is a crucial element of students’
mathematical learning.

Hatfield reminds us that experience is a private affair, and that there
are many affective components to mathematical experience.
Nevertheless, it seems that a common thread to his arguments is that
“good” experiences lead students to feeling in control of situations, or at
least lead them to feel confident that they can come to be in control. His
discussions of student programming and simulations explicate the
powerful idea that one avenue toward building control over ideas is to
operationalize them.

Confrey makes concrete the adage that we cannot understand
students’ behavior without understanding at least one student. She
attempted to understand the thinking of one student, named Dan, in the
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relatively complex domain of exponential functions. Her analyses of this
one student’s difficulties gives insight into the machinations of “correct”
knowledge of exponentiation. To paraphrase Hersh (1986), it is not until
we see students who provide counter-examples to our implicit
assumptions about the constitution of specific concepts that we
recognize them and make them explicit .

Practice Space and Mathematical Knowledge

Cooper declines to use the word practice because “the implication of the
term practice is that what is being practiced is what is being learned”
(Cooper, this volume). This is a wonderful distinction. “What is being
practiced” is normally in the mind of an adult observer. We intend
something to be learned, and we have students “practice” it. What they
actually learn can be quite a different matter.

We can still use the notion of practice in our theoretical and
pedagogical analyses, however. Instead of beginning with the statement
“Students practiced X,” we should begin with the observation “We
intended that student practice X,” and then continue by asking the
question, “What did they actually practice?” What they actually
practiced is probably what they actually learned.

The examples given by Cooper are compelling. They also help to
clarify an important relationship between knowledge and reflected
knowledge. The more tightly woven intuitive knowledge is, the richer is
knowledge constructed as a reflection of it. The “map”--the set of inter-
relationships among situations to which Cooper refers--is what is
reflected. The denser the populated areas, the more relationships in the
map. The fewer the populated areas, the sparser the map.

This raises an issue. If repetitive experience generates “richly
interconnected spaces,” providing a foundation for reflection and
reflected knowledge, then as mathematics educators we have a
responsibility to describe “spaces” we hope get constructed. This is a
curricular issue, and one not settled by Cooper’s paper. Cooper makes
evident the need for rich and varied repetitive experience in students’
schooling. However, to settle on the interconnections we wish children
to generate through repetitive experience, we must clarify what we hope
they achieve. We need to describe cognitive objectives of instruction,
and we need heuristic guidelines for organizing instruction and
curriculum so as to have some confidence that the objectives can be
achieved. How shall we vary situations to map a space? How shall we
decide whether two variations are within the same space?

Cooper’s analyses prompted me to recall comparisons of American,
Japanese, Taiwanese, and Soviet mathematics textbooks (Fuson, Stigler,
& Bartsch, 1988; Stigler, Fuson, Ham & Kim, 1986). The gist of these



THOMPSON

269

comparisons was this: American textbooks rarely have word problems of
any complexity, the problems are commonly of the lowest order of
conceptual difficulty, and problems within a set hardly vary in their
solution procedure (Porter, 1989). What do students practice when they
“work” these problems? At best, they practice “getting answers.” At
worst, they practice ignoring such things as context, structure, and
situation. In any case, students do not have occasions to generate the
“richly interconnected spaces” that Cooper has identified as being
crucial for constructing mathematical knowledge. They end up with
islands of superficial knowledge without a canoe to get from one to
another.

Algorithmics and Mathematical Knowledge

A common view of “skill” in mathematics is to know a large number of
procedures for solving a similarly large number of problems. The word
“algorithm,” interpreted from this viewpoint, justifiably strikes fear
among teachers and students. Here is a brief list of “school-math”
algorithms:

- whole-number addition
- whole-number subtraction
- whole-number multiplication
- whole-number long division
- whole-number short division;
- all of the preceding with fractions instead of whole numbers;
- all of the preceding with decimals instead of whole numbers.
Add to this list all the variations that school texts commonly

promote: addition with and without trading, subtracting “across zero,”
division by a single-digit number, division by a two-digit number, and so
on. We soon see a combinatorial explosion in the number of
“algorithms” students meet. To ask anyone to learn such a large number
of isolated, ostensibly unrelated procedures is inhumane.

We are urged to view algorithms from a different viewpoint, to
consider that significant mathematical learning takes place when
students’ create algorithms and when they investigate them
systematically. The task Hatfield has taken on is difficult. He must
communicate the richness contained in his idea of algorithmics when
many in his audience have not experienced this approach.

Hatfield’s call for the inclusion of algorithmics--the creation and
study of algorithms--in school mathematics might sound reminiscent of
discovery learning (Bruner, 1963; Hendrix, 1961), but it is actually quite
different. Discovery learning emphasized the “uncovering” of concepts
and principles, as if they were to be found by turning over a rock.
Algorithmics emphasizes the routinization of problem solving by the
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creation of schemes. At first glance, to routinize problem solving sounds
self-contradictory, but it is a standard activity when doing mathematics.
Schemes contain concepts and principles. To create schemes, one must
also create component concepts and principles, but that in itself is
insufficient. One must also create operations and relationships between
and among them.

Hatfield also concentrates on student programming as a vehicle for
bringing algorithmics into school mathematics. His efforts are in the
tradition the Computer Assisted Mathematics Project (Johnson, Hatfield,
Le Blanc, & Kieren, 1968). As recently as five years ago I was a fervent
supporter of having students study mathematics via computer
programming. While I still have a great deal of empathy and respect for
this approach, I now have reservations about programming as a vehicle
for learning mathematics. The reservations come from the practicalities
of having to teach a programming language and to teach programming
constructs in order to teach mathematical concepts. If it is done well, it
can work. However, I have strong suspicions that the requirements for
making it happen are beyond the capabilities of the vast majority of
teachers. To use programming as a vehicle for algorithmics requires
more than knowledge of mathematics and knowledge of programming.
It requires that that they be reflections of one another, and this is an
intellectual achievement of the highest order.

I remain open to being shown how wrong I am. In fact, I would like
to be wrong. I agree with Hatfield on the potential benefits of student
programming. However, there are many open questions as to what might
constitute a proper balance among the components of content,
curriculum, and programming, and there are many open questions about
the long-term curricular and cognitive implications of student
programming as a vehicle for learning mathematics.

There is another approach to introducing algorithmics into
mathematical instruction. It also uses computers in non-traditional ways,
but students do not write computer programs. Instead, they use programs
that have been designed with the aim of making explicit the
mathematical constraints of situations while imposing as few
methodological constraints as possible. Students are asked to solve
problems, posed independently of the program, but solve them within
the constraints imposed by the program. A student’s task is threefold:
interiorize the mathematical constraints, develop methods for solving
classes of problems, and construct a recording scheme that, at each step
of his or her solution, reflects the state of the situation and a history of
the steps taken so far. A student’s recording scheme, viewed as an object
in itself, is his or her personally-constructed algorithm for solving
problems of a particular class.
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However algorithmics is injected into mathematical instruction, one
benefit seems clear. It is that students have occasions to experience the
mutually-defining relationships between problems and methods. A slight
modification in a “standard” problem may cause one to re-conceptualize
one’s methods for solving problems of that kind. Likewise, an analysis
of a method may cause one to re-conceptualize one’s understanding of
the “kind” of problems for which the method was originally constructed.
That is to say, a “class” of problems is determined by a method, but the
boundaries of that class may not be as evident as originally thought.
Likewise, problems give rise to methods, but methods may be more or
less general than originally thought. Both realizations are propaedeutic
for the construction of substantive mathematical knowledge.

Conceptions, Misconceptions, Teaching, and Learning

When reading Confrey’s paper I was reminded of a recent event.
Though my three-year-old daughter, Nicole, knows how to swim, when
enrolled for summer swimming lessons she could not get past “Station
1.” Station 1 is where the component skills of swimming were taught.
The reason she could not pass was this: Instruction was focused so
closely on component skills that Nicole never recognized them as part of
her experience of swimming. Moreover, since instruction was focused so
narrowly, the instructors never had an opportunity to see Nicole attempt
component skills in the context of trying to swim. The instructors were
teaching something of which Nicole was already capable, but Nicole
never realized that she was already capable of what was being taught. As
a result, instructors never had occasions to recognize areas where Nicole
actually needed improvement. Gagné’s reductionism has found a home
in swimming instruction.

Confrey gives us a holistic view of one students’ attempts to make
sense of the world of multiplicative structures, in general, and of
exponential functions, in particular. She could have taken a reductionist,
Gagné-like approach and interviewed Dan on “component” tasks, where
her task analyses determined the component concepts. Had Confrey
done this, the result could easily have been analogous to Nicole’s
swimming lessons. We would have seen what Dan could do under the
artificial constraints of an imposed segmentation of the concepts--a
segmentation emanating from an analysis of instructional learning
objectives. But we would not have known Dan’s capabilities, nor would
we have seen the simultaneous richness and poverty of Dan’s cognitions
in regard to multiplicative structures.

Confrey encouraged Dan to extend himself, to grope, to contradict
himself, to make sense of nonsense and nonsense of sense. The picture
we get of Dan’s knowledge is not clean; it is quite messy. But in our
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making sense of Dan’s struggles and inconsistencies, we learn more
about the concept of exponential function. We see the tension between
Dan’s inclination to see the world additively (e.g., focusing on
successive differences instead of on successive ratios) and the tension
this causes when dealing with problems that, to him, were ostensibly
multiplicative.

One task given to Dan (“Draw a picture of 53”), and Confrey’s
subsequent analysis, raises an important question. To what extent is it
profitable to portray exponentiation as repeated multiplication? If
multiplication is portrayed as repeated addition, and if exponentiation is
portrayed as repeated multiplication, then exponentiation reduces to
repeated addition. If we are speaking about calculating some power of a
whole number, the calculation does reduce to repeated addition. But
calculation is not the issue. Conception is the issue. If one is attempting
to conceive of an attribute of an object that we would normally call
multiplicatively-structured, and if that conception is fundamentally
additively-structured, then one cannot conceive the attribute. We see this
continually--children treating area as what we would normally call
perimeter, or treating volume as what we would normally call surface
area. We saw this in Dan’s initial attempt to draw a picture of 2×3×4.
We also saw his progressive “dimensionalization” of multiplication as
he formed a product, and then created copies of that product. His
pictures were still two-dimensional, but his comments indicated that he
began imposing a structure on them that made his conception more like
a Cartesian product.

Confrey’s analysis prompted me also to think about how 5 3  would
fit with the portrayal of exponential functions as dimension-building

objects. I do not know how people make sense of 5 3 , if they make any
sense of it at all.4 Confrey has opened an intriguing and important
domain of inquiry. I suspect it will be a long and fruitful research
program.

Methodology

Kieren and Pirie have taken the considerable task of developing a
framework for viewing the evolution of a person’s mathematical
knowledge. As they say, “What is needed is an insightful way of
viewing the whole of a person’s growing mathematical knowledge and
understanding built through this knowledge.” They propose the use of
recursive description as one way to capture the self-referentiality of
knowing while remaining within the constraints of their view that
humans are autopoietic systems.
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Their contribution is evidently ground-breaking, and as such
requires careful reflection and analysis to realize its importance. It is a
major contribution to the endeavor of providing useful and powerful
visualizations of what we mean by “knowing mathematically.” As with
any work that breaks new ground, there are aspects to it that are
problematic. This remark does not diminish the importance of Kieren
and Pirie’s contribution. Rather, it frames my task of discussing their
current work.

Explanations vs. Descriptions

There is a subtle, yet significant difference between an explanation of an
observation and a description of an observation. A description tells what
happened; an explanation tells why what happened happened (and
implicitly, why other things didn’t happen). That is to say, an
explanation must be framed by a theoretical context and oriented toward
a class of possibilities, whereas a description is framed by an
observation. Explanations and descriptions are evidently related, as
descriptions are made out of the same theoretical stuff as explanations;
but the intent of describing is different from the intent of explaining.

It is crucial to keep in mind the distinction between a description
and an explanation as we struggle to understand students’ mathematical
thinking, for it is all too easy to unduly impute some of our constructs to
our students. I am reminded of the recent literature on children’s
arithmetic, where early-on the counting strategy of “start with the larger”
was described as children’s growing awareness of the commutativity of
addition (Ginsburg, Baroody, & Waxman, 1983). Lately this same
strategy is being described in terms having nothing to do with the
mathematical principle of commutativity (Baroody & Ginsburg, 1986).
Did children begin to know less while behaving the same? No.
Researchers began to do a better job of separating their mathematical
knowledge from descriptions of children’s mathematical knowledge.

The reason for dwelling on differences between descriptions and
explanations is this: If our language of description is too powerful, or is
used indiscriminately, our explanations may, in the end, be descriptions
of our mathematics instead of children’s mathematics (Steffe, 1988).

Recursion vs. Repetition

Recursion and repetition are the primary constructs upon which
procedural descriptions are founded. Dijkstra (1976) has given the
classic distinction between repetition and recursion:
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The semantics of a repetitive construct can be defined in
terms of a recurrence relation between predicates,
whereas the semantic definition of general recursion
requires a recurrence relation between predicate
transformers. This shows quite clearly why I regard
general recursion as an order of magnitude more
complicated than just repetition. [Italics in original]

Dijkstra, 1976, p. xvii

Dijkstra used “predicate” to mean a proposition, or a state of a
computing mechanism and he used “predicate transformer” to mean a
rule by which to derive one class of predicates from another. We can
think of a predicate as a conception of a situation and a predicate
transformer as a mental operation constituting a general relationship
between classes of situations. In these terms, the distinction between
repetition and recursion is between repeatedly applying an action to
situations within a class (where attention is focused on the operation’s
“inputs”) and the application of a mental operation to transform a class
of situations (where attention is focused on the general relationship
between the class of inputs and the class of outputs).

Unadvised use of recursive descriptions can result in more being
attributed to students than we might wish. It is not uncommon to see
recursion used where repetition would be more appropriate. I agree with
Dijkstra when he says,

Although correct [to define repetition in terms of
recursion], it hurts me, for I don’t like to crack an egg
with a sledgehammer, no matter how effective the
sledgehammer is for doing so.

Dijkstra, 1976, p. xvii

The instance of Kieren and Pirie’s interpretation of Simon’s and
Alison’s remarks in solving the handshake problem illustrates how the
language of recursion can overpower observation. My understanding of
transcendence is that it involves conceiving of a process as if it were
completed. However, by this criterion, neither Simon nor Alison
transcended Joanne’s original idea of having each of 35 people count
handshakes and report their individual totals. Evidently, Simon
constructed a solution method: compute the sum 34 + 33 + 32 + … + 1.
Alison evidently generalized Simon’s method to n people, the solution
being n + (n-1) + … + 1. But neither appeared to transcend Joanne’s
original conception of each person walking down the line of people
counting handshakes as they went. Appropriate attribution of
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transcendent recursion to a student’s conception of the handshake
problem would require evidence of thinking something like this:

Each person in line leaves to drink a Pepsi, saying to the
person on his or her left, “You and all the people on your
left do all your handshakes. When you’re done, tell me
how many people were in your group and how many
handshakes your group made. I’ll get my answer by
adding the number of people in your group to the number
of handshakes.”

It is important to realize that, were this method actually carried out,
there would not be any actual handshakes--even though each person
gives an explicit directive to do handshakes and count their number.

The difference between iterative and recursive conceptions of the
handshake problem resides in how a solver thinks of a partial tally. In
Simon’s description, the person closest to the door computes the running
tally, and only when the last person walks out is the tally identifiable
with the total number of handshakes among some group of people. In the
Pepsi-drinkers’ method, each person in line computes a partial tally, and
any partial tally is the total number of handshakes among some group of
people. The distinction is significant.

Conventions for Attributions of Meaning

It is not clear what types of behavior can be taken as indicative of
transcendent recursion. Watkins & Brazier (1985) reported that two
students wrote procedures to produce derivatives of functions. Their
procedures seemed to be highly recursive, yet it turned out that neither
student had even the most rudimentary comprehension of recursion
(Brazier, 1985).

How do we explain this apparent paradox? By appealing to Kieren’s
and Pirie’s conditions for transcendence. The students (using Logo)
programmed a formula, [f(g(x))] ’ = f  ’(g(x)).g ’(x). The need for these
students to transcend their initial conception of a derivative (as the
output of the Logo function they were then defining) was short-circuited
by their “knowledge” that the derivative already existed (as a formula)
independently of the function they were defining. In short, they were not
constructing a recursive function to make derivatives. They were
translating a textbook formula into Logo.5

The larger issue is this: By what convention can we minimize the
probability that we use too-powerful constructs to explain students’
behaviors or to describe students’ understandings? Steffe’s group faced
this problem in the course of developing what ultimately became known
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as counting types (Steffe, Thompson, & Richards, 1982; Steffe, von
Glasersfeld, Richards, & Cobb, 1983). The methodological convention
adopted was to attribute no more to a child’s understandings than what is
minimally necessary to account for their behavior on the task being
performed, taking into consideration interpretations made of his or her
performance on related tasks. Of course, to make this approach work,
one must be conservative. To be conservative means to assume, at first,
that a student does not fully understand the dimensions of the task. As an
interpreter of behavior, one must always build a case for interpretations
made.6

Cognitive Modeling

Steffe and Dubinsky have developed theoretical frameworks for
modeling students’ knowledge and to describe its construction.
However, the goals of their frameworks are quite different. The
constructs in Steffe’s framework are used to explain children’s
construction of mathematical concepts within a specific domain at a high
level of conceptual detail. In this volume, he used the notion of a
unitizing operation to describe one student’s construction of a number
sequence. Dubinski’s framework, on the other hand, appears to have a
different intent. It has the flavor of a “universal” framework for
modeling the construction of many types of mathematical knowledge,
from universal and existential quantification in the predicate calculus to
mathematical induction.

Dubinski’s approach is to apply his framework to his personal
understandings of a concept. By doing this he obtains a “genetic
decomposition” of the concept, and takes that as his initial model for
investigating students’ concepts in the same domains. As Dubinski
himself states, a genetic decomposition is only a starting point, to be
discarded as one learns more about what students understand and how
they came to these understandings. Even with this caveat in mind,
however, I found myself asking for more than this framework provided.

The framework, at least in the description given in Dubinski’s
paper, is too general to support precise interpretations of students’
performance on tasks. I frequently found myself providing alternative
interpretations to those given by Dubinski, and the alternatives had more
to do with the nature of students’ understandings of specific concepts
than with the broad operations of encapsulation, reversal, etc. Perhaps
my understanding of the framework was not sufficiently precise to
constrain my interpretations to those offered by Dubinski. It might have
helped were the central constructs of the framework somehow
operationalized independently of their use in interpreting students’
behavior. For example, what does it mean to “reverse a process.” Is it
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like running a motion picture backward? Is it like saying the alphabet
backward? Or is it the performance of an operation that has the effect of
undoing the effect of another? These are all very different from one
another.

Mathematics Education as Paideia

The literary education portrayed by Lewin aims to develop students’
character by having them appropriate the literary artifacts of others.
Through the dialectic of appropriation--viz., interiorization and
internalization--students transform literary text into personally
meaningful correlates of their own life experiences. In the process of
appropriation, Lewin says, students’ personal schemas are likewise
transformed.

We have access not to [others] in the moments in which
they create, but to their artifice, not to a life lived in its
ongoing fullness, but to a stable presence, the artifact,
generated out of that ongoingness. We ask students to
engage these artifacts, enriched, educated in the literal
sense of finding themselves drawn out” (Lewin, this
volume, p. _).

How different is this from practices in mathematics education? On
one hand it is not different at all. Students are bombarded with artifacts
in mathematics: definitions, theorems, proofs, and algorithms to name a
few. On another hand, it is very different. The “objects” with which
students are bombarded are not presented as artifacts. They are
presented too often as “the truth,” as being engraved in stone, having
just arrived from the Mount.

What kind of mathematics pedagogy would parallel the pedagogy
described by Lewin? In teaching a definition we would first need to
make sure of its author.7  Discussions would include why the author
worded his or her definition this way and not another, why the
boundaries were placed as they were.8 Discussions of theorems would
include why the conditions of the theorem are as given and not more,
less, or differently restrictive. Discussions of algorithms would include
the possible dependence of the algorithm’s validity on the notational
scheme in which it is expressed. In short, for mathematical pedagogy to
parallel that described by Lewin, teachers would have to address the
history of mathematics and the culture of the mathematical community
explicitly. These issues traditionally are not an integral part of
mathematics instruction or mathematics teacher preparation programs.
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Lewin gives us an extended example, wherein he describes in
concrete terms the process of appropriation as a dialectic of
internalization and interiorization, and the subsequent transformations of
self in relation to an objective Romanticism. As a reminder, here is the
task he set for his students: (1) Write a passage explaining what it would
mean for someone or something to be called “romantic.” (2) Read
“Mock on, Mock on, …”. (3) Try to apply your description of
“romantic” to see whether or not it fits the poem.

Lewin mentioned an essential ingredient of this task only in passing.
Students were told that Blake’s poem is generally considered a good
example of Romantic poetry.  Without their acceptance that Blake’s
poem “really is” romantic, students would only have had an occasion to
classify it by their already-held criteria. They would not have found an
occasion to reflect on what they understood by “romantic” in relation to
meanings negotiated among the group of scholars who use the term
precisely. That is, unless students accept characteristics of an artifact as
being objective, they have little cause to constrain or reshape their
understanding of it.

Students easily take notations as being objective (after all, they see
them), but rarely do they consider that notations can have objective
correlates.9 That students eventually develop objective correlates of
notation and notational transformations is a major aim of mathematics
instruction. However, we are at a disadvantage. Students must relate
experientially to anything before they can begin to objectify it, to
apprehend it as immediately given. There are few mathematical artifacts
that can be taken by students as objective independently of the notations
in which they are expressed. One way to remedy this situation is to
construct computer microworlds where things are made to happen by
way of a notational scheme, but whose behaviors are constrained
according to the mathematical systems we wish students to construct. To
interiorize the microworld is to interiorize the mathematical system by
which the microworld’s behavior is constrained (Thompson, 1985,
1987).

The major significance of Lewin’s paper is in its implications for
the preparation of mathematics teachers. Practitioners of mathematics
primarily need to do mathematics. They do not need to relate to
mathematical knowledge in the same way that a mathematics teacher
needs to relate to it. Teachers must be able to express deeply principled
knowledge “softly,” so that its expression does not overpower a learner
and yet is sensitive simultaneously to the learner’s current constructions
and to long-term curricular objectives. That is, a teacher of mathematics
needs to be capable of imagining a construction of concepts that he or
she already possesses and can be accessed only in their current moment.
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It is in this regard that I see the greatest relevance of Lewin’s notion of
paideia, the formation of character.

How might we affect future teachers’ reconstruction of the
mathematics curriculum from a sequence of topics to a fabric of
constructions? A slight paraphrase of one passage in Lewin’s paper
addresses this question with remarkable acuity.

[We] ask students to juxtapose their pre-existing ideas
about [the curriculum] with their growing classroom
familiarity of it in order to facilitate the examination, and
perhaps revision, of their pre-suppositions. Unless a
student can find the relevance of [the artifact], can
construct its meaning for her or his own life [as a
teacher], there is no possibility for paideia, for an
engagement that enriches the self. (p. _)

The key to affecting future teachers’ reconstruction of the
mathematics curriculum is in the creation of appropriate artifacts that
somehow reflect a coherent vision of it as already recast into a fabric of
constructions. A text (e.g., a book, an article, etc) that elucidates an end-
product of such a re-creation would be one possibility. A text, however,
would suffer the same disadvantages as when expressing the end-
product of a mathematical construction in a notational system. Many
students will have difficulty objectifying the ideas presented in the text;
they will have difficulty constructing meaning for his or her own life as
a teacher.

Another possibility is to extend the approach taken with computer
microworlds. This is one that I am currently researching (Thompson,
1989a, 1989b). The general idea is to reflect the development of a
conceptual field within a computer program, where “development” is
reflected in transformations of constraints on the program’s behavior.
The program is designed so that it can be used to solve problems
normally studied within the conceptual field, but the constraints on its
behavior forces students to view the problems through the eyes of a
student whose thinking is likewise constrained. The task (“Solve these
problems”) and the program are immediately taken by future teachers as
objective. In the dialectic of internalizing and interiorizing the program,
brought about through their use of it in solving problems, these future
teachers have an occasion to reconstruct the conceptual field being
studied.
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Postscript

The papers in this volume clearly are concerned with mathematical
experience. In many cases they describe “good” experiences to be had.
However, we have not been informed about what is mathematical
experience. As commentator, I could have taken “mathematical
experience” as a theme to be drawn out from each paper. I chose not to
try. The word “experience” was used to mean anything from a vague
awareness to an exhilarating insight. I am not accusing the authors of
using vague language. The problem is with common usage, which has
strong realist overtones. “Experience” is sometimes used as if referring
to an event (as separate from an experiencer), and at other times as if
referring to the act of living through an event. Clearly, the latter was of
concern to authors in this volume. To muddy the waters more,
“experience” can be used as if referring to a totality of events lived
through by someone, as in “Experience tells Paul that this will not
work,” and it can be used as if referring to the cumulative effect of living
through those events, as in “Paul’s experience is that this will not work.”
Perhaps “experience” is not a very useful word when trying to
understand mathematical thinking through constructivism. Its non-
technical usage overpowers any attempt at precision.

Notes

1 Preparation of this paper was supported in part by National Science
Foundation grant number MDR 87-51381. Any opinions expressed are those of the
author and do not necessarily reflect positions of the National Science Foundation.
2  Johnson-Laird (1988, pp 134-137) notes, as does Bickhard, that one sign that
Fodor’s argument is wrong is it proves that logic and concepts cannot even be innate,
because they cannot have evolved. However, Johnson-Laird takes a different approach
than Bickhard to refuting Fodor’s argument generally, and does so without explicitly
denying encodingism. Instead, he draws a distinction between an increase in a
cognizing organizism’s computational power (as modeled by a Turing machine) and an
increase in its conceptual power. He argues that while the former cannot happen, the
latter can.
3 The word “arbitrary” sometimes is given the same sense as “random.” Clearly,
this is not what is meant here. Instead, it means that there is nothing intrinsic to a
symbol that would cause a loss of meaning by systematically substituting another one
for it. We might find some symbols more practical or more convenient than others, or
easier to relate to other notations, but this is beside the point. For example, in about 20
minutes most adults can recast their number-name and numeration schemes using the
notational and verbal scheme “a, b, c, d, e, f, g, h, i, ton, ton-a, ton-b, ton-c, ton-d, ton-
e, ton-f, ton-g, ton-h, ton-i, b-ty, b-ty a, b-ty b, …” That their original naming schemes
were symbolic is suggested by the fact that they can perform their addition and
subtraction algorithms using the new naming scheme. For children, number-names may
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or may not be symbols. They could be only indeces of counting experiences, or signs
of having counted.

4 By “make sense” I do not mean to make formal sense, e.g. 5
3
  as an

equivalence class of Cauchy sequences. Rather, I wonder how they envision it as being

the same sort of object as 5
3
 .

5 It is curious how different notations make it more or less difficult to translate
the chain rule into Logo. Operator notation, i.e.  Dx (f ° g) = [Dx(f) ° g] Dx(g),  seems
easiest to translate, but it is the most difficult for students to understand. Leibniz’

notation, i.e. 
dy
dx

  = 
dy
du

  x 
du
dx

  , seems easiest for students to understand but it is the

hardest to translate into Logo. The prime notation used in this narrative seems
somewhere in the middle on both counts.
6 On the other hand, interpreting will always be an art, and there are no
guarantees against attributing too much or too little knowledge to another person’s
understanding.
7 Definitions do have authors, but their names are normally not mentioned in
matheamtics texts. The tradition in mathematics is that an author’s name is attached
only to important theorems or to important algorithms. Perhaps this is because of
working mathematicians’ implicit Platonism, that these things are “there,” so only the
hardest to find are named after the explorer finding them.
8 For example, why, in any definition of prime number, is 1 excluded from
being prime? Because if it were included, the Fundamental Theorem of Arithmetic,
which says that factorizations of integers are essentially unique, would have to be
reworded in order to remain true, and the rewording would be very clumsy.
9 I deliberately use “notation” instead of “symbol.” A notation is a mark of
some kind; a symbol is something that has a referent. Students can see notations. If a
student gives a notation meaning, for that student it is a symbol.
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