
Design and Storage Optimization of GPU-based
Parallel Program of Image Registration for
Remote Sensing

Haifang Zhou 1

Processing two or more images and other information sources about the same tar-
get, remote sensing image registration performs space transformation on them
based on the same reference frame. All these information being processed is got-
ten at different time and different angle, which is collected by similar or diverse
sensors [1]. Remote sensing image registration is an important step of the remote

 Rulin Xu and J ingfei J iang.

Abstract. Image registration is a crucial step of many remote sensing related ap-
plications. As the scale of data and complexity of algorithm keep growing, image
registration faces great challenges of its processing speed. In recent years, the
computing capacity of GPU improves greatly. Taking the benefits of using GPU
to solve general propose problem, we research on GPU-based remote sensing im-
age registration algorithm. A mutual information based wavelet registration algo-
rithm is proposed on the GPU parallel programming model, and storage optimiza-
tion strategy is applied on the registration process. Using CUDA language, we
tested our proposed methods with nVIDIA Tesla M2050 GPU. The experiment re-
sults prove that the parallel programming model and storage optimization strategy
can well adapt to the field of remote sensing image registration, with a speedup of
19.9x. Our research also shows that the GPU-based general propose computing
has a bright future in the field of remote sensing image processing.

Keywords: GPU Mutual information Image registration Parallel algorithm.

1.1 Introduction

1 Haifang Zhou ()
College of Computer, National University of Defense Technology, Changsha, China
e-mail: haifang_zhou@163.com

3rd International Conference on Multimedia Technology（ICMT 2013)

© 2013. The authors - Published by Atlantis Press 1596

sensing related applications, the outcome of which leads a direct impact on its fol-
lowing processes..

As remote sensing technology develops steadily, the time, space and spectral
resolutions of remote sensing images become higher, and the scale of remote sens-
ing data increases greatly. Meanwhile, with the growing requirements on accuracy
of the result of remote sensing image registration, the complexity of such process
continues to rise. Therefore, the processing speed of remote sensing image regis-
tration meets great challenges. Traditional methods accelerate the process with
multi-CPU and perform it in parallel. Le Moigne et al. [2] designed a fine-grained
parallel registration algorithm based on multi-resolution analysis, while Ozkan et
al. [3] proposed a genetic algorithm based fine-grained parallel algorithm.

In recent years, GPU (Graphic Process Unit) have gained rapid development in
the field of general propose computing. It provides a new way of researching and
exploring remote sensing images registration. Since GPU was produced, its proc-
essing capability grows with a speed beyond the Moore law [4]. The FP (Floating-
Point) computing capability of the existing nVIDIA Geforce GTX 590 GPU has
reached 4.96Tflops. Using GPU to solve general propose computing problems has
the following advantages: (1) GPU contains lots of the parallel computing core,
which provides more resources for computing; (2) With its high storage band-
width, it can speed up data transmission; (3) Its overhead of switching threads is
low, which can improve overall performance; (4) It adopts read-only cache, accel-
erating the processes to obtain data. Recently, CPU-GPU heterogeneous platform
has made rapid development too, and it has already been well used in many fields
as mentioned in [5][6].

To solve the processing speed problem of remote sensing image registration, in
this paper, we research on some GPU-based accelerate methods which combines
the research hotspot of GPU-based general propose computing.

1.2 CUDA Programming Model and Storage Structure

The GPU accelerate platform we used in our research is from nVIDIA, and we
adopted nVIDIA CUDA language to develop GPU applications.

The CUDA langrage [7] developed by nVIDIA company is an extension of the
C language. It mainly uses APIs to call for some basic services, which makes the
programmer who is familiar with C langrage could design and develop general
propose computing applications quickly. In the CUDA programming model, CPU
is considered as host while GPU is treated as device, and program is operated in
the SIMT (Single Instruction Multiple Thread) manner. Device creates many
threads during its operation. Many threads form block, and then blocks form grid.

CUDA improves its performance by obtaining program level parallelism with
lots of threads. This kind of parallelism includes two types: fine-grained thread
parallelism and coarse-grained thread parallelism. Fine-grained thread parallelism

1597

indicates the parallel relationship between threads in a block, while coarse-grained
thread parallelism is the parallel relationship between blocks.

1.3 Mutual information wavelet registration algor ithm and its
parallel programming model

1.3.1 General idea

The complexity of the serial wavelet registration algorithm based on the similarity
of mutual information focuses on two points, i.e. four-level wavelet decomposi-
tion and mutual information calculation. These two processes will be used to cor-
rect registration parameter constantly.

Fig. 1.1 The task partition of CPU and GPU.

While designing the parallel program of the mutual information based serial
wavelet registration algorithm, there are many functions whose complexities are

Read image to CPU memory

Copy image to GPU memory

Assist GPU to complete wave-
let decomposition

Assist GPU to compute op-
timal value of parameters

Collect results from GPU

Write result image to disk

Wavelet transform on image row

Receive image from CPU

Wavelet transform on image column

Save result of wavelet decompositon

Image resampling

Compute optimal value of parame-
ters by mutual information

Final registration by optimal pata.

Send final result to CPU .

CPU tasks GPU tasks

1598

directly related to the size of the remote images. These functions include column
wavelet decomposition, line wavelet decomposition, re-sampling, mutual informa-
tion calculation, and image registration using the most effective parameters. We
map all these functions to GPU functions, so as to accelerate the computing proc-
ess.

Figure1.1 shows how we assign tasks between CPU and GPU. Firstly, CPU
loads the image data into memory, and then, it transfers the data to the GPU
Global Memory. After that, CPU assists GPU to perform wavelet decomposition
by calling GPU’s wavelet decomposition kernel at each level of wavelet decom-
position. CPU takes part in the process of calculating the most effective parame-
ters mainly by calling GPU kernels (such as the kernels of processing mutual in-
formation) and performing some complex operations like comparison and
accumulation. At last, CPU stores the results generated from GPU and writes them
back to some specified locations in memory.

In our implement, we design individual GPU kernel for each process, i.e. col-
umn wavelet decomposition, line wavelet decomposition, re-sampling and image
registration. All these kernels are called by GPU to accomplish computation.
Functions of column wavelet decomposition and line wavelet decomposition are
similar, which need extra constrain about the width of column and line, so as to
limit the number of threads. While processing mutual information, as the whole
process includes many sub-processes, such as judging the maximal and minimal
greyscale of the reference image and target image, performing statistical analysis
on greyscale, calculating the marginal distribution and each point’s greyscale and
so on, we divide the function into four kernels. GPU first divides its task accord-
ing to the blocks of each grid using corresponding kernel, and then, it judges the
local maximal and minimal greyscale of each block, which will be transferred to
CPU later. CPU operates complex process to obtain the overall maximal and
minimal greyscale, and send the result back to GPU. GPU uses another kernel to
generate the joint histogram of each pixel of these two images, and CPU will fin-
ish the final statistic with the outcome from GPU. After that, GPU calculates the
marginal distribution of the images and use that to generate the mutual informa-
tion of each pixel. At last, CPU takes accumulation operation to process the local
mutual in-formation generated by GPU and obtains the overall result which will
be used to correct the registration parameters.

1.3.2 Parallel mapping model of kernels

The data of remote image is organized as two-dimensional array. It is required that
CUDA threads could be organized in the same way, and kernels could be mapped
in parallel to support fine-grained thread parallelism. We design the parallel map-
ping model based on the following mathematic model.

1599

Assume V is the range corresponding to the domain X, and T is the set of GPU
threads. X consists of two parts, i.e. X1 and X2, which are organized in the same
way. X1∨X2=X, X1∧X2=φ (φ indicates empty set). In additional, the number of
elements in X1, X2, V and T are equal, which is indexed from 0 to n. We define the
following functions:





≠−
=

=
ji

jit
yxff i

ji ,1
,

),(:1
 kk vtff =)(:2

1Xxi ∈ ,
2Xy j ∈ , Tti ∈ , i and j are indexes of the element in X1, X2 and T.

Ttk ∈ , Vvk ∈ , k is the index of the element in T and V. Function
1f maps the ele-

ments with the same index in X1 and X2 to the thread with the same index in T, and
-1 indicates there is no thread mapped to the element in X. Function

2f shows
each thread generates only one result, and the result is stored to the location with
the same index in V.

Utilizing the relationship of the above functions to realize remote image regis-
tration, we assign the target image data stored in GPU global memory to X1, assign
the reference image data to X2, and assign the outcome of image registration to V.
All these date sets are organized as two-dimensional array, so is the thread set T.
While realizing it in parallel, threads use the built-in variables of the thread grid to
index the data of images and the location to store results.

x

x

xxy

yy

y

Image A

Image B

Grid Result

……

…… ……
…… ……

……

……

……

……
……
……

……
…… ……

……
……
……

……
……
……

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

a b
c d

a b
c d

a b
c d

a b
c d

x=threadIdx.x+ blockIdx.x*blockDim.x
y=threadIdx.y+blockIdx.y* blockDim.y

Fig. 1.2 GPU parallel mapping model of remote sensing image registration.

The thread grid has 8 built-in variables to locate the threads, i.e. threadIdx.x,
threadIdx.y, blockIdx.x, blockIdx.y, blockDim.x, blockDim.y, gridDim.x and
gridDim.y. Among them, threadIdx.x and threadIdx.y are the horizontal and longi-
tudinal index of the thread in the block; blockIdx.x and blockIdx.y are the hori-
zontal and longitudinal index of the block in the grid; blockDim.x and blockDim.y
indicate the amount of threads in the block in horizontal and longitudinal; grid-

1600

Dim.x and gridDim.y indicate the amount of blocks in the grid in horizontal and
longitudinal. We define another two variables, i.e. x and y, to indicate the index of
image data and thread grid in the horizontal and longitudinal direction respective-
ly. Therefore, there are the following relationship between image data and thread
grid:

x = threadIdx.x + blockIdx.x * blockDim.x
y = threadIdx.y + blockIdx.y * blockDim.y

According the equation above, each thread finds its data to be processed and

the location to store result. The parallel mapping model of remote sensing image
registration is shown as figure1.2.

1.4 Data Flow Or iented Storage Optimization

1.4.1 Asynchronous data transfer between CPU and GPU

CUDA parallel program is executed on the CPU-GPU heterogeneous platform. In
the parallel algorithm of mutual information based wavelet registration, the tasks
of CPU and GPU are divided as shown in figure 2. CPU assigns memory space for
GPU to store data, loads target data to GPU, controls GPU to call for kernel and
stores the outcome generated by GPU. GPU is responsible to execute kernels and
keep some temporary results. As there is a large amount of data needs to be trans-
ferred between CPU and GPU, if CPU starts to transfer data to GPU and wait until
all the data has been transferred without processing the following tasks, it would
stay idle during the transfer process and waste its computing resources. Therefore,
while CPU loads the image data to the Global Memory in GPU, the data should be
transferred asynchronously. In this case, CPU needs not to wait until data transfer
is finished, which overlaps computing and data transferring.

1.4.2 Ooptimization of memory access for thread data

Access to Shared Memory is much faster. With the help of GPU Shared Memory,
we can improve the program performance greatly. In our GPU-based algorithm
proposed in this paper, the registration data is stored in the Global Memory. How-
ever, because of its slower speed of access, if threads get each data from the
Global Memory while executing, the performance of the program will be degraded.
For this reason, we use Shared Memory to optimize the performance. We locate

1601

the registration data of each block in the Shared Memory, so that the threads in
each block can access data through the Shared Memory. Note that if several
threads access the same data, i.e. when Bank Conflict occurs, then threads would
have to access in serial, which affects the program performance. When the data is
transferred from Global Memory to Shared Memory, we should try to avoid Bank
Conflict.

First, we should divide the image data into (n+1)×(n+1) parts, and create the
required data for (n+1)×(n+1) blocks. Each block asks for its own space in the
Shared Memory, in order to store the data needed by thread in block. For instance,
Part(0,0) has four image pixels, and pixel 1 is stored in the same location in the
Block(0,0) in the Shared Memory. The others are processed in the same way.

We adopt the following method to map the target image data to the Blocks in
the Shared Memory.

__shared__ unsigned char fimage[16][16];//declare the space for reference im-
age in Shared Memory

__shared__ unsigned char mimage[16][16];// declare the space for target image
in Shared Memory

j=threadIdx.x+blockIdx.x*blockDim.x;//index x of the source data
i=threadIdx.y+blockIdx.y*blockDim.y;// index y of the source data
fimage[threadIdx.y][threadIdx.x]=fixedimage[i*width+j];//copy data
mimage[threadIdx.y][threadIdx.x]=movedimage[i*width+j];//copy data
After the image data is copied from Global Memory to Shared Memory,

threads in blocks can directly use the built-in variable of the block to locate image
data. Each thread accesses its own target image data in different places in the
Shared Memory, avoiding the existence of Bank Conflict.

1.5 Data Flow Or iented Storage Optimization

In our experiment, we adopt Intel Xeon5670 CPU, which has 6 cores and 12MB
2-Level Cache, supporting 12 threads with 2.93GHz frequency. The GPU we used
is nVIDIA Tesla M2050, which has 448 cores. The operate system is Red Hat
Linux 5.0.

The benchmarks we tested are five groups of images, and the size of images is
scaled up 4 times. During the experiment, the process of loading images and writ-
ing back results are necessary and it introduces the same overhead in both the se-
rial program and CUDA parallel program. However, image registration is the
main task costs more time. Therefore, we only record and analyse the overall time
exclude loading images and storing results. Table 1 shows the results of our ex-
periment.

Figure1.3 shows the speedup of CUDA parallel program compared with the se-
rial program. According to the curve in this figure, as the image scales up from
256×256 to512×512, the speedup increases slowly. Along with the image scales
up to 2048×2048, the speedup increases rapidly. However, while the image scales

1602

up from 2048×2048 to 4096×4096, the increasing trend of speedup declines a lit-
tle. It is mainly because CPU has enough capacity to complete computation
quickly when it processes small size images. However, the initialization and
communication of GPU may lead considerable huge overhead which af1.fects the
benefits GPU acceleration could bring. As the computing scale extends, the extra
overhead introduced by GPU would become inconspicuous compared to the time
GPU costs to process data. Meanwhile, serial program makes CPU reaches its
computing limit, which leads to the executing time increases linearly. Therefore,
the speedup increases linearly when the image size scales up from 512×512 to
2048×2048. Nevertheless, if the computing scale extends further, the executing
time of GPU would increase linearly, which makes speedup grows steadily.

0

5

10

15

20

25

256*256 512*512 1024*1024 2048*2048 4096*4096

sp
ee

du
p

Fig. 1.3 The speedup of GPU-based mutual information wavelet registration algorithm.

Based on the analysis above, we can conclude that the time needed for execut-
ing serial or CUDA parallel program changes differently along with the image
scale alters. When task could not exhaust all the CPU’s computing resources, GPU
speedup increases gradually. In additional, according to the test results, the CUDA
parallel programming and storage optimizing method proposed in this paper can
effectively accelerate the process of remote sensing image registration, which can
be referred by other GPU-based accelerate algorithms.

1.6 Conclusion

Focusing on the challenges of processing speed confronted with remote sensing
image registration, in this paper, we highlight the importance to accelerate its ex-
ecution. Our test results show that as the size of image increases, GPU-based acce-
leration can bring greater improvement on performance. It is proved that the paral-
lel model and storage optimization method proposed in this paper can well adapt
GPU-based acceleration. Our research also shows that GPU-based general propose
computing has a bright future in the field of remote sensing image registration. We
will take further research on this topic combining with MPI technology on the
multi-CPU-GPU acceleration platform in the near future.

1603

1.6 Acknowledgment

This work was supported in part by the National Natural Science Foundation of
China (NSFC) No. 61272146.

1.7 References

1. Brown L. A survey of image registration techniques. ACM Computing Surveys, 1992. 24(4):
325–375

2. Le Moigne J. Towards a Parallel Registration of Multiple Resolution Remote Sensing Data.
//Proc of IGARSS’95. Piscataway, NJ: IEEE Press. 1995: 1011 - 1013 vol.2

3. Ozkan M, Fitzpatrick J. M, Kawamura K. Image Registration for a Transputer-Based Distrib-
uted System. //Proc of the 2nd International Conference on Industrial & Engineering Applica-
tions of AI & Expert Systems (IEA/AIE-89). New York, USA: ACM Press. 1989: 908-915

4. Owens J, Luebke D, Govindaraju N, et al. A survey of general-purpose computation on graph-
ics hardware . Computer Graphics Forum. 2007,26(1):80-113

5. Cederman D, Tsigas P. A Practical Quicksort Algorithm for Graphics Processors // LNCS
5193: Algorithms - ESA 2008, 16th Annual European Symposium 2008. Berlin: Springer,
2008: 246-258

6. Giorgos Vasiliadis, Spiros Antonatos, Michalis Polychronakis. Gnort: High Performance Net-
work Intrusion Detection Using Graphics Processors //LNCS 5230: Proc of the 11th Interna-
tional Symposium On Recent Advances In Intrusion Detection（RAID）. Berlin: Springer,
2008: 116-134

7. NVIDIA CUDA. [2011-05-21] http://www.nvidia.com/object/cuda_home_new.html 20 May.
2013

1604

http://www.nvidia.com/object/cuda_home_new.html�

