Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Progress and challenges in probing the human brain

Abstract

Perhaps one of the greatest scientific challenges is to understand the human brain. Here we review current methods in human neuroscience, highlighting the ways that they have been used to study the neural bases of the human mind. We begin with a consideration of different levels of description relevant to human neuroscience, from molecules to large-scale networks, and then review the methods that probe these levels and the ability of these methods to test hypotheses about causal mechanisms. Functional MRI is considered in particular detail, as it has been responsible for much of the recent growth of human neuroscience research. We briefly review its inferential strengths and weaknesses and present examples of new analytic approaches that allow inferences beyond simple localization of psychological processes. Finally, we review the prospects for real-world applications and new scientific challenges for human neuroscience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different approaches to the analysis of fMRI data.
Figure 2: A mapping of high-dimensional semantic space onto the cortical surface.
Figure 3: New methods for characterizing the postmortem human brain.
Figure 4: A ‘connectogram’90 for an example healthy adult female subject.

Similar content being viewed by others

References

  1. Buckholtz, J. W. et al. Dopaminergic network differences in human impulsivity. Science 329, 532 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Plichta, M. M. & Scheres, A. Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: a meta-analytic review of the fMRI literature. Neurosci. Biobehav. Rev. 38, 125–134 (2014)

    PubMed  Google Scholar 

  3. Schilling, C. et al. Common structural correlates of trait impulsiveness and perceptual reasoning in adolescence. Hum. Brain Mapp. 34, 374–383 (2013)

    PubMed  Google Scholar 

  4. Legon, W. et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nature Neurosci. 17, 322–329 (2014)

    CAS  PubMed  Google Scholar 

  5. Chamberlain, S. R., Müller, U., Robbins, T. W. & Sahakian, B. J. Neuropharmacological modulation of cognition. Curr. Opin. Neurol. 19, 607–612 (2006)

    CAS  PubMed  Google Scholar 

  6. Parvizi, J. et al. Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32, 14915–14920 (2012)This study uses the combination of fMRI and intracranial electrical stimulation to demonstrate the causal role of fusiform regions in face perception

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, A. C. et al. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proc. Natl Acad. Sci. USA 110, 19944–19949 (2013)

    ADS  CAS  PubMed  Google Scholar 

  8. Bandettini, P. A. Twenty years of functional MRI: the science and the stories. Neuroimage 62, 575–588 (2012)

    PubMed  Google Scholar 

  9. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001)

    ADS  CAS  PubMed  Google Scholar 

  10. Attwell, D. et al. Glial and neuronal control of brain blood flow. Nature 468, 232–243 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hillman, E. M. C. Coupling mechanism and significance of the bold signal: a status report. Annu. Rev. Neurosci. 37, 161–181 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sirotin, Y. B. & Das, A. Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. Nature 457, 475–479 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thomsen, K., Offenhauser, N. & Lauritzen, M. Principal neuron spiking: neither necessary nor sufficient for cerebral blood flow in rat cerebellum. J. Physiol. (Lond.) 560, 181–189 (2004)

    CAS  Google Scholar 

  14. Einevoll, G. T., Kayser, C., Logothetis, N. K. & Panzeri, S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nature Rev. Neurosci. 14, 770–785 (2013)

    CAS  Google Scholar 

  15. Farah, M. J. Brain images, babies, and bathwater: critiquing critiques of functional neuroimaging. Hastings Cent. Rep. 44, S19–S30 (2014)

    Google Scholar 

  16. Poldrack, R. A. & Yarkoni, T. From brain maps to cognitive ontologies: informatics and the search for mental structure. Annu. Rev. Psychol http://dx.doi.org/10.1146/annurev-psych-122414-033729 (2015)

  17. Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 (2006)

    PubMed  Google Scholar 

  18. Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis—connecting the branches of systems neuroscience. Frontiers Syst Neurosci 2, 4 (2008)

    Google Scholar 

  19. Naselaris, T., Prenger, R. J., Kay, K. N., Oliver, M. & Gallant, J. L. Bayesian reconstruction of natural images from human brain activity. Neuron 63, 902–915 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cowen, A. S., Chun, M. M. & Kuhl, B. A. Neural portraits of perception: reconstructing face images from evoked brain activity. Neuroimage 94, 12–22 (2014)

    PubMed  PubMed Central  Google Scholar 

  21. Mitchell, T. M. et al. Predicting human brain activity associated with the meanings of nouns. Science 320, 1191–1195 (2008)An outstanding example of the use of fMRI along with a model of word meaning derived from a large text corpus to predict activation patterns associated with words

    ADS  CAS  PubMed  Google Scholar 

  22. Huth, A. G., Nishimoto, S., Vu, A. T. & Gallant, J. L. A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76, 1210–1224 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sprague, T. C., Saproo, S. & Serences, J. T. Visual attention mitigates information loss in small- and large-scale neural codes. Trends Cogn. Sci. 19, 215–226 (2015)

    PubMed  PubMed Central  Google Scholar 

  24. Lewis-Peacock, J. A. & Norman, K. A. Competition between items in working memory leads to forgetting. Nature Commun. 5, 5768 (2014)

    ADS  CAS  Google Scholar 

  25. Charest, I., Kievit, R. A., Schmitz, T. W., Deca, D. & Kriegeskorte, N. Unique semantic space in the brain of each beholder predicts perceived similarity. Proc. Natl Acad. Sci. USA 111, 14565–14570 (2014)

    ADS  CAS  PubMed  Google Scholar 

  26. Davis, T. & Poldrack, R. A. Quantifying the internal structure of categories using a neural typicality measure. Cereb. Cortex 24, 1720–1737 (2014)

    PubMed  Google Scholar 

  27. Mack, M. L., Preston, A. R. & Love, B. C. Decoding the brain’s algorithm for categorization from its neural implementation. Curr. Biol. 23, 2023–2027 (2013)

    CAS  PubMed  Google Scholar 

  28. Xue, G. et al. Greater neural pattern similarity across repetitions is associated with better memory. Science 330, 97–101 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kriegeskorte, N. et al. Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 1126–1141 (2008)This paper applies representational similarity analysis to human fMRI and monkey electrophysiology data to demonstrate similar representational spaces in the inferior temporal cortex across species

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Davis, T. et al. What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis. Neuroimage 97, 271–283 (2014)

    PubMed  PubMed Central  Google Scholar 

  32. Todd, M. T., Nystrom, L. E. & Cohen, J. D. Confounds in multivariate pattern analysis: theory and rule representation case study. Neuroimage 77, 157–165 (2013)

    PubMed  Google Scholar 

  33. Dubois, J., de Berker, A. O. & Tsao, D. Y. Single-unit recordings in the macaque face patch system reveal limitations of fMRI MVPA. J. Neurosci. 35, 2791–2802 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998)

    CAS  PubMed  Google Scholar 

  35. McClure, S. M., Berns, G. S. & Montague, P. R. Temporal prediction errors in a passive learning task activate human striatum. Neuron 38, 339–346 (2003)

    CAS  PubMed  Google Scholar 

  36. O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H. & Dolan, R. J. Temporal difference models and reward-related learning in the human brain. Neuron 38, 329–337 (2003)

    PubMed  Google Scholar 

  37. Badre, D. & Frank, M. J. Mechanisms of hierarchical reinforcement learning in cortico-striatal circuits 2: evidence from fMRI. Cereb. Cortex 22, 527–536 (2012)

    PubMed  Google Scholar 

  38. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based influences on humans’ choices and striatal prediction errors. Neuron 69, 1204–1215 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. LaRocque, K. F. et al. Global similarity and pattern separation in the human medial temporal lobe predict subsequent memory. J. Neurosci. 33, 5466–5474 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Raichle, M. E. The brain’s default mode network. Annu. Rev. Neurosci. 38, 433–447 (2015)

    CAS  PubMed  Google Scholar 

  41. Shulman, G. L. et al. Common blood flow changes across visual tasks: II. decreases in cerebral cortex. J. Cogn. Neurosci. 9, 648–663 (1997)

    CAS  PubMed  Google Scholar 

  42. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003)

    ADS  CAS  PubMed  Google Scholar 

  43. Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007)

    ADS  CAS  PubMed  Google Scholar 

  44. Becerra, L., Pendse, G., Chang, P.-C., Bishop, J. & Borsook, D. Robust reproducible resting state networks in the awake rodent brain. PLoS ONE 6, e25701 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Buckner, R. L. et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J. Neurosci. 25, 7709–7717 (2005)This paper presents a multimodal analysis implicating the default mode network in cognitive decline associated with Alzheimer disease

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA 106, 13040–13045 (2009)This paper demonstrates that resting state networks are systematically associated with cognitive functions

    ADS  CAS  PubMed  Google Scholar 

  47. Laumann, T. O. et al. Functional system and areal organization of a highly-sampled individual human brain. Neuron 87, 657–670 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Murphy, K., Birn, R. M. & Bandettini, P. A. Resting-state fMRI confounds and cleanup. Neuroimage 80, 349–359 (2013)

    PubMed  PubMed Central  Google Scholar 

  49. Power, J. D., Schlaggar, B. L. & Petersen, S. E. Recent progress and outstanding issues in motion correction in resting state fMRI. Neuroimage 105, 536–551 (2015)

    PubMed  Google Scholar 

  50. Tagliazucchi, E. & Laufs, H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82, 695–708 (2014)

    CAS  PubMed  Google Scholar 

  51. Morcom, A. M. & Fletcher, P. C. Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 37, 1073–1082 (2007)

    PubMed  Google Scholar 

  52. Nestler, E. J. & Hyman, S. E. Animal models of neuropsychiatric disorders. Nature Neurosci. 13, 1161–1169 (2010)

    CAS  PubMed  Google Scholar 

  53. Insel, T. R. The NIMH research domain criteria (RDoC) project: precision medicine for psychiatry. Am. J. Psychiatry 171, 395–397 (2014)

    PubMed  Google Scholar 

  54. Mayberg, H. S. Targeted electrode-based modulation of neural circuits for depression. J. Clin. Invest. 119, 717–725 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sulzer, J. et al. Real-time fMRI neurofeedback: progress and challenges. Neuroimage 76, 386–399 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Goodkind, M. et al. Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry 72, 305–315 (2015)This paper examines a large structural imaging dataset and finds that brain abnormalities linked to mental illness are shared across diagnostic categories

    PubMed  PubMed Central  Google Scholar 

  57. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014)

  58. Sperling, R. A., Karlawish, J. & Johnson, K. A. Preclinical Alzheimer disease-the challenges ahead. Nature Rev. Neurol. 9, 54–58 (2013)

    CAS  Google Scholar 

  59. Owen, A. M. Detecting consciousness: a unique role for neuroimaging. Annu. Rev. Psychol. 64, 109–133 (2013)

    PubMed  Google Scholar 

  60. Ariely, D. & Berns, G. S. Neuromarketing: the hope and hype of neuroimaging in business. Nature Rev. Neurosci. 11, 284–292 (2010)

    CAS  Google Scholar 

  61. Berns, G. S. & Moore, S. A neural predictor of cultural popularity. J. Consum. Psychol. 22, 154–160 (2012)

    Google Scholar 

  62. Falk, E. B., Berkman, E. T. & Lieberman, M. D. From neural responses to population behavior: neural focus group predicts population-level media effects. Psychol. Sci. 23, 439–445 (2012)

    PubMed  PubMed Central  Google Scholar 

  63. Gabrieli, J. D. E., Ghosh, S. S. & Whitfield-Gabrieli, S. Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience. Neuron 85, 11–26 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Morse, S. J. Brain overclaim syndrome and criminal responsibility: A diagnostic note. Ohio State J. Criminal Law 3, 397–412 (2006)

    Google Scholar 

  65. Jones, O. D., Wagner, A. D., Faigman, D. L. & Raichle, M. E. Neuroscientists in court. Nature Rev. Neurosci. 14, 730–736 (2013)

    CAS  Google Scholar 

  66. Farah, M. J., Hutchinson, J. B., Phelps, E. A. & Wagner, A. D. Functional MRI-based lie detection: scientific and societal challenges. Nature Rev. Neurosci. 15, 123–131 (2014)

    CAS  Google Scholar 

  67. Reardon, S. Neuroscience in court: the painful truth. Nature 518, 474–476 (2015)

    ADS  CAS  PubMed  Google Scholar 

  68. Underwood, E. DARPA aims to rebuild brains. Science 342, 1029–1030 (2013)

    ADS  CAS  Google Scholar 

  69. Gerits, A. et al. Optogenetically induced behavioral and functional network changes in primates. Curr. Biol. 22, 1722–1726 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Insel, T. R., Landis, S. C. & Collins, F. S. The NIH Brain Initiative. Science 340, 687–688 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Moeller, S. et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63, 1144–1153 (2010)

    PubMed  PubMed Central  Google Scholar 

  72. Yacoub, E., Harel, N. & Ugurbil, K. High-field fMRI unveils orientation columns in humans. Proc. Natl Acad. Sci. USA 105, 10607–10612 (2008)

    ADS  CAS  PubMed  Google Scholar 

  73. Magnain, C. et al. Optical coherence tomography visualizes neurons in human entorhinal cortex. Neurophotonics 2, 015004 (2015)A demonstration of the power of optical coherence tomography to image neural structure in ex vivo human brain tissue

    PubMed  PubMed Central  Google Scholar 

  74. Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Richiardi, J. et al. Correlated gene expression supports synchronous activity in brain networks. Science 348, 1241–1244 (2015)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013)This paper presents a broad overview of the Human Connectome Project

    PubMed  PubMed Central  Google Scholar 

  77. Saygin, Z. M. et al. Tracking the roots of reading ability: white matter volume and integrity correlate with phonological awareness in prereading and early-reading kindergarten children. J. Neurosci. 33, 13251–13258 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Van Essen, D. C. et al. Mapping Connections in Humans and Non-human Primates: Aspirations and Challenges for Diffusion Imaging 2nd edn, Ch. 16 (Elsevier, 2013)

    Google Scholar 

  79. Eveley, C. et al. Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography. Proc. Natl Acad. Sci. USA 112, E2820–E2828 (2015)

    Google Scholar 

  80. Smith, S. M. et al. Network modelling methods for fMRI. Neuroimage 54, 875–891 (2011)

    PubMed  Google Scholar 

  81. Honey, C. J. et al. Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl Acad. Sci. USA 106, 2035–2040 (2009)

    ADS  CAS  PubMed  Google Scholar 

  82. Shen, K. et al. Information processing architecture of functionally defined clusters in the macaque cortex. J. Neurosci. 32, 17465–17476 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nature Methods 8, 665–670 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ioannidis, J. P. A. Why most published research findings are false: author’s reply to Goodman and Greenland. PLoS Med. 4, e215 (2007)

    PubMed  PubMed Central  Google Scholar 

  85. Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nature Rev. Neurosci. 14, 365–376 (2013)

    CAS  Google Scholar 

  86. Carp, J. On the plurality of (methodological) worlds: estimating the analytic flexibility of fMRI experiments. Frontiers Neurosci 6, 149 (2012)

    ADS  Google Scholar 

  87. Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. F. & Baker, C. I. Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neurosci. 12, 535–540 (2009)

    CAS  PubMed  Google Scholar 

  88. Stein, J. L. et al. Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genet. 44, 552–561 (2012)This paper presents the first well-powered genome-wide association study of brain structure

    ADS  CAS  PubMed  Google Scholar 

  89. Waskom, M. L., Kumaran, D., Gordon, A. M., Rissman, J. & Wagner, A. D. Frontoparietal representations of task context support the flexible control of goal-directed cognition. J. Neurosci. 34, 10743–10755 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Irimia, A., Chambers, M. C., Torgerson, C. M. & Van Horn, J. D. Circular representation of human cortical networks for subject and population-level connectomic visualization. Neuroimage 60, 1340–1351 (2012)

    PubMed  PubMed Central  Google Scholar 

  91. Blokland, G. A. M. et al. Heritability of working memory brain activation. J. Neurosci. 31, 10882–10890 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Glahn, D. C. et al. Genetic control over the resting brain. Proc. Natl Acad. Sci. USA 107, 1223–1228 (2010)

    ADS  CAS  PubMed  Google Scholar 

  93. Barnett, J. H., Scoriels, L. & Munafò, M. R. Meta-analysis of the cognitive effects of the catechol-O-methyltransferase gene Val158/108Met polymorphism. Biol. Psychiatry 64, 137–144 (2008)

    CAS  PubMed  Google Scholar 

  94. Nickl-Jockschat, T., Janouschek, H., Eickhoff, S. B. & Eickhoff, C. R. Lack of meta-analytic evidence for an impact of COMT Val158Met genotype on brain activation during working memory tasks. Biol. Psychiatry http://dx.doi.org/10.1016/j.biopsych.2015.02.030 (2015)

  95. Farah, M. J. Neuroethics: the ethical, legal, and societal impact of neuroscience. Annu. Rev. Psychol. 63, 571–591 (2012)

    PubMed  Google Scholar 

  96. Illes, J. & Racine, E. Imaging or imagining? A neuroethics challenge informed by genetics. Am. J. Bioeth. 5, 5–18 (2005)

    PubMed  PubMed Central  Google Scholar 

  97. Farah, M. J. & Gillihan, S. J. The puzzle of neuroimaging and psychiatric diagnosis: technology and nosology in an evolving discipline. AJOB Neurosci. 3, 31–41 (2012)

    PubMed  PubMed Central  Google Scholar 

  98. Conrad, P. The Medicalization of Society: On the Transformation of Human Conditions into Treatable Disorders (Johns Hopkins Univ. Press, 2007)

    Google Scholar 

  99. Sahakian, B. & Morein-Zamir, S. Professor’s little helper. Nature 450, 1157–1159 (2007)

    ADS  CAS  PubMed  Google Scholar 

  100. Fitz, N. S. & Reiner, P. B. The challenge of crafting policy for do-it-yourself brain stimulation. J. Med. Ethics 41, 410–412 (2015)

    PubMed  Google Scholar 

  101. Horvath, J. C., Forte, J. D. & Carter, O. Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul. 8, 535–550 (2015)

    PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to I. Eisenberg, D. Glahn, R. Raizada, and M. Shine for comments on an earlier draft of this manuscript, and N. Logothetis for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

R.P. and M.F. planned and wrote the paper.

Corresponding author

Correspondence to Russell A. Poldrack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poldrack, R., Farah, M. Progress and challenges in probing the human brain. Nature 526, 371–379 (2015). https://doi.org/10.1038/nature15692

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature15692

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing