
An Introduction to Proof Assistants

Patrick Schnider

Student Seminar in Combinatorics: Mathematical Software,
ETH Zürich

1 Motivation

The development of proof assistants was motivated by the use of computers
in proofs of several mathematical problems. We introduce two of the most
famous of those problems, both of which do not yet have a solution without
computer assistance.

1.1 The four-colour theorem

Theorem: Every planar graph allows a proper vertex colouring with four
colours.

The problem was posed in 1852 by Francis Guthrie to his former Professor
Augustus de Morgan. In 1879, Alfred Kempe presented a proof. However,
eleven years later, in 1890, Percy Heawood found a mistake in Kempe’s argu-
ment, but managed to modify the proof in a way that showed that a proper
vertex colouring with five colours always exists. In 1976, almost 100 years
after Kempe, Kenneth Appel an Wolfgang Haken presented a new proof of
the theorem. Their proof relied on a computer checking almost 2000 different
cases in more than 1000 hours of computation time. The difficulty of checking
whether the calculations of the computer were really correct raised concerns
among mathematicians and many were not willing to accept the proof. The
easier proof published in 1996 by Neil Robertson, Daniel P. Sanders, Paul
Seymour, and Robin Thomas, which reduced the argument to ”only” 633

1



cases still couldn’t convince the sceptics. In 2005, Georges Gonthier finished
formalizing the proof in the Proof Assistant Coq. This removed the need to
trust complicated programs doing difficult computations, the only program
that we need to trust is the Coq proof verifier, a piece of software that is
much easier than the programs used in the other proofs.

1.2 Kepler Conjecture

Conjecture: No arrangement of equally sized spheres filling space
has a greater average density than that of the cubic close packing and hexag-
onal close packing arrangements.

This problem was posed by Johannes Kepler in 1611 and remained com-
pletely open for more than 200 years. Only in 1831 Carl Friedrich Gauss
proofed that the statement was true, provided the centres of the spheres
were arranged in a lattice. The problem was included by David Hilbert in
his ”twenty three unsolved problems of mathematics” in 1900. In 1953, Las-
zlo Fejes-Toth showed that it was enough to proof the conjecture one a finite
(even though large) region. Thus a proof by exhaustion would, in princi-
ple, be possible. In fact, the conjecture could be reduced to a problem of
maximizing a function in 150 variables, as Tom Hales discovered. In 1998,
Hales presented a proof based on this approach. The proof involved solving
around 100’000 linear programs. The referees for the Annals of Mathematics
said they were ”99% certain of correctness”, but that they could not certify
the correctness of all computer calculations. Tom Hales, aiming to remove
these uncertainties, initiated the project ”Flyspeck” in 2003, to formalize his
proof using the proof assistants HOL light and Isabelle. The project was
announced to be completed in August 2014.

2 What are Proof Assistants?

A formal proof is a finite sequence of sentences. Each sentence is either an
axiom or follows from the preceding sentences. The last sentence in the se-
quence is a theorem. Formal proofs can be checked by computers effectively.
However, finding formal proofs is in general very hard.
A proof assistant is a software that interacts with the user to find formal
proofs. Proof assistants are not to be confused with automatic theorem

2



provers, the user input is always required. But, depending on the assistant,
certain tasks are automated.
There are many proof assistant software used, the most famous being HOL
light, Isabelle, Coq and Mizar. While HOL light, Isabelle and Coq all imple-
ment higher order logic and offer automated tools, Mizar provides neither of
those but instead has the most extensive library of pre-proved theorems.
As mentioned above, proof assistants are not automated theorem provers.
On the other hand, they are also suitable to compute solutions for compli-
cated mathematical problems. For these problems there are, depending on
the type of problem, lots of software in numerical mathematics, computer
algebra and many specialised programs. While these programs allow very
interesting mathematics, they give the users no proof. Automated theorem
provers give proofs, but, by the complexity of finding proofs, only very sel-
dom interesting mathematics. Proof assistants offer both, but for the price
that the user has to do a lot of work.

3 An example: Coq

Coq was developed by INRIA in France. The first release was in 1989. Coq is
written in OCaml, a dialect of ML also developed at INRIA. The user com-
municates with Coq in a language called Gallina. The logical formalism used
is the calculus of inductive constructions (CIC). CIC only uses five inference
rules, which allows a relatively simple implementation of a proof checker.
Coq is available for all major platforms and also includes two different graph-
ical interfaces (depending on the platform), CoqIDE and ProofGeneral. Coq
also has many automated proof tactics and libraries with pre-proved theo-
rems.

3.1 Using Coq

Let us take a look at en example of a proof done with Coq. We will prove
the rather easy statement that for any type A and for any maps P and Q
form A to a proposition we have that

(∀x ∈ A : P (x)) ∨ (∀y ∈ A : Q(y)) =⇒ ∀x ∈ A : P (x) ∨Q(x).

We start by stating the theorem:

Theorem thm name: forall A: Type, forall P Q: A -> Prop,

(forall x, P x)\/(forall y, Q y) -> forall x, P x \/ Q x.

3



Coq answers with:

1 subgoals

(1/1)

forall (A : Type) (P Q : A -> Prop),

(forall x : A, P x) \/ (forall y : A, Q y) -> forall x : A, P x \/ Q x

We start the proof by writing

Proof.

We then introduce the variables A, P , Q and the hypothesis H:

intros A P Q H.

Coq answers with:

1 subgoals

A : Type

P : A -> Prop

Q : A -> Prop

H : (forall x : A, P x) \/ (forall y : A, Q y)

(1/1)

forall x : A, P x \/ Q x

We want to distinguish the cases where the left side or the right side of
the hypothesis hold. This is done as follows:

destruct H as [H1 | H2].

Coq answers with:

2 subgoals

A : Type

P : A -> Prop

Q : A -> Prop

H1 : forall x : A, P x

(1/2)

forall x : A, P x \/ Q x

(2/2)

forall x : A, P x \/ Q x

4



We only want to prove the left side of the first goal:

left.

Coq answers with:

2 subgoals

A : Type

P : A -> Prop

Q : A -> Prop

H1 : forall x : A, P x

x : A

(1/2)

P x

(2/2)

forall x : A, P x \/ Q x

The first goal is now just the hypothesis:

apply H1.

Coq answers with:

1 subgoals

A : Type

P : A -> Prop

Q : A -> Prop

H2 : forall y : A, Q y

(1/1)

forall x : A, P x Q x

We can now just proof the right side of the goal in the exact same way:

right.

apply H2.

Coq answers with:

No more subgoals.

5



We save the proof by writing

Qed.

Coq answers with:

thm name is defined

The following image shows how this proof looks in the graphical interface
CoqIDE:

The proof can be significantly shortened by calling an automated theorem
proof tactic for recognizing first-order logic tautologies called firstorder:

Proof.

firstorder.

Qed.

6



3.2 Implementation

The implementation of Coq is based on 8 parts:
Part Function
1. The logical framework Meta-language for terms of CIC
2. The language of constructions language for CIC
3. The type-checker (Kernel) checks formal proofs
4. The proof engine interactive proof construction
5. The language of tactics library of pre-implemented tactics
6. The vernacular interpreter Interpreter of Gallina inputs
7. The parser and pretty-printer Translation strings ↔ formulas
8. The standard library pre-implemented modules

A few remarks about the Kernel and the language of tactics can be found
in the next two sections.

3.2.1 The Kernel

The kernel is the most important part concerning the trustworthiness of a
proof assistant. The kernel checks a formal proof for its validity, thus trust-
ing a proof found by a proof assistant effectively means trusting its proof
checking engine. In fact, any mistakes done in other parts of the program
do not matter at all, if the formal proof in the end is correct. This idea is
recorded in the following criterion:

Definition: A proof assistant satisfies the de Bruijn criterion if it gen-
erates proofs that can be checked (independently of the system that created
it) using a simple program (that a skeptical user can write him/herself).

In Coq, the Kernel is independent of the rest of the system and relatively
small. The same also holds for HOL light and Isabelle.

3.2.2 The language of tactics

Tactics are automated tools to prove or simplify statements. Coq offers a
wide variety of tactics, including tautology recognition in first-order logic,
deciding equality for inductive types, different simplifying procedures and
many more. Tactics can also be programmed or extended by user. Tactics
can also call other tactics. Tactics that call other tactics are called defined

7



tactics, those that do not call other tactics are called primitive tactics. Prim-
itive tactics include introducing variables or changing terms into equivalent
terms.
To get an idea how such tactics can be implemented, let us take a look at a
part of the source code of the tactic tauto, which recognizes tautologies in
quantifier-free logical formulas:

The whole code has 399 lines, including comments. The tactic basically
unfolds the architecture of the formulas and applies appropriate tactics for
each logical connective.

8



4 Criticism

In his paper ”Flyspecking Flyspeck” Mark Adams mentions seven concerns
about the trustworthiness of proof assistants, that any referee of such a proof
must adress in his opinion:

1. Has a final theorem actually been proved in the assistant?
The proof scripts might fail to produce a formal proof when processed
altogether in one session. All scripts must be rerun by the independent
referee.

2. Does the final statement really mean what we think it means?
There might be a subtle mistake in a definition or statement of an
auxiliary lemma which might change the meaning of the final theorem.

3. Were any axioms added that make the proof assistants theory
inconsistent?

4. Are the settings for displaying concrete syntax configured in
a way that happen to make a statement get misinterpreted?
There might be different codes that get displayed as the same sym-
bol, which would allow more than one interpretation of some displayed
statements.

5. Can we trust the proof assistant to correctly record and dis-
play all the information required for the review?)
This concern is explained in the next section (Pollack-inconsistency).

6. Is the proof assistant sound?
There might be a programming error in the proof checker, which would
invalidate the whole result.

7. Is there a proof script that could make the proof assistant
unsound?
Could it be somehow possible to reprogram the kernel in a proof script?
The soundness must hold before, during and after processing a proof
script.

Also, any auditor must assume malicious intent. It is quite improbable that
any of the above concerns happens purely by accident, but it is always possi-
ble that somebody exploits a vulnerability in the proof assistant, be it because
of laziness, time pressure or any other reason. This is especially a concern in
projects like Flyspeck where a bounty is attached to every successful proof
of an intermediate step.

9



4.1 Pollack-inconsistency

As any program, a proof assistant includes a parser, which turns input strings
into formulas that the computer can work with, and a printer, which trans-
lates the computer formulas into strings that can the be displayed as output.
In an ideal world, for any formula Φ we would have

parse(print(Φ)) = Φ.

In practice however, this sometimes breaks.

We can extend our axioms by the so-called Pollack-axioms: for any for-
mulas Φ1 and Φ2 we have

(print(Φ1) = print(Φ2)) =⇒ (Φ1 ⇔ Φ2)

We call a proof assistant Pollack-inconsistent if False is provable from Pollack-
axioms.
It turns out that HOL light, Isabelle, Coq and Mizar are all Pollack-inconsistent!
Thus, we really need to be sure that we did not use any Pollack-axioms in
the proof.

5 References

• Wikipedia:

– http://en.wikipedia.org/wiki/Four color theorem

– http://en.wikipedia.org/wiki/Kepler conjecture

– http://en.wikipedia.org/wiki/Proof assistant

– http://en.wikipedia.org/wiki/Formal proof

– http://en.wikipedia.org/wiki/Coq

• Coq Homepage: https://coq.inria.fr/

• Coq References:

– Coq Reference Manual

– ”Coq in a hurry”:
https://cel.archives-ouvertes.fr/inria-00001173v5/document

– ”Theorem Proving with Coq”:
http://flint.cs.yale.edu/cs430/sectionNotes/section1/CoqTutorial.pdf

10



– Book ”Software Foundations”, B.Pierce et al:
http://www.cis.upenn.edu/ bcpierce/sf/current/index.html

• Presentation by H. Geuvers: http://www.cs.ru.nl/ herman/ictopen.pdf

• Coq Source Code repository: https://gforge.inria.fr/git/coq/coq.git

• Mark Adams: Flyspecking Flyspeck. In: Mathematical Software -
ICMS 2014.

• T.C. Hales: Computational Discrete Geometry. In: Mathematical Soft-
ware - ICMS 2010.

• G. Gonthier: A computer-checked proof of the four colour theorem.
http://research.microsoft.com/en-us/um/people/gonthier/4colproof.pdf

11


