
Lightweight Virtualization

LXC containers & AUFS
SCALE11x — February 2013, Los Angeles

Those slides are available at:
http://goo.gl/bFHSh

Outline
● Intro: who, what, why?

● LXC containers
● Namespaces
● Cgroups
● AUFS
● setns

● Future developments

Who am I?
Jérôme Petazzoni

@jpetazzo
SRE (=DevOps) at dotCloud

dotCloud is the first "polyglot" PaaS,
and we built it with Linux Containers!

What is this about?
LXC (LinuX Containers) let you run a Linux
system within another Linux system.

A container is a group of processes on a Linux
box, put together in an isolated environment.

Inside the box, it looks like a VM.
Outside the box, it looks like normal processes.

This is "chroot() on steroids"

1. I will try to convince you that it's awesome.

2. I will try to explain how it works.

3. I will try to get you involved!

Why should I care?

1. I will try to convince you that it's awesome.

2. I will try to explain how it works.

3. I will try to get you involved!

Why should I care?

1. I will convince you that it's awesome.

2. I will explain how it works.

3. You will want to get involved!

Why is it awesome?

The 3 reasons why containers are awesome

Why?
3) Speed!

Ships
within ...

Manual
deployment
takes ...

Automated
deployment
takes ...

Boots in ...

Bare Metal days hours minutes minutes

Virtualization minutes minutes seconds less than a
minute

Lightweight
Virtualization

seconds minutes seconds seconds

Why?
2) Footprint!
On a typical physical server, with average
compute resources, you can easily run:
● 10-100 virtual machines
● 100-1000 containers

On disk, containers can be very light.
A few MB — even without fancy storage.

Why?
1) It's still virtualization!
Each container has:
● its own network interface (and IP address)

○ can be bridged, routed... just like $your_favorite_vm
● its own filesystem

○ Debian host can run Fedora container (&vice-versa)
● isolation (security)

○ container A & B can't harm (or even see) each other
● isolation (resource usage)

○ soft & hard quotas for RAM, CPU, I/O...

Some use-cases

For developers,
hosting providers,
and the rest of us

Use-cases:
Developers
● Continuous Integration

○ After each commit, run 100 tests in 100 VMs

● Escape dependency hell
○ Build (and/or run) in a controlled environment

● Put everything in a VM
○ Even the tiny things

Use-cases:
Hosters
● Cheap Cheaper Hosting (VPS providers)

○ I'd rather say "less expensive", if you get my drift
○ Already a lot of vserver/openvz/... around

● Give away more free stuff
○ "Pay for your production, get your staging for free!"
○ We do that at dotCloud

● Spin down to save resources
○ And spin up on demand, in seconds
○ We do that, too

Use-cases:
Everyone
● Look inside your VMs

○ You can see (and kill) individual processes
○ You can browse (and change) the filesystem

● Do whatever you did with VMs
○ ... But faster

Breaking news:
LXC can haz migration!

This slide intentionally left blank

(but the talk right before mine
should have interesting results)

oh yes indeed!

LXC lifecycle
● lxc-create

Setup a container (root filesystem and config)
● lxc-start

Boot the container (by default, you get a console)
● lxc-console

Attach a console (if you started in background)
● lxc-stop

Shutdown the container
● lxc-destroy

Destroy the filesystem created with lxc-create

How does it work?
First time I tried LXC:
lxc-start --name thingy --daemon

ls /cgroup

... thingy/ ...

"So, LXC containers are powered by cgroups?"

Wrong.

Namespaces

Partition essential kernel structures
to create virtual environments

e.g., you can have multiple processes
with PID 42, in different environments

Different kinds of
namespaces
● pid (processes)
● net (network interfaces, routing...)
● ipc (System V IPC)
● mnt (mount points, filesystems)
● uts (hostname)
● user (UIDs)

Creating namespaces
● Extra flags to the clone() system call
● CLI tool unshare

Notes:
● You don't have to use all namespaces
● A new process inherits its parent's ns
● No easy way to attach to an existing ns

○ Until recently! More on this later.

Namespaces: pid
● Processes in a pid don't see processes of

the whole system
● Each pid namespace has a PID #1
● pid namespaces are actually nested
● A given process can have multiple PIDs

○ One in each namespace it belongs to
○ ... So you can easily access processes of children ns

● Can't see/affect processes in parent/sibling
ns

Namespaces: net
● Each net namespace has its own…

○ Network interfaces (and its own lo/127.0.0.1)
○ IP address(es)
○ routing table(s)
○ iptables rules

● Communication between containers:
○ UNIX domain sockets (=on the filesystem)
○ Pairs of veth interfaces

Setting up veth interfaces
1/2
Create new process, <PID>, with its own net ns

unshare --net bash

echo $$

Create a pair of (connected) veth interfaces

ip link add name lehost type veth peer name leguest

Put one of them in the new net ns

ip link set leguest netns <PID>

Setting up veth interfaces
2/2
In the guest (our unshared bash), setup leguest

ip link set leguest name eth0

ifconfig eth0 192.168.1.2

ifconfig lo 127.0.0.1

In the host (our initial environment), setup lehost

ifconfig lehost 192.168.1.1

Alternatively:

brctl addif br0 lehost

... Or anything else!

Namespaces: ipc
● Remember "System V IPC"?

msgget, semget, shmget
● Have been (mostly) superseded by POSIX

alternatives: mq_open, sem_open, shm_open
● However, some stuff still uses "legacy" IPC.
● Most notable example: PostgreSQL

The problem: xxxget() asks for a key, usually
derived from the inode of a well-known file
The solution: ipc namespace

Namespaces: mnt
● Deluxe chroot()
● A mnt namespace can have its own rootfs
● Filesystems mounted in a mnt namespace

are visible only in this namespace
● You need to remount special filesystems,

e.g.:
○ procfs (to see your processes)
○ devpts (to see your pseudo-terminals)

Setting up space efficient
containers (1/2)
/containers/leguest_1/rootfs (empty directory)

/containers/leguest_1/home (container private data)

/images/ubuntu-rootfs (created by debootstrap)

CONTAINER=/containers/leguest_1

mount --bind /images/ubuntu-rootfs $CONTAINER/rootfs

mount -o ro,remount,bind /images/ubuntu-rootfs $CONTAINER/rootfs

unshare --mount bash

mount --bind $CONTAINER/home $CONTAINER/rootfs/home

mount -t tmpfs none $CONTAINER/tmp

unmount what you don't need ...

remount /proc, /dev/pts, etc., and then:

chroot $CONTAINER/rootfs

Setting up space efficient
containers (2/2)
Repeat the previous slides multiple times
(Once for each different container.)

But, the root filesystem is read-only...?

No problem, nfsroot howtos have been around
since … 1996

Namespaces: uts
Deals with just two syscalls:
gethostname(),sethostname()

Useful to find out in which container you are

... More seriously: some tools might behave
differently depending on the hostname (sudo)

Namespaces: user
UID42 in container X isn't UID42 in container Y
● Useful if you don't use the pid namespace

(With it, X42 can't see/touch Y42 anyway)
● Can make sense for system-wide, per-user

resource limits if you don't use cgroups
● Honest: didn't really play with those!

Control Groups

Create as many cgroups as you like.
Put processes within cgroups.

Limit, account, and isolate resource usage.

Think ulimit, but for groups of processes
… and with fine-grained accounting.

Cgroups: the basics
Everything exposed through a virtual filesystem
/cgroup, /sys/fs/cgroup... YourMountpointMayVary

Create a cgroup:
mkdir /cgroup/aloha

Move process with PID 1234 to the cgroup:
echo 1234 > /cgroup/aloha/tasks

Limit memory usage:
echo 10000000 > /cgroup/aloha/memory.limit_in_bytes

Cgroup: memory
● Limit

○ memory usage, swap usage
○ soft limits and hard limits
○ can be nested

● Account
○ cache vs. rss
○ active vs. inactive
○ file-backed pages vs. anonymous pages
○ page-in/page-out

● Isolate
○ "Get Off My Ram!"
○ Reserve memory thanks to hard limits

Cgroup: CPU (and friends)
● Limit

○ Set cpu.shares (defines relative weights)
● Account

○ Check cpustat.usage for user/system breakdown
● Isolate

○ Use cpuset.cpus (also for NUMA systems)

Can't really throttle a group of process.
But that's OK: context-switching << 1/HZ

Cgroup: Block I/O
● Limit & Isolate

○ blkio.throttle.{read,write}.{iops,bps}.device
○ Drawback: only for sync I/O

(i.e.: "classical" reads; not writes; not mapped files)
● Account

○ Number of IOs, bytes, service time...
○ Drawback: same as previously

Cgroups aren't perfect if you want to limit I/O.
Limiting the amount of dirty memory helps a bit.

AUFS

Writable single-system images

or

Copy-on-write at the filesystem level

AUFS quick example
You have the following directories:
/images/ubuntu-rootfs

/containers/leguest/rootfs

/containers/leguest/rw

mount -t aufs \
 -o br=/containers/leguest/rw=rw:/images/ubuntu-rootfs=ro \
 none /containers/leguest/rootfs

Now, you can write in rootfs:
changes will go to the rw directory.

Union filesystems benefits
● Use a single image (remember the mnt

namespace with read-only filesystem?)
● Get read-writable root filesystem anyway
● Be nice with your page cache
● Easily track changes (rw directory)

AUFS layers
● Traditional use

○ one read-only layer, one read-write layer
● System image development

○ one read-only layer, one read-write layer
○ checkpoint current work by adding another rw layer
○ merge multiple rw layers (or use them as-is)
○ track changes and replicate quickly

● Installation of optional packages
○ one read-only layer with the base image
○ multiple read-only layers with "plugins" / "addons"
○ one read-write layer (if needed)

AUFS compared to others
● Low number of developers
● Not in mainstream kernel

○ But Ubuntu ships with AUFS
● Has layers, whiteouts, inode translation,

proper support for mmap...
● Every now and then, another Union FS

makes it into the kernel (latest is overlayfs)
● Eventually, (some) people realize that it

lacks critical features (for their use-case)
○ And they go back to AUFS

AUFS personal statement

AUFS is the worst union filesystems out there;
except for all the others that have been tried.

Not Churchill

Getting rid of AUFS
● Use separate mounts for tmp, var, data...
● Use read-only root filesystem
● Or use a simpler union FS

(important data is in other mounts anyway)

setns()

The use-case
Use-case: managing running containers
(i.e. "I want to log into this container")
● SSH (inject authorized_keys file)
● some kind of backdoor
● spawn a process directly in the container

This is what we want!

● no extra process (it could die, locking us out)
● no overhead

setns()

In theory
● LXC userland tools feature lxc-attach
● It relies on setns() syscall…
● …And on some files in /proc/<PID>/ns/

fd = open("/proc/<pid>/ns/pid")

setns(fd, 0)

And boom, the current process joined the
namespace of <pid>!

setns()

In practice
Problem (with kernel <3.8):

ls /proc/1/ns/

ipc net uts

Wait, what?!? (We're missing mnt pid user)

You need custom kernel patches.
Linux 3.8 to the rescue!

Lightweight virtualization
at dotCloud
● >100 LXC hosts
● Up to 1000 running containers per host
● Many more sleeping containers
● Webapps

○ Java, Python, Node.js, Ruby, Perl, PHP...
● Databases

○ MySQL, PostgreSQL, MongoDB...
● Others

○ Redis, ElasticSearch, SOLR...

Lightweight virtualization
at $HOME
● We wrote the first lines of our current

container management code back in 2010
● We learned many lessons in the process

(sometimes the hard way!)
● It got very entangled with our platform

(networking, monitoring, orchestration...)
● We are writing a new container management

tool, for a DevOps audience

Would you like to know more?

Mandatory shameless plug

If you think that this was easy-peasy,
or extremely interesting:

Join us!

jobs@dotcloud.com

Thank you!
More about containers, scalability, PaaS...

http://blog.dotcloud.com/
@jpetazzo

Thank you!
More about containers, scalability, PaaS...

http://blog.dotcloud.com/
@jpetazzo

