Read the Beforeitsnews.com story here. Advertise at Before It's News here.
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views
Now:
Last hour:
Last 24 hours:
Total:

Surprising Variability in Shape of Van Allen Belts Findings Could Impact How We Protect Technology in Space

% of readers think this story is Fact. Add your two cents.


The shape of the two electron swarms 600 miles to more than 25,000 miles from the Earth’s surface, known as the Van Allen Belts, could be quite different than has been believed for decades, according to a new study of data from NASA’s Van Allen Probes that was released Friday in the Journal of Geophysical Research. 

“The shape of the belts is actually quite different depending on what type of electron you’re looking at,” said Geoff Reeves of Los Alamos National Laboratory’s Intelligence and Space Research Division and lead author on the study. “Electrons at different energy levels are distributed differently in these regions.”

Learn about the Van Allen Belts and how new findings from NASA’s Van Allen Probes could impact how we protect technology in space.

Credit: Los Alamos National Laboratory

Understanding the shape and size of the belts, which shrink and swell in response to magnetic storms coming from the sun, is crucial for protecting our technology in space. The harsh radiation isn’t good for satellite’s health, so scientists want to know just which orbits could be jeopardized in different situations. Los Alamos has been studying space weather and its effects on national security satellites since the 1960s, when the U.S. launched the Vela satellites to support nuclear treaty verification.

Since scientists first began forming a picture of these rings of energetic particles in the 1950s, understanding of their shape has largely remained unchanged–a small, inner belt, a largely empty space known as the slot region, and then the outer belt, which is dominated by electrons and is larger and more dynamic than the others.

1. The traditional idea of the radiation belts includes a larger, more dynamic outer belt and a smaller, more stable inner belt with an empty slot region separating the two. However, a new study based on data from NASA’s Van Allen Probes shows that all three regions–the inner belt, slot region, and outer belt — can appear differently depending on the energy of electrons considered and general conditions in the magnetosphere.

2. At the highest electron energies measured — above 1 MeV — researchers saw electrons in the outer belt only.

Credit: NASA Goddard/Duberstein

3. The radiation belts look much different at the lowest electron energy levels measured, about 0.1 MeV. Here, the inner belt is much larger than in the traditional picture, expanding into the region that has long been considered part of the empty slot region. The outer belt is diminished and doesn’t expand as far in these lower electron energies.

4. During geomagnetic storms, the empty region between the two belts can fill in completely with lower-energy electrons. Traditionally, scientists thought this slot region filled in only during the most extreme geomagnetic storms happening about once every ten years. However, new data shows it’s not uncommon for lower-energy electrons — up to 0.8 MeV — to fill this space during almost all geomagnetic storms.

But this new analysis reveals that the shape varies from a single, continuous belt with no slot region, to a larger inner belt with a smaller outer belt, to no inner belt at all. Many of the differences are accounted for by considering electrons at different energy levels separately.

“It’s like listening to different parts of a song,” said Reeves. “The bass line sounds different from the vocals, and the vocals are different from the drums, and so on.”

The authors of the study, from Los Alamos National Laboratory and the New Mexico Consortium, found that the inner belt–the smaller belt in the classic picture of the belts–is much larger than the outer belt when observing electrons with low energies, while the outer belt is larger when observing electrons at higher energies. At the very highest energies, the inner belt structure is missing completely. So, depending on what one focuses on, the radiation belts can appear to have very different structures simultaneously.

These structures are further altered by geomagnetic storms. When high-speed solar wind streams or coronal mass ejections–fast-moving magnetic material from the sun–collide with Earth’s magnetic field, they send it oscillating, creating a geomagnetic storm. Geomagnetic storms can increase or decrease the number of energetic electrons in the radiation belts for days to months, though the belts return to their normal configuration after a time.

These storm-driven electron increases and decreases are currently unpredictable, without a clear pattern showing what type or strength of storm will yield what outcomes. There’s a saying in the space physics community: if you’ve seen one geomagnetic storm, you’ve seen one geomagnetic storm. But, it turns out, those observations have largely been based on electrons at only a few energy levels.

“When we look across a broad range of energies, we start to see some consistencies in storm dynamics,” said Reeves. “The electron response at different energy levels differs in the details, but there is some common behavior. For example, we found that electrons fade from the slot regions quickly after a geomagnetic storm, but the location of the slot region depends on the energy of the electrons.”

Often, the outer electron belt expands inwards toward the inner belt during geomagnetic storms, completely filling in the slot region with lower-energy electrons and forming one huge radiation belt. At lower energies, the slot forms farther from Earth, producing an inner belt that is bigger than the outer belt. At higher energies, the slot forms closer to Earth, reversing the comparative sizes.

The twin Van Allen Probes satellites expand the range of energetic electron data we can capture. In addition to studying the extremely high-energy electrons–carrying millions of electron volts–that had been studied before, the Van Allen Probes can capture information on lower-energy electrons that contain only a few thousand electron volts. Additionally, the spacecraft measure radiation belt electrons at a greater number of distinct energies than was previously possible.

“Previous instruments would only measure five or ten energy levels at a time,” said Reeves. “But the Van Allen Probes measure hundreds.”

Measuring the flux of electrons at these lower energies has proved difficult in the past because of the presence of protons in the radiation belt regions closest to Earth. These protons shoot through particle detectors, creating a noisy background from which the true electron measurements needed to be picked out. But the higher-resolution Van Allen Probes data found that these lower-energy electrons circulate much closer to Earth than previously thought.

“Despite the proton noise, the Van Allen Probes can unambiguously identify the energies of the electrons they’re measuring,” said Reeves.

Precise observations like this, from hundreds of energy levels, rather than just a few, will allow scientists to create a more precise and rigorous model of what, exactly, is going on in the radiation belts, both during geomagnetic storms and during periods of relative calm.

“You can always tweak a few parameters of your theory to get it to match observations at two or three energy levels,” said Reeves. “But having observations at hundreds of energies constrain the theories you can match to observations.”

 
 
Contacts and sources: 
Laura Mullane
Los Alamos National Laboratory


Source:


Before It’s News® is a community of individuals who report on what’s going on around them, from all around the world.

Anyone can join.
Anyone can contribute.
Anyone can become informed about their world.

"United We Stand" Click Here To Create Your Personal Citizen Journalist Account Today, Be Sure To Invite Your Friends.

Please Help Support BeforeitsNews by trying our Natural Health Products below!


Order by Phone at 888-809-8385 or online at https://mitocopper.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomic.com M - F 9am to 5pm EST

Order by Phone at 866-388-7003 or online at https://www.herbanomics.com M - F 9am to 5pm EST


Humic & Fulvic Trace Minerals Complex - Nature's most important supplement! Vivid Dreams again!

HNEX HydroNano EXtracellular Water - Improve immune system health and reduce inflammation.

Ultimate Clinical Potency Curcumin - Natural pain relief, reduce inflammation and so much more.

MitoCopper - Bioavailable Copper destroys pathogens and gives you more energy. (See Blood Video)

Oxy Powder - Natural Colon Cleanser!  Cleans out toxic buildup with oxygen!

Nascent Iodine - Promotes detoxification, mental focus and thyroid health.

Smart Meter Cover -  Reduces Smart Meter radiation by 96%! (See Video).

Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    MOST RECENT
    Load more ...

    SignUp

    Login

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.