
Programming Model Elements for Hybrid
Collaborative Adaptive Systems

Ognjen Scekic∗, Tommaso Schiavinotto†, Dimitrios I. Diochnos‡,
Michael Rovatsos‡, Hong-Linh Truong∗, Iacopo Carreras†, Schahram Dustdar∗

∗ Distributed Systems Group, Vienna University of Technology, Austria
Email: oscekic | truong | dustdar @dsg.tuwien.ac.at

† U-Hopper, Trento, Italy
Email: tommaso.schiavinotto | iacopo.carreras @u-hopper.com

‡ Centre for Intelligent Systems and their Applications, University of Edinburgh, UK
Email: d.diochnos | mrovatso @inf.ed.ac.uk

Abstract—Hybrid Diversity-aware Collective Adaptive Sys-
tems (HDA-CAS) is a new generation of socio-technical systems
where both humans and machine peers complement each other
and operate collectively to achieve their goals. These systems are
characterized by the fundamental properties of hybridity and
collectiveness, hiding from users the complexities associated with
managing the collaboration and coordination of hybrid human/-
machine teams. In this paper we present the key programming el-
ements of the SmartSociety HDA-CAS platform. We first describe
the overall platform’s architecture and functionality and then
present concrete programming model elements – Collective-based
Tasks (CBTs) and Collectives, describe their properties and show
how they meet the hybridity and collectiveness requirements.
We also describe the associated Java language constructs, and
show how concrete use-cases can be encoded with the introduced
constructs.

I. INTRODUCTION

We have recently witnessed the evolution of conventional
social computing and appearance of novel types of socio-
technical systems, attempting to leverage human experts for
more intellectually challenging tasks [1, 2, 3, 4, 5]. These types
of systems are opening up the possibilities for novel forms
of interaction, collaboration and organization of labor where
humans and computers complement each other. However, even
the cited systems limit themselves to using computers to
support and orchestrate purely human collaborations, usually
based on patterns of work that can be predictably modeled
before the execution (Section VI). The innovative approach
considered in this paper implies blurring the line between
human and machine computing elements, and considering
them under a generic term of peers – entities that provide
different functionalities under different contexts; participating
in collectives – persistent or short-lived teams of peers, repre-
senting the principal entity performing the computation (task).

Peers and collectives embody the two fundamental proper-
ties of the novel approach: hybridity and collectiveness, offered
as inherent features of the system. Systems supporting these
properties perform tasks and computations transparently to the
user by assembling or provisioning appropriate collectives of
peers that will perform the task in a collaborative fashion.
We call the whole class of these emerging socio-technical

systems HDA-CAS1. However, building such systems is a
challenging task, requiring solutions that go well beyond tra-
ditional coordination and communication problems; especially
so, when participating humans are not merely considered as
computational nodes providing a service at request, but are put
on an equal footing and allowed to actively drive computations.

In this paper we present the programming model and as-
sociated language constructs for the SmartSociety Platform2, a
novel HDA-CAS supporting a wide spectrum of collaboration
scenarios. This paper can be considered a follow-up to the
complementary paper [6], which presents the functionality
of particular platform components, the overall architecture,
and the performance evaluation. The paper describes how the
presented programming model design tackles the fundamental
HDA-CAS novelty requirements of hybridity and collective-
ness and showcases how the introduced language constructs
can be used to encode and execute hybrid collaborations on
the SmartSociety platform.

The paper is organized as follows: In Section II we present
the necessary background and the intended usage context or
the programming model – the SmartSociety platform. In Sec-
tion III the principal programming model elements are intro-
duced and their functionality described. Section IV presents the
associated programming language constructs that are validated
in Section V. Related work is described in Section VI and
contrasted to our approach. Finally, Section VII concludes the
paper and points out directions for future activities.

II. BACKGROUND – THE SMARTSOCIETY PLATFORM

The SmartSociety platform (platform) [6], shown in Fig-
ure 1, is a software framework intended for use by:

1) Users – external human clients or applications who need
a complex collaborative human-machine task performed.

2) Peers – human or machine entities participating in task
executions managed by a platform application.

1 Hybrid Diversity-Aware Collective Adaptive Systems, http://focas.eu/
2 The platform is being developed in the context of the EU FP7 research

project ‘SmartSociety’ URL:http://www.smart-society-project.eu/

http://focas.eu/
http://www.smart-society-project.eu/

SmartSociety Platform
users

C
om

m
un

ic
at

io
n

&

V
ir

tu
al

iz
ti

on
(S

M
A

R
T
C

O
M

)

Android cloud msg.
Facebook connector
Twitter connector
Dropbox connector
Email connector
REST APIs

P
e

e
r-

st
o

re
(P

ee
rM

an
ag

er
)

SmartSociety Application

O
rc

he
st

ra
ti

o
n

M
an

ag
er

JVM

SmartSociety
Program

Programming
model libraries

application containers

human/machine
peers

Knowledge Bases (KBs)

peer
profiles

privacy
policies

comm.
channels

R
ES

T
A

P
I

developers

program code

User
App

Fig. 1: SmartSociety platform users and architecture. Paper contributions outlined.

3) Developers – external individuals providing the business
logic in form of programming code that is compiled and
executed on the platform as a platform application.

The platform acts as intermediary between users and
peers, providing a collaborative task execution environment
and workforce management functionality. The platform is
not limited to a particular class of tasks. Supported task
complexity ranges: from simple, independent crowdsourcing
tasks (e.g., translation); over inter-dependent complex tasks
(e.g., collaborative question answering and refinement); over
team-based tasks (e.g., predictive maintenance [7]); to the fully
human-driven collaborations involving non-trivial execution
plans with constraint matching and human negotiations (e.g.,
ride-sharing). However, implementing the desired collaborative
effort specification is entirely left to the developers in the
context of a particular SmartSociety platform application.
The platform facilitates this process by offering a variety of
commonly used coordination, orchestration, communication
and adaptation mechanisms as ready-made concepts exposed
through the programming API.

A. Usage Context & Key Notions

Interested human peers register their profiles with the
platform and enlist for performing different professional ac-
tivities. The platform uses this data for locating and engaging
peers into different collaborative efforts. In case of human
peers, the platform asks for an explicit approval, enabling the
peer engagement under a short-term contractual relationship.
In case of a software peer, the services are contracted un-
der conventional service-level agreements (SLAs). Registered
users are the basis from which appropriate peers are selected
into collectives participating in executions of collaborative
tasks. A collective is composed of a team of peers along
with a collaborative environment assembled for performing a
specific task. The collaborative environment consists of a set of

software communication and coordination tools. For example,
as described in [7], the platform is able to set up a prede-
fined virtual communication infrastructure for the collective
members and provide access to a shared data repository (e.g.,
Dropbox folder).

The complete collective lifecycle is managed by the plat-
form in the context of a SmartSociety platform application
(Fig. 1). A platform application consists of different modules,
one of which is a SmartSociety program – a compiled module
containing the externally provided code that: a) implements the
desired business logic of the user; b) manages the communica-
tion with the corresponding user applications; and c) relies on
libraries implementing the programming model to utilize the
full functionality of the platform. Through a corresponding
user application users submits task requests to be executed
to the platform. The user application communicates with the
corresponding platform application.

B. Platform Architecture & Functionality

A simplified, high-level view of the SmartSociety platform
architecture is presented in Fig. 1. The rectangle boxes repre-
sent the key platform components. The principal component-
interoperability channels are denoted with double-headed ar-
rows in the figure. Communication with peers is supported
via popular commercial protocols to allow a broader integra-
tion with existing communication software and allow easier
inclusion of peers into the platform. User applications contact
the platform through the REST API component. All incoming
user requests are served by this module that verifies their cor-
rectness and dispatches them to the appropriate SmartSociety
program, which will be processing and responding to them.
The program is a Java application making use of SmartSoci-
ety platform’s programming model libraries, exposing to the
developer the functionality of different platform components.

In the remainder of the section, we briefly describe the

principal platform components and their functionality, neces-
sary for understanding the subsequently presented design of
the programming model. Full details on platform’s architecture
and functionality are provided in the complementary paper [6].

PeerManager (PM): This is the central peer data-store
(peer-store) of the platform. It manages all peer and application
information, and allows privacy-aware access and sharing
of the peer/collective data among platform components and
applications. More details provided here3.

Orchestration Manager (OM): Each platform application
features a dedicated OM component [8]. The OM is the com-
ponent in charge of preparing and orchestrating collaborative
activities among peers. Concretely, this includes the following
functionalities, reflected in the programming model and the
library language constructs (Section III):

• Discovery— Provisioning or locating existing human and
machine peers appropriate for the given task and forming
collectives.

• Composition— Generating possible execution plans to
meet user-set constraints and optimize wanted parameters.

• Negotiation— Coordinating the negotiation process
among human peers leading to the overall agreement and
acceptance of the execution plan.

• Execution— Monitoring the execution of the selected
execution plan during the runtime.

The OM module implements various algorithms for the
above-described functionalities. Discovery can be either per-
formed by actively picking members [9], or by coordinating
the process of self-formation of the collective as integral part of
the composition and negotiation phases. In the latter case, the
OM uses a static decision tree for scheduling the messages
of subscription, agreement and withdrawal to the proposed
plans originating from human peers [10]. At the moment,
during composition the OM generates all possible execution
plans that include the participants who satisfy the required
constraints. Hence, even if the current approach is not com-
putationally efficient, it suffices as a fully-functional, prof-of-
concept implementation. More details on the OM performance
are provided in [6].

Communication and Virtualization Middleware: The
middleware named SMARTCOM is used as the primary means
of communication between the platform and the peers, but also
among the peers. It supports routing and exchange of messages
over different protocols, performing automated message trans-
formations depending on the recipient’s type (human/machine)
and supported formats. The virtualization functionality of
SMARTCOM assumes rendering uniform the representation
and communication with both human and software-based peers
to the remainder of the platform. In addition, it can also be
used to provide an ad-hoc communication environment for the
members of a particular collective. The developer makes use
of SMARTCOM indirectly through the provided programming
API to communicate with collectives. Internally, the OM also
uses SMARTCOM when enacting negotiation protocols.

3http://www.smart-society-project.eu/publications/deliverables/D_4_2/

III. PROGRAMMING MODEL

Figure 2 illustrates the intended usage of the programming
model. The developer writes a SmartSociety program perform-
ing arbitrary business logic and handling the interaction with
user applications. When a task requiring collaborative hybrid
processing is needed, the developer uses the programming
model library constructs to create and concurrently execute
a Collective-based Task (CBT) – an object encapsulating all
the necessary logic for managing complex collective-related
operations: team provisioning and assembly, execution plan
composition, human participation negotiations, and finally the
execution itself. These operations are provided by various
SmartSociety platform components, which expose a set of
APIs used by the programming model libraries. During the
lifetime of a CBT, various Collectives related to the CBT are
created and exposed to the developer for further (arbitrary) use
in the remainder of the code, even outside of the context of
the originating CBT or its lifespan. This allows the developer
to communicate directly with the collective members, monitor
and incentivize them, but also to use existing collectives to
produce new ones, persist them, and pass them as inputs to
other CBTs at a later point. In the remainder of the section,
we will look in more detail into the design and functionality
offered by CBT and Collective constructs.

peersuser
apps

:TaskRequest

Collective-based
task

application-
specific

business logic
(arbitrary code)

...
arbitrary

code
...

SmartSociety
program

Collective-based
task

:TaskResult

provision

compose

negotiate

CollA

CollB

- communicate, reward -

execute

A
P

Is

- monitor -

programming
model libraries

Sm
ar

tS
o

ci
et

y
P

la
tf

o
rm

Fig. 2: Using the SmartSociety programming model.

A. Collective-Based Tasks (CBT)

A collective-based task (CBT) is the element of the pro-
gramming model keeping the state and managing the lifecycle
of a collective task. A CBT instance is always associated
with a TaskRequest containing input data and possibly
a TaskResult containing the outcome of the task (cf.
Fig.2). Both are very generic interfaces meant to hide from
the programming model the application-specific format of the
input and output data, respectively. In fact, the programming
model is designed to be task-agnostic. This is in line with the
general HDA-CAS principle that unconstrained collaboration
should be supported and preferred when possible. This design
choice was made to allow subsequent support of different task

http://www.smart-society-project.eu/publications/deliverables/D_4_2/

models which will be interpretable by the application-specific
Orchestration Manager, or by human peers directly.

A CBT can be processed purely in one of the two collabo-
ration models – (on demand and open call); or a combination
of the two, as specified by the developer upon instantiation.
Table I lists the allowed combinations and describes them in
more detail (also compare with Fig. 1).

on_demand = true ∧ open_call = true
A collective of possible peers is first provisioned, then a set of possible execution
plans is generated. The peers are then asked to negotiate on them, ultimately accepting
one or failing (and possibly re-trying). The set of peers to execute the plan is a subset
of the provisioned collective but established only at runtime.
on_demand = true ∧ open_call = false
The expectedly optimal collective peers is provisioned, and given the task to execute.
The task execution plan is implicitly assumed, or known before runtime. Therefore
no composition is performed. Negotiation is trivial: accepting or rejecting the task.
on_demand = false ∧ open_call = true
“Continuous orchestration”. No platform-driven provisioning takes place. The entire
orchestration is fully peer-driven (by arbitrarily distributed arrivals of peer/user
requests). The platform only manages and coordinates this process. Therefore, neither
the composition of the collective, nor the execution plan can be known in advance, and
vary in time, until either the final (binding) agreement is made, or the orchestration
permanently fails due to non-fulfillment of some critical constraint (e.g., timeout).
Note that in this case the repetition of the process makes no sense, as the process
lasts until either success or ultimate canceling/failure.
on_demand = false ∧ open_call = false
Not allowed/applicable.

TABLE I: CBT collaboration models and selection flags

At CBT’s core is a state machine (Fig. 3) driven
by an indepent execution thread managing transitions
between states representing the eponymous phases of
the task’s lifecycle: provisioning, composition,
negotiation and execution. An additional state, named
continuous_orchestration, is used to represent a pro-
cess combining composition and negotiation under specific
conditions, as explained in Table I. The collaboration model
selection flags are used in state transition guards to skip certain
states.

Each state consumes and produces input/output collectives
during its execution. All these collectives get exposed to the
developer through appropriate language constructs (Listing 2)
and are subsequently usable in general program logic.

Each state is associated with a set of handlers6 with
predefined APIs that needs to be executed upon entering the
state in a specific order. The handlers registered for a specific
application are assumed to know how to interpret and produce
correct formats of input and output data, and wrap them into
TaskRequest and TaskResult objects. By registering
different handler instances for the states the developer can
obtain different overall execution of the CBT. For example,
one of the handlers associated with the execution state is
the ‘QoR’ (quality of result) handler. By switching between
different handler instances, we can produce different outcomes
of the execution phase. Similarly, by registering a different
handler, an OM instance with different parameters can be
used. This feature is used to implement adaptation policies
(Sec. III-B). The programming model provides default dummy
handlers. In addition, the aim is to provide to the developer
a library of useful, precompiled handlers exploiting the full
functionality of the various components of the SmartSociety
platform, such as orchestration and negotiation algorithms pro-
vided by the Orchestration Manager, or external provisioning

algorithms (e.g., [9]). Concrete handlers are pre-registered for
each CBT type exposed to the developer.

Provisioning state: The input to the state is the CBT input
collective specified at CBT instantiation (most commonly a
predefined collective representing all the peers accessible to
the application). In our case, the process of provisioning refers
to finding a set of human or machine peers that can support the
computation, while being optimized on e.g., highest aggregate
set of skills, or lowest aggregate price. See [9] for examples
of possible provisioning algorithms. Provisioning is crucial
in supporting hybridity in the programming model, because
it shifts the responsibility of explicitly specifying peer types
or individual peers at design time from the developer onto
the provisioning algorithms executed at runtime, thus making
both human and machine-based peers eligible depending on
the current availability of the peers and the developer-specified
constraints. The bootstrapping aspect of provisioning refers to
finding and starting a software service, or inviting a human
expert to sign up for the participation in the upcoming com-
putation; and setting up the communication topology (e.g., a
shared Dropbox folder) and communication policies among
them. Details of how this is achieved are provided in [7]. The
output of the state is the ‘provisioned’ collective, that gets
passed on to the next state during the execution.

Fig. 3: CBT state diagram.

Composition state: The composition process calculates
feasible task execution plans, consisting of ordered activities
(steps) required to process the given task and associated
performer peers. Generation of execution plans is usually a
task-specific, non-trivial problem involving advanced planning
and constraint satisfaction algorithms, going well beyond the
scope of this paper; the description of the currently offered
composition algorithms can be found in [10] and here4. From
the programming model’s perspective, however, it suffices to
know the required inputs and outputs of this state: the input
is the ‘provisioned’ collective from the previous state, while

4http://www.smart-society-project.eu/publications/deliverables/D_6_1/

http://www.smart-society-project.eu/publications/deliverables/D_6_1/

the output is a list of collectives ‘negotiables’, associated
with composed execution plans, which get passed on to the
following state.

Negotiation state: Involves selecting one or more execu-
tion plans passed as inputs from the composition state and
enacting a negotiation process on them. If the state is entered
directly from the provisioning state, the execution plan is
implied, and assumed to be implicitly understood by participat-
ing peers. The negotiation is a complex collaborative process
involving human peers, members of the collective associated
with the plan, expressing their participation conditions and
(potential) participation acceptance. How exactly a negotiating
process unfolds is guided by the negotiating pattern specified
by the developer. For example, the pattern may stipulate that
at a given time only one plan can be actively negotiated, and
that the participation in this plan must be reached through the
consensus of all peers belonging to the associated collective.
An alternative pattern may allow negotiation of multiple plans
in parallel, and termination of the negotiation process as soon
as one plan is accepted by a simple majority. The negotiation
patterns currently offered by the platform and through the
programming model libraries are described here5. The output
of the negotiation process is the single ‘agreed’ collective and
the associated execution plan.

Continuous orchestration state: Continuous orchestration
(cf. Table I) does not separate composition and negotiation, but
rather allows continuous switching between (re-)composing
and negotiating. Each new task request submitted by user re-
triggers composition, allowing the peers to temporarily accept
plans and later withdraw, until the plan is ultimately considered
accepted and thus becomes ready for execution, or ultimately
fails. Note that repetition of this state is not applicable, because
repetition is generally done in case of remediable failures,
but in this case the orchestration lasts until the execution
starts (a non-revocable success) or a non-revocable failure is
detected (e.g., a ride to work makes no sense after working
hours have already begun). As continuous orchestration is
completely human-driven, the developer is expected to provide
only the input collective while the planning and negotiations
are handled by the peers. The output is the ‘agreed’ collective
(a subset of the input one) and the associated execution plan.

As an example of real-world continuous orchestration,
assume a ride sharing scenario: users submit driving offers,
peers submit passenger offers. An execution plan in this case
is the description of the possible route of the ride along with
information which section is driven by which vehicle/driver
and with which passengers. If enough requests are submitted,
a number of plans matching hard (time/destination) constraints
are generated. However, a number of soft constraints influence
the human negotiations: drivers prefer different passengers
(due to personal preferences or the price they offer); passengers
prefer different routes depending on the vehicles, fellow-
passengers, ride cost/duration and the number of transfers. All
potential driver/passenger peers are allowed to participate in
negotiations for multiple plans in parallel, and accepting and
withdrawing from multiple plans while they are valid. As soon
as all required peers accept it, the plan is considered agreed.
However, the plan can exist in agreed state, but still revert to

5http://www.smart-society-project.eu/publications/deliverables/D_6_2/

non-agreed if some peer changes his mind before the actual
execution takes place. Furthermore, this affects other plans: if a
passenger commits to participating in ride A, then ride B may
become non-agreed if his presence was a required condition
for executing the ride B. When the actual plan (ride) finally
starts executing, or its scheduled time is reached, the plan is
non-revokable; if it is in addition in agreed state, it can get
executed. Otherwise, the orch_fail state is entered. More
details provided here5.

Execution state: The execution state handles the actual
processing of the agreed execution plan by the ‘agreed’ col-
lective. In line with the general HDA-CAS guidelines, this
process is willingly made highly independent of the developer
and the programming model and let be driven autonomously
by the collective’s member peers. Since peers can be either
human or software agents, the execution may be either loosely
orchestrated by human peer member(s), or executed as a
traditional workflow, depending on what the state’s handlers
stipulate. For example, in the simplified collaborative software
development scenario shown in Listing 2 both CBTs are
executed by purely human-composed collectives. However, the
testTask CBT could have been initialized with a different
type, implying an execution handler using a software peer to
execute a test suite on the software artifact previously produced
by the progTask CBT. Whether the developer will choose
software or human-driven execution CBTs depends primarily
on the nature of the task, but also on the expected execution
duration, quality and reliability. In either case, the developer is
limited to declaratively specifying the CBT’s type (handlers),
the required the termination criterion and the Quality of Results
(QoR) expectations. The state is exited when the termination
criterion evaluates to true. The outcome is ‘success’ or ‘failure’
based on the value of QoR metric. In either case, the developer
can fetch the TaskResult object, containing the outcome,
and the evaluation of the acceptability of the task’s quality.

Fail states: Each of the principal states has a dedicated
failure state. Different failure states are introduced so that
certain states can be re-entered, depending on what the selected
adaptation policy (Sec. III-B) specifies. Some failure states
react only to specific adaptation policies; some to none.

B. Adaptation policies

An adaptation policy is used to enable re-doing of a
particular subset of CBT’s general workflow with different
functionality and parameters, by changing/re-attaching differ-
ent/new handlers to the CBT’s states, and enabling transitions
from the failure states back to active states. The policies are
triggered upon entering failure states, as shown in Figure 3.
The possible transitions are marked with dotted lines in the
state diagram, as certain policies make sense only in certain
fail states. Adaptation policies allow for completely changing
the way a state is executed. For example, by registering a new
handler for the provisioning state a different provisioning
algorithm can be used. Similarly, a new handler installed by the
adaptation policy can in a repeated negotiation attempt
use the “majority vote” pattern for reaching a decision, instead
of the previous “consensus” pattern. Since concrete adaptation
policies are meant to extend the functionality of the program-
ming model they are usually context-specific. Therefore, the
programming model limits itself to offering the mechanism of

http://www.smart-society-project.eu/publications/deliverables/D_6_2/

extending the overall functionality through external policies
and itself offers for each failure state only a limited set
of simple, generally applicable predefined policies. In order
to be general, predefined policies assume re-using existing
handlers. Natively supported predefined policies are described
in Table II. Only a single adaptation policy is applicable in a
single failure state at a given time. If no policy is specified by
the developer, the ABORT policy is assumed (shown as full-line
transition in CBT state machine diagram).

adaptation policy description
ABORT Default. Do nothing, and let the fail state lead to total failure.

REPEAT

Repeats the corresponding active state, with (optionally)
new handler(s). If the developer specifies the new handler
we describe the property as ‘adaptivity’; if the system
automatically determines the new handler, we describe the
property as ‘elasticity’.

REPROVISION
Transition into provisioning state, with (optionally) a
new provisioning handler.

RECOMPOSE
Repeat the composition, with (optionally) a new composition
handler.

TABLE II: CBT adaptation policies.

C. Collectives

The notion of “collective” in HDA-CAS community some-
times denotes a stable group or category of peers based on the
common properties, but not necessarily with any personal/pro-
fessional relationships (e.g., ‘Java developers’, ‘students’, ‘Vi-
enna residents’); in other cases, the term refers to a team – a
group of people gathered around a concrete task. The former
type of collectives is more durable, whereas the latter one is
short-lived. Therefore, we make following distinction in the
programming model:

Resident Collective (RC): is an entity defined by a
persistent peer-store identifier, existing across multiple appli-
cation executions, and possibly different applications. Resident
collectives can also be created, altered and destroyed fully out
of scope of the code managed by the programming model.
The control of who can access and read a resident collective
is enforced solely by the ‘peer-store’ (in our case the PeerMan-
ager component). For those resident collectives accessible from
the given application, a developer can read/access individual
collective members as well as all accessible attributes defined
in the collective’s profile. When accessing or creating a RC,
the programming model either passes to the peer store a query
and constructs the corresponding object from returned peers,
or passes an ID to get an existing peer-store (PeerManager)
collective. In either case, in the background, the programming
model will pass to the peer-store its credentials. The peer
store then decides based on the privacy rules which peers to
expose (return). For example, for the requested collective with
ID ‘ViennaResidents’ we may get all Vienna residents who
are willing to participate in a new (our) application, but not
necessarily all Vienna residents from the peer-store’s DB. By
default, the newly-created RC remains visible to future runs
of the application that created it, but not to other applications.
The peer-store can make them visible to other applications as
well. At least one RC must exist in the application, namely
the collective representing all peers visible to the application.

Application-Based Collective (ABC): Differently than a
resident collective, an ABC’s lifecycle is managed exclusively

by the SmartSociety application. Therefore, an ABC cannot
be accessed (i.e., is meaningless) outside of the application’s
execution context. The ABCs are instantiated: a) implicitly
– by the programming model libraries as intermediate prod-
ucts of different states of CBT execution (e.g., ‘provisioned’,
‘agreed’); or b) explicitly – by using dedicated collective
manipulation operators to clone a resident collective or as
the result of a set operation over existing Collectives. Also
differently than resident collectives, ABCs are atomic and
immutable entities for the developer, meaning that individ-
ual peers cannot be explicitly known or accessed/modified
from an ABC instance. The ABCs embody the principle
of collectiveness, making the collective an atomic, first-class
citizen in our programming model, and encouraging the de-
veloper to express problem solutions in terms of collectives
and collective-based tasks, rather than single activities and
associated individuals. Furthermore, as collective members and
execution plans are not known at design time, this enhances
the general transparency and fairness of the virtual working
environment, eliminating subjective bias.

Peer store

ABCs RCs

a b c d z

individual peer privacy policies

application/platform privacy & fairness policies

a b d

a b c

d e

- CBT-geneated -

 =
a c a b c d

developer

- members visible -

explicit
manipulation

e

RC

ABC

peers

Fig. 4: Differences between RCs and ABCs. ABCs are created
from RCs but out of Developer’s control. Although the Devel-
oper is able to manipulate and create new descending ABCs,
they appear atomic to the Developer.

One of the reasons for introducing the concept of collec-
tives with the described properties is to prevent the User/De-
veloper from using individual human peers as mere com-
puting/processing nodes being assigned activities to perform,
instead favoring a more ethical (teamwork) approach. Fur-
thermore, the distinction and existence of both RC and ABC
Collective models (Fig. 4) allows a trade-off between
hand-picking the team members and the flexibility offered
between a platform-managed collective provisioned based on
user’s requirements. The rationale in the latter case is similar
to cloud computing – the user specifies the infrastructural

requirements and constraints and the platform takes care to
provision this infrastructure, without letting the user care about
which particular VM instances are used and changed. Different
use-cases, privacy and fairness policies may dictate or favor the
choice of one Collective type over the other. For example,
when assembling an input collective of experts for a CBT, the
User may require to use as source the RC representing the
peers with whom the User had positive previous experiences
with. Although this seems like a reasonable request, over time
the peer community might start exhibiting the characteristics
of a scale-free network due to the preferential attachment
method of choosing the collective members [11]. This, in
turn, may lead to discouragement of less prominent peers,
and in overall, increase the attrition rate [12]. To prevent this,
the fairness policy of the application/platform enforced at the
peer store may prevent handpicking of peers, and impose the
use of ABCs provisioned transparently to the Developer/User
in accordance with the fairness policy (e.g., round-robin or
random peer assignment with reputation threshold). This is
important for establishing attractive and competitive virtual
crowd marketplaces [13].

IV. LANGUAGE CONSTRUCTS

The functionality of the programming model is exposed
through various associated language constructs constituting the
SmarSociety Programming API.

Due to space constraints, in this section we do not describe
the full API, which is rather provided as a separate document6.
Instead, we describe the supported groups of constructs and
their functionality, and some representative individual methods.
The examples in Sec.V-A showcase the use of these constructs.

CBT instantiation: This construct allows instantiating
CBTs of a given type, specifying the collaboration model,
inputs (task request and input collective) as well as configuring
or setting the non-default handlers. In order to offer a human-
friendly and comprehensible syntax in conditions where many
parameters need to be passed at once, we make use of
the nested builder pattern to create a “fluent interface”7, as
exemplified in Listing 1.

1 CBT cbt = ctx.getCBTBuilder("MyCBTType")
2 .of(CollaborationType.OC) //Enum: OC, OD, OC_OD
3 .forInputCollective(c)
4 .forTaskRequest(t)
5 .withNegotiationArgs(myNegotiationArgs)
6 .build();
7 /* ... */

Listing 1: Instantiatiation of a CBT.

CBT lifecycle operations: These constructs allow testing
for the state of execution, and controlling how and when
CBT state transitions can happen. Apart from getters/setters
for individual CBT selection (state) flags, the API provides a
convenience method that will set at once all flags to true/false:

• setAllTransitionsTo(boolean tf)

6http://dsg.tuwien.ac.at/research/viecom/SmartSociety/prog-api.pdf.
Password: SmartSocietyReviewer

7http://www.martinfowler.com/bliki/FluentInterface.html

Since from the initial state we can transition into more than
one state, for that we use the method:

• void start() – allows entering into provisioning or
continuous_orchestration state (depending which of them is
the first state). Non-blocking call.

Furthermore, CBT implements the Java 7 Future inter-
face8 and preserves its semantics. This offers a convenient and
familiar syntax to the developer, and allows easier integration
of CBTs with legacy code. The Future API allows the
developer to control and cancel the execution, and to block
on CBT waiting for the result:

• TaskResult get() – waits if necessary for the computation to
complete (until isDone() == true), and then retrieves its result.
Blocking call.

• TaskResult get(long timeout, TimeUnit unit) – same
as above, but throwing appropriate exception if timeout expired before
the result was obtained.

• boolean cancel(boolean mayInterruptIfRunning) – at-
tempts to abort the overall execution in any state and transition directly
to the final fail-state. The original Java 7 semantics of the method is
preserved.

• boolean isCancelled() – Returns true if CBT was canceled
before it completed. The original Java 7 semantics of the method is
preserved.

Listing 3 (:3-5, 7, 16, 21, 28) shows the usage of some of
the constructs.

CBT collective-fetching operations: As explained in
Sec. III-C during the CBT’s lifecycle multiple ABCs get
created (‘input’, ‘provisioned’, ‘negotiables’, ‘agreed’). These
constructs serve as getters for those collectives. At the begin-
ning of CBT’s lifecycle, the return values of these methods
are null. During the execution, the executing thread updates
them with current values. Listing 2 (:20-21) shows examples
of these constructs.

Collective manipulation constructs: These constructs
allow instantiations of RCs by running the queries on the peer-
store (PeerManager), or by creating local representations of
already existing peer-store collectives with a well-known ID.
We assume that the peer-store checks whether we are allowed
to access the requested a collective, and filters out only those
peers whose privacy settings allow them to be visible to our
application’s queries.

• ResidentCollective createFromQuery(PeerMgrQuery
q, string to_kind) – Creates a collective by running a query
on the PeerManager.

• ResidentCollective createFromID(string ID,
string to_kind) – Creates a local representation of an
already existing collective on the PeerManager, with a pre-existing ID.

This group also contains methods for explicitly instantiat-
ing ABCs. Due to specific properties of ABCs (Sec. III-C),
they can only be created through cloning or set operations
from already existing collectives (both RCs and ABCs). These
operations are performed in a way that preserves atomicity and
immutability. Finally, a method for persisting the collectives
at the peer-store is also provided.

• ABC copy(Collective from, [string to_kind)] – Cre-
ates an ABC instance of kind to_kind. Peers from collective from

8http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

http://dsg.tuwien.ac.at/research/viecom/SmartSociety/prog-api.pdf
http://www.martinfowler.com/bliki/FluentInterface.html
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

are copied to the returned ABC instance. If to_kind is omitted, the
kind from collective from is assumed.

• ABC join(Collective master, Collective slave,
[string to_kind)]) – Creates an ABC instance, containing the
union of peers from Collectives master and slave. The resulting
collective must be transformable into to_kind. The last argument
can be omitted if both master and slave have the same kind.

• ABC complement(Collective master, Collective
slave, [string to_kind)]) – Creates an ABC instance,
containing the peers from Collective master after removing the peers
present both in master and in slave. The resulting collective must be
transformable into to_kind. The last argument can be omitted if both
master and slave have the same kind.

• void persist() – Persist the collective on peer-store. RCs are
already persisted, so in this case the operation defaults to renaming.

Listing 2 (:1-2, 19-22) shows examples of these constructs.

Collective-level communication: Programming model
fully relies on our messaging and virtualization middleware
SMARTCOM [7] developed for supporting the communication
with peers and collectives. Programming model allows at
the moment only a basic set of communication constructs,
namely those for sending a message to a hybrid collective
(Listing 3:12-13), and receiving responses from it. Message
delivery is in line with individual privacy preferences.

V. EVALUATION

A programming model can be evaluated both qualitatively
and quantitatively. Quantitative analysis is usually performed
once the associated domain-specific language (constructs)
making use of the programming model is considered mature
[14], since this type of evaluation includes measuring produc-
tivity and subjective satisfaction in an established community
of regular users [15]. During the initial development and
prototyping phase, the common approach is to use the qualita-
tive evaluation instead [14], which, in general, can include:
comparative case studies, analysis of language characteris-
tics and monitoring/interviewing users. Analysis of language
characteristics was chosen as the preferred method in our
case. Comparative analysis was not applicable in this case,
due to nonexistence of similarly expressive models, as shown
in Section VI. In order to qualitatively evaluate the overall
functionality of the programming model, we are currently
integrating the programming model libraries into two existing
SmartSociety platform applications tested in-field with human
peers: a) a ride-sharing application SmartShare9; and b) a
hybrid, collective question-answering service AskSmartSoci-
ety!10. As the two applications put focus on continuous or-
chestration and on-demand collaboration models, respectively,
this exercise is a good indicator of the ability of the model
to cover the advertised collaboration models. In addition, in
order to qualitatively evaluate the API exposed to the developer
we encoded a set of examples covering important use-cases
derived from the set of real-world scenarios specifically elicited
for the purposes of the SmartSociety project, and published
here11. In the remainder of the section, we present an adapted
selection of the encoded examples to illustrate the use of the
the fundamental language constructs.

9 https://gitlab.com/smartsociety/orchestration. Log into GitLab first with:
user/pass = SmartSocietyReviewer / sm@rts0c13tyr3v13w3r

10 https://gitlab.com/smartsociety/appruntime. Log into GitLab first with:
user/pass = SmartSocietyReviewer / sm@rts0c13tyr3v13w3r

11http://www.smart-society-project.eu/publications/deliverables/D_9_1/

A. Examples

Manipulating and reusing collectives: Consider an applica-
tion that uses SmartSociety platform to assemble ad-hoc, on-
demand programming teams to build software artifacts. For
this purpose, two CBT types are assumed to be registered:
“MyJavaProgrammingTask” and “MyJavaTestingTask”. First,
the developer creates a RC javaDevs containing all accessi-
ble Java developers from the peer-store. This collective is used
as the input of the progTask CBT (:4-10). progTask is
instantiated as an on-demand collective task, meaning that the
composition state will be skipped, since the execution plan
in implied from the task request myImplementationTReq.
The collective is first processed in the provisioning phase,
where a subset of programmers with particular skills are
selected and a joint code repository is set for them to use.
The output of the provisioning state is the ‘provisioned’
collective, a CBT-built ABC collective, containing the selected
programmers. Since it is atomic and immutable, the exact
programmers which are members of the team are not known to
the application developer. The negotiation pattern will select
the first 50% of the provisioned developers into the ‘agreed’
collective that will ultimately execute the programming task.
After the progTask’s this ABC becomes exposed to the
developer, which uses it to construct another collective (:19-22),
containing Java developers from the ‘provisioned’ collective
that were not selected into the ‘agreed’ one. This collective
is then used to perform the second CBT testTask (:31-37),
which takes as input the output of the first CBT.

1 Collective javaDevs =
2 ResidentCollective.createFromQuery(myQry,"JAVA_DEVS");
3
4 CBT progTask = ctx.getCBTBuilder("MyJavaProgrammingTask")
5 .of(CollaborationType.OD)
6 .forInputCollective(javaDevs)
7 .forTaskRequest(myImplementationTReq)
8 .withNegotiationArguments(
9 NegotiationPattern.AGREEMENT_RELATIVE_THRESHOLD, 0.5)

10 .build();
11
12 progTask.start();
13
14 /* ... assume negotiation on progTask done ... */
15
16 Collective testTeam; //will be ABC
17 if (progTask.isAfter(CBTState.NEGOTIATION)) {
18 // out of provisioned devs, use other half for testing
19 testTeam = Collective.complement(
20 progTask.getCollectiveProvisioned(),
21 progTask.getCollectiveAgreed()
22);
23 }
24
25 while (!progTask.isDone()) { /* do stuff or block */}
26
27 TaskResult progTRes = progTask.get();
28
29 if (! progTRes.isQoRGoodEnough()) return;
30
31 CBT testTask = ctx.getCBTBuilder("MyJavaTestingTask")
32 .of(CollaborationType.OD)
33 .forInputCollective(javaDevs)
34 .forTaskRequest(new TaskRequest(progTRes))
35 .withNegotiationArguments(
36 NegotiationPattern.AGREEMENT_RELATIVE_THRESHOLD, 1.0)
37 .build();
38 /*...*/

Listing 2: Manipulating and reusing collectives.

Controlling CBT execution: Listing 3 shows some exam-
ples of interacting with CBT lifecycle. An on-demand CBT

https://gitlab.com/smartsociety/orchestration
https://gitlab.com/smartsociety/appruntime
http://www.smart-society-project.eu/publications/deliverables/D_9_1/

named cbt is initially instantiated. For illustration purposes
we make sure that all transition flags are enables (true by
default), then manually set do_negotiate to false, to force
cbt to block before entering the negotiation state, and
start the CBT (:3-5). While CBT is executing, arbitrary business
logic can be performed in parallel (:7-10). At some point, the
CBT is ready to start negotiations. At that moment, for the sake
of demonstration, we dispatch the motivating messages (or
possibly other incentive mechanisms) to the human members
of the collective (:12-14), and let the negotiation process begin.
Finally, we block the main thread of the application waiting
on the cbt to finish or the specified timeout to elapse (:20-21),
in which case we explicitly cancel the execution (:28).

1 CBT cbt = /*... assume on_demand = true ... */
2
3 cbt.setAllTransitionsTo(true); //optional
4 cbt.setDoNegotiate(false);
5 cbt.start();
6
7 while (cbt.isRunning() && !cbt.isWaitingForNegotiation()) {
8 //do stuff...
9 }

10
11 for (ABC negotiatingCol : cbt.getNegotiables() {
12 negotiatingCol.send(
13 new SmartCom.Message("Please accept this task"));
14 // negotiatingCol.applyIncentive("SOME_INCENTIVE_ID");
15 }
16 cbt.setDoNegotiate(true);
17
18 TaskResult result = null;
19 try {
20 //blocks until done, but max 5 hours:
21 result = cbt.get(5, TimeUnit.HOURS);
22 /* ... do something with result ... */
23 }catch(TimeoutException ex) {
24 if (cbt.getCollectiveAgreed() != null){
25 cbt.getCollectiveAgreed().send(
26 new SmartCom.Message("Thank you anyway, but too late."));
27 }
28 cbt.cancel(true);
29 }
30 //...

Listing 3: Controlling CBT’s lifecycle.

VI. RELATED WORK

Here we present an overview of relevant classes of socio-
technical systems, their typical representatives, and compare
their principal features with the SmartSociety programming
model. Based on the way the workflow is abstracted and
encoded the existing approaches can be categorized into three
groups [5]: a) programming-level approaches; b) parallel-
computing approaches; and c) process modeling approaches.

Programming level approaches focus on developing a set
of libraries and language constructs allowing general-purpose
application developers to instantiate and manage tasks to be
performed on socio-technical platforms. Unlike SmartSociety,
the existing systems do not include the design of the crowd
management platform itself, and therefore have to rely on
external (commercial) platforms. The functionality of such
systems is effectively limited by the design of the underlying
platform. Typical examples of such systems are TurKit [16],
CrowdDB [17] and AutoMan [2]. TurKit is a Java library
layered on top of Amazon’s Mechanical Turk offering an
execution model (“crash-and-rerun”) which re-offers the same
microtasks to the crowd until they are performed satisfactorily.

While the deployment of tasks onto the Mechanical Turk
platform is automated, the entire synchronization, task splitting
and aggregation is left entirely to the programmer. Unlike
SmartSociety, the inter-worker synchronization is out of pro-
grammer’s reach. The only constraint that a programmer can
specify is to explicitly prohibit certain workers to participate
in the computations. No other high-level language constructs
are provided. CrowdDB outsources parts of SQL queries as
mTurk microtasks. Concretely, the authors extend traditional
SQL with a set of “crowd operators”, allowing subjective
ordering or comparisons of datasets by crowdsourcing these
tasks through conventional micro-task platforms. From the
programming model’s perspective, this approach is limited
to a predefined set of functionalities which are performed
in a highly-parallelizable and well-know manner. AutoMan
integrates the functionality of crowdsourced multiple-choice
question answering into the Scala programming language. The
authors focus on automated management of answering quality.
The answering follows a hardcoded workflow. Synchronization
and aggregation are centrally handled by the AutoMan library.
The solution is of limited scope, targeting only the designated
labor type. Neither of the three described systems allows
explicit collective formation, or hybrid collective composition.

Parallel computing approaches rely on the divide-and-
conquer strategy that divides complex tasks into a set of
subtasks solvable either by machines or humans. Typical
examples include Turkomatic [18] and Jabberwocky. For ex-
ample, Jabberwocky’s [1] ManReduce collaboration model
requires users to break down the task into appropriate map
and reduce steps which can then be performed by a machine
or by a set of humans workers. Hybridity is supported at
the overall workflow level, but individual activities are still
performed by homogeneous teams. In addition, the efficacy
of these systems is restricted to a suitable (e.g., MapReduce-
like) class of parallelizable problems. Also, in practice they
rely on existing crowdsourcing platforms and do not manage
the workforce independently, thereby inheriting all underlying
platform limitations.

The process modeling approaches focus on integrating
human-provided services into workflow systems, allowing
modeling and enactment of workflows comprising both ma-
chine and human-based activities. They are usually designed
as extensions to existing workflow systems, and therefore
can perform certain peer management. The currently most
advanced systems are CrowdLang [3], CrowdSearcher [4]
and CrowdComputer [5]. CrowdLang brings in a number of
novelties in comparison with the previously described sys-
tems, primarily with respect to the collaboration synthesis
and synchronization. It enables users to (visually) specify a
hybrid machine-human workflow, by combining a number of
generic (simple) collaborative patterns (e.g., iterative, contest,
collection, divide-and-conquer), and to generate a number of
similar workflows by differently recombining the constituent
patterns, in order to generate a more efficient workflow at
runtime. The use of human workflows also enables indirect
encoding of inter-task dependencies. The user can influence
which workers will be chosen for performing a task by
specifying a predicate for each subtask that need to be ful-
filled. The predicates are also used for specifying a limited
number of constraints based on social relationships, e.g., to
consider only Facebook friends. CrowdSearcher presents a

novel task model, composed of a number of elementary crowd-
sourcable operations (e.g., label, like, sort, classify, group),
associated with individual human workers. Such tasks are
composable into arbitrary workflows, through application of
a set of common collaborative patterns which are provided.
This allows a very expressive model but on a very narrow set
of crowdsourcing-specific scenarios. This is in full contrast
with the more general task-agnostic approach taken by the
SmartSociety programming model. The provisioning is limited
to the simple mapping “1 microtask ↔ 1 peer”. No notion of
collective or team is not explicitly supported, nor is human-
driven orchestration/negotiation. Finally, CrowdComputer is
a platform allowing the users to submit general tasks to be
performed by a hybrid crowd of both web services and human
peers. The tasks are executed following a workflow encoded
in a BPMN-like notation called BPMN4Crowd, and enacted
by the platform. While CrowdComputer assumes splitting of
tasks and assignment of single tasks to individual workers
through different ‘tactics’ (e.g., marketplace, auction, mailing
list) SmartSociety natively supports actively assembling hy-
brid collectives to match a task. In addition, by providing a
programming abstraction, SmartSociety offers a more versatile
way of encoding workflows.

VII. CONCLUSIONS & FUTURE WORK

In this paper we presented the programming model of
SmartSociety – an HDA-CAS platform supporting collabora-
tive computations performed by hybrid collectives, composed
of software and human-based services. The platform is able
to host user-provided applications, managing collaborative
computations on their behalf. Even if related systems allow
a certain level of runtime workflow adaptability, they are
limited to patterns that need to be foreseen at design-time
(VI); SmartSociety differs from these systems by extending the
support for collaborations spanning from processes known at
design-time to fully human-driven, ad-hoc runtime workflows.
The spectrum of supported collaboration models and runtime
workflow adaptability are exposed through the newly intro-
duced “CBT” and “Collective” constructs. The two constructs
represent the principal contribution of this paper. The CBT
is task-agnostic, delegating the responsibility of providing a
mutually-interpretable task description to the developer, which
allows the construct to be generally applicable for the entire
class of work activities supported by the platform. Under
the hood of CBT, the programming model offers advanced
composition of execution plans, coordination of the negotiation
process and virtualization of peers. The Collective construct,
coming in two flavors (RCs and ABCs) highlights the col-
lective aspect of the task execution and prevents assigning
individuals to workflow activities. At the same time, it allows
the platform to enforce desired privacy and fairness policies,
and prevents exploiting human peers as individual processing
nodes. Using the associated API, developers can make use of
the two constructs and and leave it to the platform’s runtime
to provision the collectives, orchestrate the negotiation and
agreement between human peers and ultimately perform the
task collaboratively. At the moment, a number of simple
adaptation strategies are also supported. All these phases are
handled transparently to the developer. The API was designed
to be comprehensive and familiar and to integrate well with
legacy (Java) code.

Currently, the programming model has been qualitatively

validated. Future work will see the full implementation and
validation of the programming model in real-world experi-
ments, once the full integration of all project-developed com-
ponents has been performed. Talks are currently under way to
run these tests using in municipalities of Northern Italy and
Israel.

ACKNOWLEDGMENT

Supported by EU FP7 SmartSociety project, grant 600854.

REFERENCES

[1] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar, “The jabberwocky
programming environment for structured social computing,” in Proc.
24th Annual ACM Symposium on User Interface Software and Technol-
ogy, ser. UIST ’11. ACM, 2011, pp. 53–64.

[2] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor, “Au-
toman: A platform for integrating human-based and digital computa-
tion,” SIGPLAN Not., vol. 47, no. 10, pp. 639–654, Oct. 2012.

[3] P. Minder and A. Bernstein, “Crowdlang: A programming language for
the systematic exploration of human computation systems,” in Social
Informatics, ser. LNCS, K. Aberer et al., Eds. Springer, 2012, vol.
7710, pp. 124–137.

[4] A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio,
“Pattern-based specification of crowdsourcing applications,” in Proc.
14th Intl. Conf. on Web Engineering (ICWE) 2014, 2014, pp. 218–235.

[5] S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati, “Modeling,
enacting, and integrating custom crowdsourcing processes,” ACM Trans.
Web, vol. 9, no. 2, pp. 7:1–7:43, May 2015.

[6] O. Scekic et al., “Smartsociety – a platform for collaborative people-
machine computation,” in IEEE SOCA’15, Oct 2015, p. forthcoming.

[7] P. Zeppezauer, O. Scekic, H.-L. Truong, and S. Dustdar, “Virtualiz-
ing communication for hybrid and diversity-aware collective adaptive
systems,” in WESOA@ICSOC’14. Springer, 11 2014.

[8] D. I. Diochnos and M. Rovatsos, “Smartsociety consortium, deliverable
6.2 - static social orchestration: implementation and evaluation,” 2015.
[Online]. Available: http://www.smart-society-project.eu/publications/
deliverables/D_6_2/

[9] M. Z. C. Candra, H.-L. Truong, and S. Dustdar, “Provisioning quality-
aware social compute units in the cloud,” in 11th Intl. Conf. on Service
Oriented Comp. ICSOC’13. Springer, 2013.

[10] M. Rovatsos, D. I. Diochnos, and M. Craciun, “Agent protocols for
social computation,” in Second International Workshop on Multiagent
Foundations of Social Computing, 2015.

[11] J. Kleinberg, “The convergence of social and technological networks,”
Comm. ACM, vol. 51, no. 11, pp. 66–72, Nov. 2008.

[12] O. Scekic, H.-L. Truong, and S. Dustdar, “Incentives and rewarding in
social computing,” Commun. ACM, vol. 56, no. 6, pp. 72–82, Jun. 2013.

[13] A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. Shaw, J. Zim-
merman, M. Lease, and J. Horton, “The future of crowd work,” in Proc.
of the 2013 Conf. on Computer supported cooperative work, ser. CSCW
’13. ACM, 2013, pp. 1301–1318.

[14] P. Mohagheghi and Ø. Haugen, “Evaluating domain-specific modelling
solutions,” in Advances in Conceptual Modeling, ser. LNCS, J. Trujillo
et al., Eds. Springer, 2010, vol. 6413, pp. 212–221.

[15] A. Seffah, M. Donyaee, R. B. Kline, and H. K. Padda, “Usability
measurement and metrics: A consolidated model,” Software Quality
Control, vol. 14, no. 2, pp. 159–178, Jun. 2006.

[16] G. Little, “Exploring iterative and parallel human computation pro-
cesses,” in CHI EA ’10. ACM, 2010, pp. 4309–4314.

[17] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin,
“Crowddb: Answering queries with crowdsourcing,” in Proc. 2011 ACM
SIGMOD Intl. Conf. on Management of Data, ser. SIGMOD ’11. ACM,
2011, pp. 61–72.

[18] A. P. Kulkarni, M. Can, and B. Hartmann, “Turkomatic: Automatic
recursive task and workflow design for mechanical turk,” in CHI EA

’11. ACM, 2011, pp. 2053–2058.

http://www.smart-society-project.eu/publications/deliverables/D_6_2/
http://www.smart-society-project.eu/publications/deliverables/D_6_2/

	Introduction
	Background – the SmartSociety platform
	Usage Context & Key Notions
	Platform Architecture & Functionality

	Programming model
	Collective-Based Tasks (CBT)
	Adaptation policies
	Collectives

	Language constructs
	Evaluation
	Examples
	Manipulating and reusing collectives
	Controlling CBT execution

	Related work
	Conclusions & Future work
	References

