
Entropy and Chaos in non-autonomous and autonomous
systems

The previous two sections tell us that unless we impose strong restrictions

on the functions fi in a non-autonomous system, then we can not expect simple

behavior of the orbits such as periodic orbits or fixed points. Consequently, in this

section we explore methods of measuring how disordered the orbits of the dynamical

system are. SpecificallS the idea is that the rate at Which nearby orbits spread away

from each other is a measure of complexity.

One may wonder about the utility of this notion for neural computation. Topo-

logical entropy (a mathematical notion that measures the spreading out of orbits)

measures how fast the dynamical system explores the whole space within an € mesh.

Since all the training algorithms are essentially search routines, entropy is one way

to measure the quality of the search. Further, as described in section V, a neural .

net algorithm uses the exponential spreading of orbits to find a global minima.

The notion of orbits spreading out is introduced with a simple example. For

a fixed distance of .01 centimeters and in a fixed area of space, the problem is to

determine the maximum number of points that can be placed in this area so that no

two points are closer than .01 centimeters apart. If we think of our whole space a"s
45



46

the fixed rectangle, then 9 points can be placed so that all points are at a distance

of at least .01 cm apart.

.01 cm

There is another way to think about points being placed in a region so they

are not too close to each other. Suppose the resolution of a magnifying glass is 0.01

cm. If two points are less than 0.01 cm apart, then they cannot be distinguished.

They appear to be one blob. . 
i

To extend this idea to a function f , we determine the nrimber of points that

can be packed in a space so that any two of them separate at least once by at least

.01 cm. after no more than, say, 5 iterations of /. Notice that the emphasis is on

separating by .01 cm at least once; e.g. it is acceptable if two points t)y arewithin

.01 cm on the first 4 iterates as long as they separate the required amount by the

fifth iterate.

A particular instanqe of tWo points separating by .01 cm. in at most 5 iterates

is the following: The distance between x,y is less than .00001 cm. The distance

between f(r),f(y) is less than.00001 cm. The distance between f o f(*),f o f(y)

is less than .00001 cm. The distance between ft(r), f3(y) is less than .00001

cm. The distance between fa(*), fa(V) is less than .00001 cm. And the distance
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between f5 (r), f5 (il is .01 
"T.

To illustrate, consider the tent map: T : [0, lJ
e € [0,0.5] and f @) - 2 - 2s ifr e (0.5, tl.

-+ [0, U and ?(c) - 2a if

Fix the distance to be 0.5, and ask how many points can we pack into [0, U so that
any two points separate by . distance of at least 0.{ in no more than 0 iterates.
ClearlS the maximumnumber is at least three because the set 

I0.0,0.b, 
1.0) satisfies

the condition. On the other hand, any set with four points has two of them less
than or equal to 0.5 units apart; this violates the separability condition.

The maximum number for 0, and 1 iterates is five points. This can be s""n
with the set {0, l,?,t,t}.Flor example, the distance between 

"(0) 
and ?.(}) i, *,

so they separate. Since there axe so ma,ny points, the following diagram ma.kes it
easier to see that this set satisfies the condition: ?

a

o4o
r  f .z
T-4
2  f - r
T - t

g  f . z
1--4
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r4o.

The answer for 0, 1, or 2 iterates is given by the set {0, *, 3, 8,*, $,$, t1; it

has a maximum number of elements that separate by at least 0.5 units in 0, 1, or

^2 iterates. This assertion is clear as one sees by comparing any two points in the

diagram:

Notice for 0 iterates that the maximum size is 3 s 2(o+r); for I iterate the

maximum size is 5 nt 2(t+t); and for 2 iterates the maximum size is 8 - 2(z+r) .

By repeating this argument, we find that the number of elements in a maximum

set increases approximately by a multiple of 2 as the number of allowed iterates

oI T is increased. This makes sense since the absolute value of the slope of T is 2

everywhere except at |. ConsequentlR the local effect of the map ? is to expand

the distance between two points by a factor of. 2.

The goal is to measure how the number of elements in a manimumtet increases

in the long run i.e. ff Dr the number of iterates, goes to oo. Even for a simple map

o4o4o
r  f . z  f .+
8  ' 8  ' , 8

,rItli;
s  f .a  f .+- - - - -
8  

' , 8  ' , 8

g4g4o

94g4r
ir#t
r4o4o.
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like the tent n&pr this number grows exponentially as a function of. n. To end

up with a finite limit, the log of the cardinality of the maximum set is divided by

the number of iterates. This motivates the following mathematical definition that

originates in [BOWEN].

DnrlnluoN 4.16. Suppose (Xrd,) is a cornpact metric space. Suppose f;: X + X

is a sequence of continuous functions. We say ,S C X is (0, r, e, {f;}) separated by

the'sequence of functions t/,) if for any x)y e S where t # y, there exists so'me

j ,  d ,epend ,en t  on  x  and ,y ,  w i th0  <  j  1n  so  tha td ( f io  f i - ro , . . .  , f zo  f { * ) , f l o

f i - ro , . . . , fzo h@D >

reduces to the standard defi,nition of an epsilon separated set. Set rr"o(0, r, e, f;) :

max{lsl , S is (n,r) separated by f;}. Set h,"ok,f;): Itp!:pEItPA and,

defi,ne hr"p(f;) : 
lg3 

h""p(r, f;). r

This means that hr"p(f;) is a crude measure of the separation of log r""p(}rn, e, f;).

The next definition, of spanning sets, is a notion that is the dual of separating set.

The spanning set notion measures the minimal number of points needed so that

during the first n iterates each point of the space is within e of one of the iterates

of a point in the spanning set. As we soon show, the use of spanning set is another

way of computing the entropy of a non-autonomous system. It is convenient to have 
'

two different ways of computing the entropy when proving theorems about entropy.

DnrtNttloN 4.17. A set S, where S c K, (0,n,., {/d}) spans K if for any r e K,

there  ex is ts  s  €  S  such tha t  d ( f i  o . . .o / r ( r )  , f io . . .o / r ( t ) )  1e  fo r  a I I  j ,  where
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0 < j  1n.  Set  r roor(O,n,e, f ; ,K) :  min{ l ,Sl  ,^9 (0,  f r te, { / , } )  spo,ns K bV f ; } .  Set

hrpon(r, f;, K) :figt;nffi and, set

hrpoo(f;, K) : 
lg5 

hrpoo(r, f;, K).

^ If we omit K we are assuming K equals the whole space X. We establish

that there are three different yet equivalent ways to compute the entropy. (This is

known for autonomous systems, [BOWEN].) The following lemma establishes the

equivalence of separating set entropy and spanning set entropy.

Lnuue 4.3. hr"p(f;) : hrpon(f;)

Proof: Let Er"o(n,e) be a maximal (0, frte,{/,}) separated set for X and let

x  e  X .  The re  i s  some  U  e  E r "o ( r , e )  so  t ha t  d (h  o . . 1o / r ( c )  , f j  o . . . o  h@D 3 ,

fora l l  0  S j  <

E""p(n,e) U {r} is a (0, frtet{/'}) separated set for X and thus Er"n(n, e) would not

be maximal. This conclusion contradicts that Er"p(nre) is a maximal set. Hence,

Er"p(n,e) also (0, n, er{fr, fz, .. . }) spans X with respect to f;. ConsequentlS we

have that

(4.1) rr"p(0,fr,t et f) : lEr"p(n,.)l > rspan(0,n, e, f;).

Let Er"r(nr2e) be a maximal (n, 2e) separated set for X, and let E"oon(n, e)

be a minimal (n,e) spanning set for X. Using the fact that the set Erpon(n,r)

(0,n,r,{f;}) spans all of X we define a map T : Er"p(n,2e) - Esporr\n,e) in the

following manner. Let x € Er"o(n,2e). By the definition of Erpon(n,e), there is



51

some u e E"poo(n,e)  so that  d( f i  o . . .o / r ( " ) ,  h o. . .o f i (y) )  S e for  any j  wi th

0<  j  1n .  Sode f iney : f@) .

We claim? is 1 to 1. Suppose z : T(xr) : T(*z) for some r.tt a2 € Es"r(nr2r).

By the triangle inequality, for any j with 0 < j 1tu, we have that
^d( f to .  . .  o  f r (x r ) ,  f t  o . . .o  f { *z ) )  S  d( f io . . .  o  f t (s r ) ,  f io . .  .  o  f t (z ) )  +  d ( f io . .  .o

h@), f io . . .of r ( rz))  <-2ebythedef in i t ionof  z  -T(xr)  :  T("2) .  Since Eruo(n,2e)

is a (0, n,2e,{/'}) separated set, the previous inequality implies that or: x2.

Since ? is 1 to 1, rr"p(O,n,2e, f ;)  :  lEr"p(n,2r) l  < lErpoo(n,r) l :  ,"noo(0, r,  e, f ;) .

Hence, for any e ) 0.

r r "p(0rnr2er l r )  < rspan( \ rnre,  f ; )  (  r r " r (0 rnre,  f i ) .

Since hroon(r, f;) - h1n*p$r w€ have that

h,"p(r, f;) -t*;pffi#*, and we obtain . 
'

(4.2)

(4.3) hr"o(2e,/,) < hrpon(r, f;) I hr"o(e, f;).

If 
]5 

hr"p(r,/i) it finite, then elementary theorems about limits applied to equation

4.3 as e + 0 finishes the proofl otherwise, if hr"o(2e,/i) ir infinite for small enough

e values, equation 4.3 implies that h""p({f;}) : oo, and hrnoo({/,}) - oo. I

Our next goal is tq introduce a way to compute the entropy of a continuous

function even for spaces that may not have a metric. We only a,ssume that X is a

compact topological space. When X is a metric space, then the topological mea^sure

of entropy agrees with the one defined in terms of e spanning or € separating sets.

Presenting entropy in terms of open covers originated from IADIERJ.
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DprnvluoN 4.18. Suppose X is compact. For any open coaer 1I of X, Iet N(U)

denote the number of sets in a subcoaer of minirnal cardinality. (A subcouer is

minimal if no subcoaer contains fewer members.) Def,ne the entropy of U to be

H(LL) - los lr(r).

DnrlxmloN 4.19. For any two open coaers tr,0 of X, define trV B - {An B : A e

LI, B e P\. Note that tIV B is also an open coaer of X .

The following are some properties of open covers proved in [ADLER].

PnopunrY 4.1. Ir(rv p) S ,^r(r),^r(B) and, H(tLv p) S H(x) + H(p).

. '

Pnoprnry 4.2. If 6, X -,, X is continuous, then O-r@v P) - 6-t (g)v d-r@).

Pnoppnrv 4.3. A f'is continu,ottrs, the minimal number of elements in an open

coaer If(U), is always greater than or equal to the number of elements in the inuerse

image of an open coverl i.e. If(r) > N(d-t(rr)).

Note: when r/ is onto, then N(y) - N(f-t(u)).

The next definition is analogous to Definition 13. The elements of the open

cover roughly correspond to e balls, except the open sets do not all have the same

diameter.
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DsrrNrttou 4.20 . Suppose f; : X X is a sequence of continuous functions.

Def,ne h"or(f;,ll) :

, :__. ._ Hlsvl f l ( r )  v  ( fzol r ) - t (u)  v. . .v  ( /* - r  o fn-z. . . fzof i ) - r ( r )Jllm sup - -

Dnrnuuon 4.21 . Define the open couer entropy of (X,t/,)) to be

h*o.(f;) - sup{h(f;,U) z lL is an open couer of X}.

Rnulnr 4.8. Notation: we set

N(u, f ; ,n) -  I fFv.f i - r(r)  v ( fz o / t )- t (r)  v. . .v ( f , t  o fn-z. . . fz o / t )- t (s)] ,

H(LL, f ; ,n)  -  H l t rv , f i - r ( r )  v  ( fzof i ) - t ( r )  v . . .v  U: - ro  fn-z . . . fzo l r ) - t ( r ) ] .

We now show the open cover entropy is equal to the spanning set entropy. This

shows that the notions of open cover entropR spanning set entropg and sepa.rating

set entropy a^re equivalent for non-autonomous systems.

Lnuu.e, 4.4. For any e ) 0 and any n u)e can frnd an open coaer tt of X so that

rspon(O,n, e, f;) < N(4 f;,n)
q

Proof: Fix n as a natural number. Fix e ) 0. Since X is compact, the functions

h, fz o ft, . . ., fn-r o . . - o h are uniformly continuous on X, and since there are a

finite number of functions, we can find an open cover 1I of X so that the following

n-Lcondit ionshold:
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(4.1)

'(4.2)

(4.3)

(4.4)

U e (fn o . . . fi-r(r) * diam(U) < r.

Let V be an element of the open cover uV frt (tt) V (fz o,fr)-r(tr) V ... u

( /* - r  ofn-z. . . fzo l t ) - t (u) .  Sincev -  t | tn . f i - r  1ur)n( fzof i ) - r  (us) l . . .n( / , - r  o

fn-z...fz o fi)-r(U") and 0rr € [, this implies that diam(V) < diam(U] < e.

Hence, there is an x e V so that

Ueutd iam(U)<r ,

t te f - rQD)diam(U)<r ,

V C B(a ,e ) .

Let Vt,. . ., V* bea minimal subcover of uv flt(rr) v (fz on)-t(rt) v . . . V (/r-r o

fo-2...  f ,  o fr)-t( t t) . .  By equation 4.4, there exists a set {rr,  . . . ,s*} so that

V c B(*;,e) and s; e V.

We claim our final step shows that the set {rr, ...,t*} (0,n,., {/d}) spans X.

Let y e X. Since Vtr.. .r 'V*cover X. W.I.O.G., suppose y € Vt: Vor l l

f l '  (Vtr) n (fro fi)-r (Vzin . . . (fn-t o fn-z . . . fzo fi)-1(V1"-ryr). Because Vr c

B(rt, e) and nt e Vl weconclude that d(*rry) < e. Further, orta € Vr c "fi-l(yrr)
implies that h@1), h@) € Vrr. By the second of the n conditions diam(Vtr) ( .,

so d(fi(rr), h@D ( e. Similarl1for 7 with I < j 1ft, we have that
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h  o . . . o  f r ( r ) ,  f i  o . . .  o  h@)  e  V i r ,  so  d ( f i  o .  . . o / r ( s ) ,  h  o . . . o  f r ( y ) )  <  e .  Hence ,

do,f;(*uv) ( e. Thus, rspan(0, n, e, f;) < N(4 f;,n). I

The following Corollary enables us to show that the spanning set entropy is

less than or equal to the open cover entropy.

Conolranv 4.1. For any e) 0, there esists an open coaer LI of X so that

t,nyffishffJrry
Proof: Notice that log(c) is strictly increasing. The rest of fhe proof follows

easily from the previous lemma. I

Conolr tnv 4.2. The spanning set entropy is less thhn

entropyl i.e. h"pon(f;) t h"oo"r(f;).

or equal to the open coaer

Proof: This is an immediate conclusion from the definitions of spanning set

entropy and open cover entropy and Corollary 4.1. I

We have shown that the spanning set entropy is less than or equal to the open

cover entropy. Next we show that the spanning set entropy is greater than or equal

to the open cover entropy.

LuMM.q. 4.5. Fis a natural number, n. For any open coaer l!, there eaists e ) 0 so

that rspan(O,n,e, f;) > trf(U, f;,n)

Proof: Set nz - N(4 f;,n). Let V1,..., V* be a minimal subcover of
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t rv  f r t  ( r )  v  ( fzo l t ) - t (s )  v . . .V  ( f * - ro  fn -z . . . f zo f r ) - t (u ) .  S inceV1, . .  . ,  V ,v  i s  a

minimal subcover of X, for each V; there exists er ) 0 and x; e % so that B(r;rri) C

V; and B(r;,"i) fl W - a when j + i. Set e - | min{.r, . . ., e^}. Then the points

{ * t , . . . tnm}  are  an (0 ,  nr2er { / r } )  separated set .  Hence,  r r "p( \ rnr2er f ; )  >

ff(ll, f;,n). By Lemma 4.3, rspan(O, n, e, f;) ) rr"o(0,n,Ze, f;). Hence, we found an

e ) 0 so that rrpoo(0,nt€tl,) > I/(u, f;,n) |

ConollARY 4.3. For any open coaer LL of X, there erists e ) 0 so that

hn'Jpry>r,fl,Jrry
Proof: Again, the proof is that log(c) is strictly increasing. No*, upply Lemma

4.5. I

Conollany 4.4. For a metric spa,ce, the separating set, spanning set, and open

couer entropies a,re equiaalent, i.e. hr"p(f;) : hrpoo(/r) : h"oour(f;)

Proof: The first.equality is Lemma 4.3. The second equality follows from

Corollary 4.2 and Corollary 4.3. I

The previous Corollary suggests that we ought to use the same notation for the

three different ways of definingf entropy; from now on, we write h(f;) to represent

topological entropy and drop all subscripts.

Now we turn our attention to an extension of Bowen's results that the topolog-

ical entropy of the non-autonomous system (Xr{ft,...,/r}) with period r is equal

to the topological entropy of {h,.. ., fr} restricted to the non-wandering points.
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Recall the definition of non-wandering point in Definition 1.7. Notice that this def-

inition is logically equivalent to: For any neighborhood U of p there exists k > 0

such that  fxo. . .  o  fs  o  fzo h(U)  nU + 0.

The next Theorem states that the entropy of a non-autonomous dynamical

'system with period 2, restricted to the non-wandering set is the same as the entropy

of the dynamical system on the whole space. While reading the proof, notice that

none of the steps rely on the fact that the integer nz is a multiple of 2; these steps

only depend on the fact that rn is finite. Consequently, for a non-autonomous

dynamica l  sys tem w i th  pe r iod  p ,  (X r { f i , gz r . . . r gp rg t tg2 t . . . t gp , . . . } ) ,  * "  
"uo  

r " t

rrt, : kp, and make precisely the same arguments as the proof for perio d 2. In the

interests of clarity we show the proof for period 2, rather than for period p.

TunonEM 4.13. The topological entropy of {f ,g} pn'X is equal to the topological

entropy of {f ,g} on Q.

Proof: Let e ) 0 and fixm where m is even and m > 1. Let Ernoo(0, mrerdl)

beamin ima l (0 ,mt€2{ f ,s } )  spann ingset .  Set  U -  {x  e  X  rde , * )@,v)  (  e  fo r

some U e Erporr(0, rn,rer0)). Notice that U is an open set because

(4.5) d@,*)(r ,y) 1d@,*)(r , r)  *  dp,*1@,y)

choose 6 > 0 so ti lat at),A< 6 implies that de,^)(r,*)( e - d@,*)@,v).

Hence, the inequality d@,*)(r,y) ( e implies that B(*,6) C U.

Let X\U denote the set theoretic complement of tl in X. Then X\t/ is compact

because X is compact by assumption. The next Remark essentially tells us that
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X\u is a subset of the wandering points (the set theoretic complement of the non-
wandering points). However, to make the proof more readable we present the proof

of this Remark at the end of the proof of the Theorem.

RnuenK 4 .9 .  Thereeds ts  EorneB>0 so tha t0  <e  andforanyy  €  X \U wehaae

Ig, f lk(B(v, i l )  fr  B(y, i l  :  o for att  k2 r.

The key idea here is to split the whole space X into two pieces, X\t/, and O,

the non-wandering set. Then we show that the size of the spanning sets of X\U

are bounded above by . polynomial, so X\y contributes nothing to the entropy.

Let,S :  Erpoo(0,m,8,X\U) b" a minimal (0,  m,g,{ f ,g})spanning set,  for

x\u, and let Erpon(0,m,€,Q) be a minimal (0, ff i ,€,{f,g}) spanning set for f,r.

Hence, lSl  :  rspan(O,m,P,{f ,g},X\U).  Set Grpoo(*)  -  E"oon(0,m,e,f , t )  u

Erpon(o,m,P,X\U). Notice that Grpoo(nz) is a (0, rrr,e){f ,g})spanning set for x.

Hence, lGrron(*)l ) 
.r"poo(O,*, e, {f , g}, x). Keep in mind, that our long term

goal is to f ind an upper bound for rr"o(\rf lr2erX,{f ,SD.

Let t  € N. Def ine Ql :  X -+ Grpoo(*) t  where Ar(r)  -  (y0,. . . ,yt) ,  and

we choose y, in the following way. rf ls, fl;*@) € u, then choose a y; so that .

Yi e Erpon(O,m,€,O) and d1o,$[o,f] i*(*),ui < e. Otherwise, [9, f] i^(*) € X\U,

sochooseay; sothat y i  € Erpoo(0,*,8,x\u) and d@,^)( lg, f l i * (*) ,y;)  < B. s ince

Erpon(O,mr€, o) is an (0,mre,{ f  ,g})  spanning set for u and Erpoo(\rm, prx\u)

is an (0,m,8,{f,9}) spanning set for X\U, it is possible to make these choices of

U; to define O1.


