
1	
	

Radix		-	Tempo	
	

Monday	25th	September,	2017	

	
Dan	Hughes	

www.radix.global	

	
Abstract	

In	 this	 paper	we	 present	 a	 novel	method	 for	 implementing	 a	Distributed	
Ledger	 that	 preserves	 total	 order	 of	 events	 allowing	 for	 the	 trust-less	
transfer	 of	 value,	 timestamping	 and	other	 functionality.	 	 It	 is	 suitable	 for	
both	public	and	private	deployments,	without	modification,	and	requires	no	
special	hardware	or	equipment.	

Introduction	
In	January	2009,	Satoshi	Nakamoto	introduced	the	first	successful	implementation	of	a	permission-
less	and	trust-less	Distributed	Ledger	Technology	(DLT),	the	Blockchain.		It	provided	a	secure,	reliable	
and	 decentralized	 method	 to	 timestamp	 events,	 providing	 total	 order,	 without	 the	 need	 for	
overarching	3rd	party	regulation	or	trusted	entities.		The	ability	to	timestamp	events	in	such	a	manner	
allowed	Satoshi	to	solve	the	“double	spend”	problem	and	implement	the	concept	of	a	digital	currency.		
This	manifested	as	the	digital	currency	Bitcoin	[1].	

Bitcoin,	and	its	success,	has	inspired	others	to	take	Satoshi’s	blockchain	and	apply	it	in	many	innovative	
ways.	 	 Ethereum	 is	 a	 notable	 example,	 first	 proposed	by	Vitalik	 Buterin	 [2]	 in	 late	 2013,	 it	 allows	
arbitrary	 Turing-complete	 logic	 to	 be	 executed	 upon	 a	 blockchain,	 facilitating	 smart	 applications,	
contracts,	and	even	autonomous	organizations	to	exist	and	function	in	a	decentralized	environment.	

However,	 blockchain	 implementations	 have	 several	 challenges,	 including	 scalability,	 efficiency	 and	
security.	 These	 are	 now	 beginning	 to	 hinder	 its	 progression	 into	 the	 mainstream.	 	 Alternative	
architectures	have	been	developed,	the	most	notable	of	which	being	a	DAG	(Directed	Acyclic	Graph),	
and	while	a	DAG	provides	some	improvements,	at	sufficient	scale	they	too	succumb	to	many	of	the	
same	problems	as	Blockchain.	

A	method	is	needed	for	reaching	trust-less	consensus,	across	a	distributed	ledger,	that	can	scale	in	an	
efficient,	 unbounded	 linear	 fashion.	 In	 this	 paper,	 we	 propose	 a	 solution	 to	 the	 double-spending	
problem	using	a	peer-to-peer	network	of	nodes	with	logical	clocks	to	generate	a	temporal	proof	of	
the	chronological	order	of	events.	The	system	is	secure	providing	nodes	with	a	historical	record	of	the	
generated	temporal	proofs	can	participate.	

Further,	by	providing	the	ability	to	execute	arbitrary	scripts,	a	fully	expressive,	Turing	complete,	state	
change	system	may	be	built	on	the	new	consensus	paradigm.	However,	this	paper	does	not	deal	with	
the	developer	environment	for	decentralised	applications	on	Radix,	which	will	be	explored	in	detail	in	
a	later	paper.	

	 	

2	
	

Radix	Tempo	
The	Tempo	Ledger	consists	of	three	fundamental	components:	

• A	networked	cluster	of	nodes	
• A	global	ledger	database	distributed	across	the	nodes	
• An	algorithm	for	generating	a	cryptographically	secure	record	of	temporally	ordered	events.	

An	 instance	of	Tempo	 is	 called	a	Universe	 and	any	event	within	a	Universe,	 such	as	a	message	or	
transaction,	is	represented	by	an	object	called	an	Atom.			

All	Atoms	contain	at	least	one	end-point	destination,	represented	by	an	end-point	address.		End-point	
addresses	 are	 derived	 from	 an	 identity,	 such	 as	 a	 user’s	 public	 key	 and	 are	 used	 to	 route	 events	
through	the	network.	

Atoms	generally	take	the	form	of	either	Payload	Atoms	or	Transfer	Atoms.		An	example	of	a	Payload	
Atom	is	a	communication,	sent	to	one	or	more	parties,	like	an	email	or	an	instant	message.		Transfer	
Atoms	are	used	to	transfer	the	ownership	of	an	item,	such	as	currency,	to	another	party.	

Atoms	may	also	contain	other	Atoms,	as	well	as	various	other	data,	depending	on	their	purpose.	This	
extra	data	might	include	conditional	destinations,	owners,	participants,	associations	and	application	
meta-data.		Exotic	Atom	variants	can	be	created	for	specific	application	purposes	if	required.	

	

Figure	1:	Standard	Atom	types	&	basic	structure	

Clients	may	create	and	submit	Atoms	to	the	network	via	any	node	it	 is	connected	to.	 	A	submitted	
Atom	 is	 then	 processed	 by	 the	 network	 and,	 if	 valid,	 a	 Temporal	 Proof	 is	 constructed	 for,	 and	
associated	with,	that	Atom	from	that	point	forward.	

Tempo	relies	heavily	on	eventual	consistency	to	achieve	a	total	ordering	of	events.	

Ledger	Architecture	
The	 Tempo	 ledger	 is	 a	 distributed	 database	which	 stores	 all	 Atoms	 that	 exist	 in	 a	Universe.	 	 It	 is	
designed	to	be	horizontally	scalable,	supports	semi-structured	data,	and	can	update	entries.	

A	local	ledger	instance	operating	on	a	node	can	be	configured	to	store	all,	or	part,	of	the	global	
ledger.	A	sub-set	of	the	global	ledger	is	known	as	a	shard.	The	total	shard	space	is	configurable	per	

3	
	

Universe,	but	is	immutable	once	deployed.		Nodes	can	re-configure	to	support	any	sub-set	of	the	
shard	space,	helping	to	ensure	that	the	Universe	can	handle	large	load	requirements	without	
requiring	expensive	hardware	to	operate	a	node.		Critically,	this	enables	performance	constrained	
IoT	devices	to	participate	as	first-class	citizens	in	a	Universe.

Sharding	is	a	fundamental	design	feature	of	Radix,	which	implies	a	robust	approach	for	guaranteeing	
that	Atoms	are	in	the	correct	shards,	and	an	efficient	method	for	determining	which	nodes	will	retain	
copies	of	which	Atoms.	

Considering	that	all	Atoms	must	have	at	 least	one	end-point	 in	 their	destinations,	we	can	derive	a	
shard	ID	using	the	destination,	truncated	to	the	shard	space	dimensions	via	a	modulo	operator.		Some	
Atoms,	 such	 as	 Transfer	 Atoms,	 may	 have	multiple	 destinations	 and	 therefore	 will	 be	 present	 in	
multiple	shards.	

This	 is	 by	 design,	 as	 an	 Atom	 that	 is	 present	 in	 multiple	 shards	 increases	 the	 redundancy	 and	
availability	of	that	Atom.		A	further	benefit	is	that	any	Atom	that	performs	an	inter-shard	transfer	is	
present	in	both	the	previous	owner’s	and	new	owner’s	shards.	This,	in	part,	eliminates	the	need	for	a	
global	state	and	mitigates	any	expensive	inter-shard	state	verification	operations	needed	to	prevent	
“double	spends”.		

Transfers	
While	Payload	Atoms	are	 relatively	 simple,	 comprising	of	 some	arbitrary	data,	destination/s	and	a	
signature,	Transfer	Atoms	are	more	complex.	

An	owned	item	is	represented	by	a	Consumable.		Ownership	is	defined	as	a	sequence	of	Consumables,	
which	provide	an	auditable	history	of	owners	over	time.		Consumables	are	a	sub-class	of	Atom.	

To	transfer	ownership	of	an	Item(α)	contained	in	Atom(αn)	to	Bob,	Alice	creates	a	Consumer(αX),	which	
references	the	Consumable(αn)	that	specifies	her	as	the	current	owner	and	signs	it	with	her	identity.		
Consumers	are	also	a	sub-class	of	Atom,	and	identify	a	Consumable	that	is	to	be	“consumed”.	

She	also	creates	a	new	Consumable(αX),	which	contains	the	Item(α)	being	transferred,	along	with	the	
identity	of	the	new	owner:	Bob.	

The	Consumer	and	Consumable	are	packaged	into	a	new	Atom(αX)	and	submitted	to	the	network	for	
verification.	

	

Figure	2:	Ownership	Transfer	

4	
	

Any	node	 that	 receives	Alice’s	Atom(αX)	 can	now	 trivially	 validate	 that	Alice	 is	 indeed	 the	 current	
owner	of	Item(α).		This	is	performed	by	validating	the	signature	of	the	submitted	Consumer(αX)	against	
the	owner	information	present	in	the	last	consumable	for	Item(α)	held	in	the	node’s	local	ledger.		If	
the	 signature	 successfully	 validates,	 then	 Alice	must	 be	 the	 current	 owner.	 The	 transfer	will	 then	
execute	and	Bob	becomes	the	new	owner.	

Some	transfer	operations	may	require	that	Item(α)	is	not	transferred	in	its	entirety,	such	as	currency.		
Consumables	can	be	configured	to	allow	partial	transfers	of	an	item,	if	the	item	specification	allows	it.		
In	this	instance	Alice	would	create	two	Consumables,	one	to	Bob	for	the	principle,	and	another	back	
to	herself	for	the	remainder.	

Similarly,	 multiple	 Consumers	may	 be	 used	 to	 reference	many	 Consumables	 owned	 by	 Alice	 and	
transfer	them	all	to	Bob	in	one	execution,	thus	guaranteeing	atomicity	and	reducing	network	load.	

Information	Delivery	
To	 ensure	 swift	 delivery	 of	 events	 to	 all	 nodes	 in	 a	 shard,	 Tempo	 employs	 a	 Gossip	 protocol	 to	
communicate	information	around	the	network.		Gossip	protocols	have	proven	to	be	an	efficient	and	
reliable	means	of	achieving	mass	propagation	of	information	in	a	peer-to-peer	network.	

Nodes	broadcast	information	about	their	configuration,	such	as	a	set	of	shards	they	wish	to	receive	
events	 and	 state	 information	 for,	 and	 any	 network	 services	 they	 may	 offer	 (such	 as	 relay	 and	
discovery)	allowing	further	optimization	of	information	delivery.		They	may	also	broadcast	metadata	
about	 the	 other	 peers	 they	 are	 connected	 to,	 further	 assisting	 in	 the	 routing	 of	 information	 and	
events.		

Nodes	within	the	network	adopt	a	“best	effort”	approach	to	keeping	their	local	ledgers	up	to	date	via	
the	active	synchronization	and	gossip	protocols.		When	receiving	an	Atom	via	any	of	these	means,	a	
node	 will	 perform	 validation	 of	 the	 Atom	 against	 its	 local	 ledger.	 	 If	 a	 provable	 discrepancy	 is	
discovered,	a	node	can	communicate	this	information	to	its	neighbouring	nodes	allowing	them	to	act	
and	resolve	the	discrepancy.	

Though	reliable,	this	approach	will	undoubtedly	lead	to	occasions	where	events	are	missed	and	the	
state	of	an	item	may	be	incorrect	 in	some	local	 ledger	instances.	 	To	resolve	these	inconsistencies,	
nodes	rely	on	detectable	causal	history	anomalies	triggered	by	events.	 	They	can	then	query	other	
nodes	to	obtain	missing	information	and	achieve	eventual	consistency	with	the	rest	of	the	network	
regarding	an	event	and	its	subsequent	state.	

For	 example,	 Node(N)	 receives	 an	 Atom(αn)	 that	 results	 in	 an	 inconclusive	 validation	 procedure,	
perhaps	due	to	a	reference	to	Consumable(αn)	that	Node(N)	does	not	have.		Node(N)	can	then	query	
its	 neighbouring	 nodes	 to	 return	 any	 dependency	 Atom/s	 that	 reference	 Consumable(αn)	 and	
revalidate.		Node(N)	now	has	consistent	state	for	Consumable(αn).	

Event	Availability	
For	Atoms	to	be	validated	correctly,	they	need	to	be	routed	to	the	nodes	that	contain	the	associated	
shards	allowing	the	causal	history	of	any	Consumables,	state	and	other	information	to	be	verified.		

End-point	destinations	provide	the	required	routing	information	to	ensure	that	Atoms	are	received	by	
appropriate	nodes	via	the	gossip	communications	layer.	

5	
	

Consider	the	example	of	Alice	transferring	Item(α)	to	Bob.		Alice	included	her	end-point	destination,	
which	 indicates	 she	 is	 transferring	 from	 Shard(1),	 and	 included	Bob’s	 end-point	 destination	which	
indicates	she	is	transferring	to	Shard(3).	

Nodes	storing	Shard(1	||	3)		need	to	be	aware	of	the	event	of;	Alice’s	spend;	Bob’s	receipt;	and	of	the	
state	of	Item(α)	in	each	shard.		Post	the	event,	nodes	storing	Shard(1)	no	longer	need	to	be	aware	of	
any	future	changes	to	the	state	of	Item(α)	(unless	it	is	sent	again	to	Shard(1)).		The	responsibility	of	
Item(α)’s	state	has	transferred	to	any	nodes	storing	Shard(3).		If	Bob	should	then	spend	Item(α)	to	an	
owner	in	another	shard,	the	responsibility	of	maintaining	the	state	of	Item(α)	will	once	again	change.	

	

Figure	3:	Gossip	of	Atom(αX)	targeting	Shards(1,3)	

Processing	only	events	that	affect	state	within	a	node’s	sub-set	of	the	global	ledger,	and	the	shifting	
responsibility	of	state	maintenance,	greatly	reduces	total	state	processing	overhead.		This	is	key	to	the	
scaling	performance	of	Tempo.	

Logical	Clocks	
The	 foundation	 of	 Tempo	 consensus	 is	 based	 around	 Logical	 Clocks	which	 are	 a	 simple	means	 of	
providing	a	relative,	partial	ordering	of	events	within	a	distributed	system	[3].	

Within	Tempo,	all	nodes	have	a	local	logical	clock;	an	ever-increasing	integer	value	representing	the	
number	of	events	witnessed	by	that	node.		Nodes	increment	their	local	logical	clock	when	witnessing	
an	event	which	has	not	been	seen	previously.		Upon	storing	an	event	the	node	also	stores	its	current	
logical	clock	value	with	it.		This	record	can	then	be	used	to	help	validate	the	temporal	order	of	past	
events	if	required.	

Only	the	receipt	of	an	Atom	that	has	not	been	previously	witnessed	by	that	node	may	be	classed	as	
an	“event”	for	any	given	node	within	Tempo.	

6	
	

Temporal	Proof	Provisioning	
A	Universe	is	split	into	Shards,	where	nodes	are	not	required	to	store	a	complete	copy	of	the	global	
ledger	or	state.	 	However,	without	a	suitable	consensus	algorithm	that	allows	nodes	to	verify	state	
changes	 across	 the	 shards	 they	maintain,	 “double	 spending”	would	 be	 a	 trivial	 exercise,	where	 a	
dishonest	actor	could	spend	the	same	item	on	two	different	shards.		

Temporal	Proofs	provide	a	cheap,	tamper	resistant,	solution	to	the	above	problem.	

Before	an	event	can	be	presented	to	the	entire	network	for	global	acceptance,	an	initial	validation	of	
the	event	is	performed	by	a	sub-set	of	nodes	which,	if	successful,	results	in:	A	Temporal	Proof	being	
constructed	 and	 associated	 with	 the	 Atom,	 and	 a	 network	 wide	 broadcast	 of	 the	 Atom	 and	 its	
Temporal	Proof.	

Using	Alice’s	transfer	of	Item(α)	to	Bob	as	an	example,	the	process	starts	with	Alice	selecting	a	node	
she	is	connected	to,	Node(N),	and	submitting	Atom(αX)	requesting	that	a	Temporal	Proof	of	a	specific	
length	be	created.	

Upon	 receiving	 the	 request,	 Node(N)	 will,	 if	 it	 is	 storing	 either	 Alice’s	 or	 Bob’s	 shard,	 perform	 a	
validation	of	 the	Atom(αX).	 	 In	the	case	of	 it	having	a	copy	of	Shard(1)	 for	Alice,	 it	will	ensure	that	
Item(α)	hasn’t	been	already	spent	by	Alice.	

If	any	provable	discrepancy	is	found,	such	as	Item(α)	being	already	spent	by	Alice,	or	the	Atom	is	badly	
constructed,	processing	of	the	Atom	will	fail.			

Otherwise,	Node(N)	will	determine	a	set	of	directly	connected	nodes	which	are	storing	either	Shard(1	
||	3),	select	one	at	random,	and	forward	it	the	submission	request.	

If	a	suitable	node	is	not	found,	Node(N)	will	search	through	its	node	graph	and	associated	metadata	
to	discover	viable	relay/s	with	connections	to	nodes	maintaining	Shard(1	||	3).	

After	Node(N)	discovers	a	suitable	candidate,	Node(P),	it	will	append	a	space-time	coordinate	(l,	e,	o,	
n)	and	a	signature	of	Hash(l,	e,	o,	n)	to	the	Temporal	Proof	(creating	a	new	one	if	none	is	yet	present).		
Where	l	is	Node(N)’s	logical	clock	value	for	the	event,	o	is	the	ID	of	the	observer	Node(N),	n	is	the	ID	
of	Node(P),	and	e	is	the	event	Hash(Atom).		Node(N)	will	then	transmit	the	Atom(αX)	and	the	current	
Temporal	Proof	to	Node(P).	

	

Figure	4:	Temporal	Proof	

7	
	

Upon	receiving	the	submission	from	Node(N),	Node(P)	will	also	validate	Atom(αX),	and	if	successful,	
will	 select	 a	 subsequent	node	 to	 forward	 the	 submission	 to,	 append	 its	 (l,	 e,	 o,	 n)	 coordinate	and	
signature	to	the	Temporal	Proof	and	transmit	Atom(αX)	and	the	Proof	to	the	next	node.	

The	process	repeats	until	the	required	number	of	nodes	have	participated	in	the	Temporal	Proof	or	a	
provable	discrepancy	is	discovered	by	any	node	involved	in	the	process.	

	

Figure	5:	Temporal	Proof	provisioning	and	gossip	of	Atom(αX)	

Temporal	Provisioning	of	Atom(αX)	in	the	above	example	will	produce	the	following	coordinates:	

Logical	Clock	 Event	 Observer	 Next	Observer	
25	 Hash(Atom(αX))	 Node(N1)	 Node(N2)	
84	 Hash(Atom(αX))	 Node(N2)	 Node(N5)	
13	 Hash(Atom(αX))	 Node(N5)	 Node(N4)	
105	 Hash(Atom(αX))	 Node(N4)	 ---	

	

Provisioning	Efficiency	
The	length	of	a	Temporal	Proof	defines	how	many	nodes	should	be	part	of	the	provisioning	process.	
A	 length	 that	 is	 too	short	 reduces	 the	efficiency	of	 resolving	conflicts	between	Atoms	should	 they	
arise,	and	may	result	in	an	Atom	not	being	correctly	verified,	requiring	it	to	undergo	temporal	order	
determinism	at	each	node.	 	 Lengths	 that	are	very	 long	unnecessarily	 increase	 the	bandwidth	 load	
within	the	network,	as	well	as	the	time	taken	for	an	Atom	to	become	final.		

Once	 the	 Temporal	 Proof	 length	 has	 been	 determined,	 if	 the	 Atom	 being	 transmitted	 has	 any	
dependencies	or	Consumables,	the	network	can	also	optimise	node	selection	to	improve	the	future	
speed	of	verifying	that	transfer.	This	is	because	an	auditable	causal	history	can	easily	be	created	if	a	

8	
	

node	 that	was	 involved	 in	 validating	 a	 previous	 transaction,	 upon	which	 this	 transaction	 relies,	 is	
included	in	the	new	temporal	proof.	

In	 simple	 terms,	 if	 Alice	 sends	 Item(α)	 to	 Bob,	 and	 Bob	 then	 sends	 Item(α)	 to	 Carol,	 it	 is	 highly	
beneficial	for	network	efficiency	if	one	of	the	nodes	that	were	involved	in	creating	the	Temporal	Proof	
for	the	Alice->	Bob	transfer	is	also	part	of	the	Temporal	Proof	for	the	Bob->	Carol	transfer.	

	

	

	

	

	

Achieving	 Temporal	 Proof	 causal	 history	 is	 relatively	 simple:	 	 if,	 when	 taking	 part	 in	 Temporal	
Provisioning,	any	candidate	nodes	available	to	Node(N)	are	also	part	of	the	Temporal	Proof	of	any	
dependencies	of	Atom(αn),	Node(N)	will	select	at	random	one	of	those	as	a	priority	if	not	already	part	
of	the	Temporal	Provisioning	for	Atom(αX).	

To	increase	the	likelihood	of	creating	a	Temporal	Proof	with	these	properties,	the	length	is	again	an	
important	factor.		For	most	purposes,	log(n)*3	or	Max(3,	sqrt(n))	should	be	sufficient,	where	n	is	an	
estimated	size	of	the	nodes	present	in	the	network	at	that	time.			

Vector	Clocks	
In	the	event	of	a	conflict	(e.g	double	spend)	or	anomaly	between	two	events,	the	(l,	e,	o,	n)	coordinates	
of	a	Temporal	Proof	may	be	used	to	construct	a	vector	clock	[4]	using	the	LogicalClock(l)	component	
of	each.		One	or	more	vector	clocks	can	then	be	used	to	determine	the	partial	order	of	the	associated	
Atoms.	

Given	two	vector	clocks,	for	two	Atoms	αX	and	αY,	of	the	form	VC(αX)	and	VC(αY),	where	the	logical	
clock	value	for	the	corresponding	event	of	each	Node	{A,B,D,F,G,L,P}	is	laid	out	in	the	array	below:	

VC(αX)	 VC(αY)	
A	 5	 B	 10	
D	 12	 G	 7	
F	 34	 L	 47	
P	 17	 P	 24	

	
It	is	trivial	to	determine	that	the	Atom	associated	with	VC(αX)	was	presented	first	to	the	network,	as	
both	vector	clocks	have	a	common	Node(P)	whose	logical	clock	value	in	VC(αX)	is	less	than	in	VC(αY).	

Vector	clocks	follow	a	simple	ruleset	to	determine	order,	where;	VC(αX)	is	less	than	(or	before)	VC(αY)	
if	VC(αX)Z	is	less	than	or	equal	to	VC(αY)Z	and	where	at	least	one	VC(αX)Z	is	strictly	smaller	than	VC(αY)Z	

Vector	clock	comparisons	provide	a	simple	and	efficient	method	to	determine	order	in	many	cases	of	
conflict	without	requiring	the	use	of	more	expensive	means.		However,	should	a	pair	of	vector	clocks	
not	 contain	 a	 common	 node	 between	 them,	 they	 are	 said	 to	 be	 “concurrent”,	 and	 an	 additional	
mechanism	is	required	for	these	situations.		

	 	

	 Temporal	Proof	Path	for	each	transfer	of	Item(α)	
	 Alice->Bob	 Bob->Carol	 Carol->Dan	 Dan->Frank	

N
od

e	
ID
	 A	 F	 J	 N	

B	 G	 K	 J	
C	 B	 L	 O	
D	 H	 M	 P	
E	 I	 F	 Q	

9	
	

Given	two	concurrent	vector	clocks	which	Node(N)	has	received:	

VC(αX)	 VC(αY)	
A	 5	 B	 10	
D	 12	 G	 7	
F	 34	 L	 47	
S	 17	 V	 24	

	
To	determine	which	is	the	earlier	Temporal	Proof,	Node(N)	has	two	mechanisms	available	to	it.	

The	first	mechanism	references	the	nodes	local	ledger,	which	it	can	trust	to	return	honest	information	
regarding	the	events	it	has	seen	thus	far	and	not	subvert	the	truth.			

The	node	searches	for	events	after	VC(αX)	which	{A,	D,	F,	S}	were	involved	in	and	attempts	to	discover	
nodes	{B,	G,	L,	V}	from	VC(αY)	that	are	part	of	those	Temporal	Proofs	and	compare	the	logical	clock	
values.	

Should	the	node	discover	within	its	local	ledger	an	event	which	has	a	vector	clock	of	the	form:	

VC(αZ)	
J	 60	
S	 19	
T	 20	
V	 22	

	
The	temporal	order	of	VC(αX)	and	VC(αY)	can	be	resolved	due	to	S	and	V	being	present.		The	logical	
clock	for	Node(S)	in	VC(αZ)	is	greater	than	in	VC(αX),	therefore	VC(αZ)	was	created	after	VC(αX).		The	
logical	clock	 for	Node(V)	 in	VC(αZ)	 is	 less	 than	 in	VC(αY),	 therefore	VC(αX)	and	VC(αZ)	were	created	
before	VC(αY).	

Should	 the	 initial	 search	 not	 provide	 any	 results,	 event	 vector	 clocks	 can	 be	 linked	 together	 in	 a	
sequence	to	increase	the	likelihood	of	discovering	the	solution.		If	VC(αZ)	contained	only	Node(S)	but	
no	nodes	from	VC(αY),	the	node	could	extend	the	search	to	include	the	other	nodes	present	in	VC(αz).	

VC(αZ)	 VC(αn)	
J	 60	 J	 62	
S	 19	 Q	 32	
T	 20	 S	 21	
W	 84	 V	 22	

	
Resolving	concurrent	events	in	this	manner	is	simple,	fast,	efficient	and	independent	of	any	further	
external	 information	 being	 required	 at	 the	 time	 of	 validation.	 	 It	 is	 sufficient	 to	 resolve	 a	 large	
percentage	of	concurrent	events	providing	that	the	node	is	an	active	participant	and	is	storing	one	or	
more	shards	relevant	to	the	conflict.	

If	a	resolution	is	not	available	at	the	time	of	conflict,	Node(N)	will	store	both	Atom(αX)	and	Atom(αY)	
in	its	local	ledger,	marking	them	according	to	which	it	saw	first,	and	employ	a	second	event	ordering	
mechanism:	Commitment	Order	Determination.	

For	light	nodes	storing	only	their	own	events,	such	as	IoT	devices,	commitments	are	the	only	way	in	
which	they	can	determine	order.	

10	
	

Commitments	
To	 assist	 with	 total	 order	 determination	 of	 events,	 nodes	 declare	 to	 the	 network	 a	 periodic	
commitment	of	all	events	they	have	seen.	

This	commitment	is	produced	either	when	a	node	takes	part	in	Temporal	Provisioning	for	an	event,	or	
at	will	over	an	arbitrary	interval.		A	commitment	is	a	Merkle	Hash	[5]	constructed	from	the	events	a	
node	 has	 witnessed	 since	 submitting	 a	 previous	 commitment,	 with	 the	 first	 leaf	 being	 the	 last	
commitment	a	node	submitted,	producing	a	linked	sequence	of	commitments	over	time.	

	

Figure	6:	Commitment	Sequence	

If	the	node	is	taking	part	in	a	Temporal	Provisioning	process,	the	commitment	is	included	in	a	node’s	
Temporal	 Coordinate	 as	 c,	 resulting	 in	 the	 extended	 space-time	 coordinate	 (l,	 e,	 o,	 n,	 c).	 	 The	
commitment	is	tamperproof	as	the	coordinates	are	signed	by	the	producing	nodes.	

	

Figure	7:	Temporal	Proof	with	commitment	

A	node	may	be	requested	to	provide	information	to	enable	verification	of	any	commitments	 it	has	
produced	 at	 any	 time.	 	 They	 should	 deliver	 all	 the	 relevant	 Atom	hashes	 to	 the	 requesting	 node,	
allowing	 it	 to	 reconstruct	 the	 commitment	 hash	 and	 verify.	 Requesting	 nodes	 can	 then	 take	
appropriate	action	in	the	event	of	a	fraudulent	commitment	being	detected.			

This	 uncertainty	 of	when	 a	 commitment	 verification	may	 be	 requested	 also	 prevents	 nodes	 from	
tampering	with	their	logical	clock	values,	as	all	commitments	have	a	logical	clock	value	associated	with	
them	and	so	tampering	is	easily	detectable.		

11	
	

For	example,	if	the	value	of	l	for	Commitment(1)	was	100	and	the	value	of	l	for	Commitment(2)	was	
200,	then	Commitment(1)	should	contain	100	items.		If	a	requesting	node	is	not	returned	100	hashes	
when	verifying,	tampering	of	the	logical	clock	may	have	occurred.		

Commitments	 are	 also	 used	 to	 provide	 a	 secondary	 mechanism	 to	 determine	 temporal	 order	 of	
events;	Node(N)	has	received	Atom(αY)	that	conflicts	with	an	Atom(αX).		Node(N)	contacts	one	of	its	
neighbours,	 Node(P),	 and	 queries	 it	 for	 any	 commitment	 information	 corresponding	 to	 Atom(αX).		
Node(P)	responds	with:	its	commitment	for	Atom(αX);	a	set	of	Atoms(βS)	which	were	witnessed	after	
Atom(αX)	within	the	same	commitment;	its	logical	clock	values	for	Atom(αX)	and	Atoms(βS);	and	the	
leaves	of	the	Merkle	Hash.		With	this	information	Node(N)	can	verify	the	logical	clock	values	of	the	
returned	Atoms,	the	integrity	of	the	commitment,	and	that	the	returned	Atoms	are	part	of	it.	

	

Figure	8:	Commitment	Validation	

Once	this	information	has	been	obtained	from	Node(P),	Node(N)	can	query	Node(Q)	which	delivered	
Atom(αY).	 	 It	requests	that	Node(Q)	return	commitment	and	 logical	clock	 information	for	Atom(αY)	
and	any	of	the	Atoms(βS),	as	well	as	the	leaves	of	the	Merkle	Hash	allowing	Node(N)	to	verify.	

	 Node(P)	Logical	Clock	 Node(Q)	Logical	Clock	
Atom(αX)	 45	 	
Atom(αY)	 	 465	
Atom(βS1)	 46	 	
Atom(βS2)	 47	 441	
Atom(βS3)	 48	 	

	 Therefore,	αx	happened	before	αY	
	

As	we	now	have	 commitment	 and	 logical	 clock	 values,	 resolution	 is	 simple:	 	Atom(αX)	was	before	
Atom(αY)	 if	 any	 Atoms(βS)	 returned	 by	 Node(P)	 are	 present	 within	 a	 commitment	 delivered	 by	
Node(Q),	where	the	 logical	clock	value	of	any	Atom(βS)	 from	Node(Q)	 is	 less	 than	the	 logical	clock	
value	of	Atom(αY)	for	Node(Q).	

If	Atom(αX)	was	 the	 last	within	a	commitment,	Node(P)	may	return	a	subsequent	commitment,	or	
Node(N)	 can	 contact	 another	 neighbour.	 	 The	 likelihood	 of	 Atom(αX)	 being	 the	 last	 within	 all	
commitments	for	all	nodes	is	infinitesimal.	

Should	Node(Q)	not	have	any	of	the	Atoms(βS)	available	in	its	local	ledger,	Node(P)	can	query	other	
neighbouring	nodes	about	Atom(αY)	via	the	same	process.	

12	
	

If	a	resolution	is	not	available	at	that	the	time	of	the	conflict,	Node(N)	will	store	Atom(αX)	and	Atom(αY)	
in	 its	 local	 ledger,	marking	them	according	to	which	it	saw	first,	until	a	resolution	is	determined	or	
discovered.	

Conclusion	
This	paper	has	proposed	a	method	for	determining	total	order	of	events	within	a	distributed	system,	
without	 relying	 on	 trust,	 that	 is	 scalable,	 efficient	 and	 agnostic	 to	 its	 operating	 environment.	 	 To	
reduce	overhead	and	increase	performance,	our	solution	defines	a	structured,	shardable	architecture	
that	limits	state	transfer	information	to	only	members	of	the	network	that	need	it.		A	peer-to	peer	
network	provides	 the	means	 for	 communication	and	 information	 routing	via	a	 reliable	and	 robust	
gossip	protocol.	 	Nodes	maintain	a	logical	clock	when	witnessing	events	and	periodically	produce	a	
tamper-proof	commitment	representing	those	events.		When	witnessing	events,	nodes	collaborate	to	
create	Temporal	Proofs	which	contain	verifiable	space-time	coordinates	which	are	used	to	construct	
vector	clocks	and	determine	when	an	event	was	first	seen	by	the	network.		Nodes	can	join	and	leave	
the	network	at	will	and	rely	on	detectable	consistency	anomalies	to	synchronize	and	bring	them	up	to	
date.	

References	
	

[1]		S.	Nakamoto,	“Bitcoin:	A	Peer-to-Peer	Electronic	Cash	System,”	2008.	[Online].	Available:	
https://bitcoin.org/bitcoin.pdf.	

[2]		V.	Buterin,	2014.	[Online].	Available:	https://ethereum.org/pdfs/EthereumWhitePaper.pdf.	

[3]		L.	Lamport,	“Time,	Clocks,	and	the	Ordering	of	Events	in	a	Distributed	System,”	1978.	[Online].	
Available:	http://lamport.azurewebsites.net/pubs/time-clocks.pdf.	

[4]		C.	J.	Fidge,	“Timestamps	in	Message-Passing	Systems	that	preserve	the	Partial	Ordering,”	1988.	
[Online].	Available:	http://zoo.cs.yale.edu/classes/cs426/2012/lab/bib/fidge88timestamps.pdf.	

[5]		R.	C.	Merkle,	“Merkle	Tree,”	1979.	[Online].	Available:	
https://en.wikipedia.org/wiki/Merkle_tree.	

	

	

	

