

TSHWANE UNIVERSITY OF

TECHNOLOGY

DEPARTMENT OF ELECTRICAL ENGINEERING

Course: INDUSTRIAL PROJECT IV

PROJECT REPORT:

DESIGNING A SMART HOME

AUTOMATION WITH VOICE

RECOGNITION USING RASPBERRY PI

AND ARDUINO

Student Name: Mpho Mphego

Student No.: 205044990

Internal supervisor:

External or co-supervisor:

Receiving date:

Industrial Project Report by M. Mphego

 2

Table of Contents

Page no.

1 Chapter 1 ... 8
1.1 Introduction ... 8
1.2 Problem statement ... 8

1.3 User requirement specification ... 9
1.4 Study objectives .. 10
1.5 Definitions ... 11
1.6 Importance and benefits of the study .. 13
1.7 Budget ... 14

1.8 Conclusion .. 15
2 Chapter 2 ... 16

2.1 Introduction ... 16

2.2 Literature review ... 16
2.2.1 Android Based Home Automation Using Raspberry Pi .. 17
2.2.2 HomeAutomation .. 18

2.2.3 Qwik Switch .. 18
2.3 Proposed practical design or strategy ... 19

2.4 Product specifications or requirements ... 21
2.5 Conclusion .. 23

3 Chapter 3 ... 24

3.1 Introduction ... 24
3.2 Design or development of product / strategy .. 24

3.2.1 Android Mobile Control .. 24
3.2.2 Closet Door Warning/ Smart Closet .. 27
3.2.3 Gesture Control ... 28

3.2.4 Humidity and Temperature sensor (DHT11) .. 36

3.2.5 Linux Infrared Remote Control ... 41
3.2.6 Light sensor ... 43
3.2.7 Multi Room Media Server ... 45

3.2.8 Presence Detector & PIR Sensor ... 48
3.2.9 Relay Control ... 51
3.2.10 Sensor Loggers .. 52
3.2.11 Smart Alarm .. 56
3.2.12 Smart Doorbell .. 58

3.2.13 Smoke Detection ... 59
3.2.14 TV Proximity Sensor ... 61
3.2.15 Website Interface Control .. 64

3.2.16 What’s My IP .. 67
3.3 Implementation of product / strategy .. 69

3.3.1 Relay and Raspberry Pi integration ... 69
3.3.2 MQ-2 and Arduino integration .. 69

3.3.3 Sensors and Raspberry Pi integration .. 70
3.3.4 Webcam, Speaker, Raspberry Pi and Arduino integration 71
3.3.5 Final product .. 72

3.4 Testing procedure .. 73
3.4.1 Infrared control with RPi ... 73
3.4.2 Temperature and Humidity Sensing with RPi ... 79
3.4.3 Ultrasonic Distance Sensors with RPi ... 80

3.4.4 MQ-2 Smoke Sensor connected to an Arduino ..84

Industrial Project Report by M. Mphego

 3

3.4.5 Necessary changes

encountered ... 87
3.5 Conclusion .. 87

4 Chapter 4 ... 88
4.1 Introduction ... 88

4.2 Results of the tested product / procedure .. 88
4.3 Comparison of results vs. requirements .. 89
4.4 Conclusion .. 90

5 Chapter 5 ... 91
5.1 Introduction ... 91

5.2 Conclusions and recommendations ... 91
5.3 Financial cost and time evaluation .. 92
5.4 Proposed further study .. 93

5.4.1 Natural Language Processing: Speech Recognition .. 93
5.4.2 Smart Pet Feeder .. 93

5.4.3 Smart Wardrobe ... 93
5.4.4 Android Geolocation Detector .. 93
5.4.5 Light Alarm Clock ... 93

5.5 A.1 Final Gantt chart ... 94

5.6 A.2 Bibliography ... 95
5.7 A.3 Detail designs ... 97
5.8 A.4 Software ... 99

5.9 A.5 Datasheets .. 100

Industrial Project Report by M. Mphego

 4

Table of Figures

Page no.

Figure 2-1 Android based Home automation using Raspberry Pi .. 17
Figure 2-2 QwikSwitch ... 18
Figure 2-3 Diagram of proposed system ... 19

Figure 2-4 Raspberry Pi B+ .. 21
Figure 2-5 Arduino Uno R3 .. 21
Figure 3-1 Android Control .. 26
Figure 3-2 Closet door warning flowchart .. 27
Figure 3-3 Mobile Gesture Control dialog .. 28

Figure 3-4 Block diagram speech recognition .. 29
Figure 3-5 Voice Recognition flowchart .. 30
Figure 3-6 Voice Recognition Speak request ... 30

Figure 3-7 Speech-to-Text .. 31
Figure 3-8 Flow chart mobile shake control ... 33
Figure 3-9 3-Axis Accelerometer.. 34

Figure 3-10 Mobile Shake Detection-Python ... 35
Figure 3-11 Mobile Shake Control ... 35

Figure 3-12 DHT11 Sensor ... 36
Figure 3-13 DHT11 Communication Process ... 37
Figure 3-14 MCU sends out Start signal & sensor responses ... 37

Figure 3-15 Data '0' indication .. 37
Figure 3-16 Data '1' indication .. 37

Figure 3-17 DHT11 Circuit ... 38
Figure 3-18 IR Raspberry Pi ... 42
Figure 3-19 LDR ... 43

Figure 3-20 LDR sensor .. 44

Figure 3-21 LDR reading script .. 44
Figure 3-22 Passive Wi-Fi Detect ... 49
Figure 3-23 PIR ... 50

Figure 3-24 PIR Flowchart.. 50
Figure 3-25 Relay Module RPi ... 51
Figure 3-26 Relay Control Python .. 51
Figure 3-27 Light levels ThingSpeak .. 55
Figure 3-28 Smart Doorbell flowchart .. 58

Figure 3-29 MQ2 Gas Sensor ... 59
Figure 3-30 MQ2 sensitivity graph ... 60
Figure 3-31 Arduino MQ2 .. 60

Figure 3-32 HC-SR04 ... 61
Figure 3-33 TV Proximity Flowchart ... 62

Figure 3-34 Website Control Interface ... 66
Figure 3-35 what’s my IP .. 68

Figure 3-36 Relay and RPi integration ... 69
Figure 3-37 MQ-2 and Arduino integration .. 69
Figure 3-38 Sensors and RPi integration .. 70
Figure 3-39 RPi and Arduino integration.. 71
Figure 3-40 Final Product (preliminary) ... 72
Figure 3-41 IR Receiver .. 73
Figure 3-42 IR and RPi interface .. 74

Figure 3-43 IR Commands ...75

file://vboxsrv/Proposal_2015/Final%20Report/Current_proj_report.docx%23_Toc452975213
file://vboxsrv/Proposal_2015/Final%20Report/Current_proj_report.docx%23_Toc452975218
file://vboxsrv/Proposal_2015/Final%20Report/Current_proj_report.docx%23_Toc452975228
file://vboxsrv/Proposal_2015/Final%20Report/Current_proj_report.docx%23_Toc452975235
file://vboxsrv/Proposal_2015/Final%20Report/Current_proj_report.docx%23_Toc452975239
file://vboxsrv/Proposal_2015/Final%20Report/Current_proj_report.docx%23_Toc452975245
file://vboxsrv/Proposal_2015/Final%20Report/Current_proj_report.docx%23_Toc452975248

Industrial Project Report by M. Mphego

 5

Figure 3-44 IR Test output 76

Figure 3-45 Setting up remote} ... 77
Figure 3-46 DHT11 Pin Connection ... 79
Figure 3-47 DHT11-Wiring .. 79
Figure 3-48 HC-SR04 Tx/Rx .. 80

Figure 3-49 Voltage Divider Circuit ... 81
Figure 3-50 HC-SR04 Connections .. 81
Figure 3-51 HC-SR04 and RPi Connection .. 82
Figure 3-52 Timing RPi and HC-SR04 ... 82
Figure 3-53 SR-HC04 Readings ... 83

Figure 3-54 Arduino IDE with serial output ... 85
Figure 3-55 MQ2 connections .. 86
Figure 3-56 Arduino-MQ2 testing .. 86
Figure 5-1 Brief Gantt chart .. 92
Figure 5-2 Detailed Gantt chart .. 94

Figure 5-3 Detail Schematic.. 97
Figure 5-4 GitHub Language Frequency .. 99

file://vboxsrv/Proposal_2015/Final%20Report/Current_proj_report.docx%23_Toc452975262
file://vboxsrv/Proposal_2015/Final%20Report/Current_proj_report.docx%23_Toc452975265

Industrial Project Report by M. Mphego

 6

List of Tables

Page no.

Table 1-1 Budget of the proposed project ... 14
Table 4-1 Results of the tested product ... 88
Table 4-2 Comparison of results vs. requirements.. 89

Table 5-1 Overall Budget Evaluation ... 92

Industrial Project Report by M. Mphego

 7

Abstract

This Smart Home Automation system offers convenience and high-level control over a home

environment, security and media systems from a centralised network core with an easily

accessible web and mobile interface without any changes in the infrastructure as it is to be

implemented in an existing home environment.

The environmental system can control the lighting, plugs and temperature of the house. The

security system will constantly monitor for any intrusion through windows and doors and give

the user remote control over door locks.

The media system will let user’s stream music from the internet or a local source to multiple

zones throughout the house.

The integration of these everyday systems will give the average home-owner the control they

desire within their home.

Industrial Project Report by M. Mphego

 8

1 Chapter 1

1.1 Introduction

As technology advances a lot of automation implementation in various fields has been introduced

in order to maintain security, time and cost. In this process our homes lags behind, even though a

lot of advanced equipment's are introduced each year, the use of these equipment are limited in

the context of our homes. The most critical obstruction in home automation is the availability of

these technologies and the cost implications involved as well as the maintenance.

Hence the idea to design and build a low cost home automation product which does not allow any

sophisticated installations and home infrastructure excessive modifications. The major concern in

this case is affordability, usability and security - which leads us to the design of a low cost home

automation system which offers multiple control and monitoring interfaces such as the use of

mobile devices and/or computers with internet connection.

The main aim of the project is to remove all limitations and obstructions in home automation by

taking the correct approach. The Smart Home-Automaton System will consist of sensors to detect

current status in the house such as temperature and humidity, lightning conditions and presence

detection and many more will be discussed below. The system will have the ability to determine

and automatically adjust temperatures or lighting depending on the user preferences.

Other features include gesture control by means of shaking mobile device or voice control to

switch on/off any appliances that the user configured, a web-based graphical user interface listings

current temperatures(outdoors and indoors), lighting controls and real-time video

streaming(security purposes).

1.2 Problem statement

The main problem statement for the current system being developed is the ability to make life a

lot easier by means of automating household equipment. A good example would be the automatic

washing machine which helped in transforming washing which is the most hardest and dull

domestic duties in a household to being one of the least burdensome work. Humans have gotten

to the point where they prefer simplified and non-sophisticated systems to simplify their

livelihood. This led to the development of the smart home automation system which offers variety

of solutions such as lighting, cooling/heating systems as well as security systems, it also offers

multi-room audio system with future improvements including natural language processing for

voice controlled applications.

Industrial Project Report by M. Mphego

 9

However, most current systems in the market do not conveniently integrate the aforementioned

house systems in one product. Instead, the buyer must purchase various devices and integrate them

to form a system, which often requires significant technical knowledge. Furthermore, most

commercially available products integrate their products using a power line technology instead of

wireless network. This leads to decreased network security and increased hassle for installation.

1.3 User requirement specification

In order to demonstrate the smart home automation system we will use various components such

as Microcontroller, Sensors, Relays, Mobile phone or computer and most importantly the brains

of the project which is an SBC (Single Board Computer

The proposed system should be low cost, modifiable or monitored remotely.

It should incorporate the below listed items.

 Uninterrupted Power Supply.

 HVAC control.

 Temperature and Humidity monitoring (outdoors and indoors).

 Multi room media player/server

 LPG Gas/Smoke monitoring

 Wi-Fi-based passive Wi-Fi presence detector and PIR

 Smart Alarm

 Smart closet

 Smart doorbell

 TV proximity sensors

 Web-based control and monitoring platform.

 Android mobile control and monitoring

Industrial Project Report by M. Mphego

 10

1.4 Study objectives

On the completion of this project knowledge, experience and skills will be gained in the following

fields:

 Single board micro-controllers

A deep knowledge on single board micro-controllers will be gained from this project, as a micro-

controller will be used at the center of the design to interface diverse and complex devices and

components. This knowledge will be initiated by an overview on different micro controller's

characteristics followed by the choice of an adequate microcontroller that will suit the system

requirement.

 Power supplies and Analogue/Digital Electronics

Since the final product will be a mixture of electronic components which need to be powered, a

suitable source of power should be studied to ensure the functionality of each of these components

and the autonomy of the entire system (device). Furthermore, having different electrical

specifications, proper Electronics theory will be applied.

 Computer networking

At the completion of the project an understanding and experience in computer networking will be

gained and at a comprehensive level, some protocols used in the project includes TCP/IP, UDP,

SMTP and HTTP.

 Circuit Simulation software packages

Another skill to be acquired from this project is the one of using CAD and simulation software

such as Fritzing, Altium Designer, Proteus, LT Spice and KiCad.

 Programming Skills

Programming skills is another benefit gained from this project. As stated previously, a

microcontroller is at the center of the design. This microcontroller needs to be loaded with a set of

instructions (code) in a certain language that can be interpreted into machine language and

instructs to the microcontroller the functionality of the system. The primary programming

language for the project is Python, JAVA, C and Bash.

 Signal Processing

The most important skill to be acquired at the completion of the project is signal processing as we

will be reading real time electronic signals (by means of using filters and FFT (Fast Fourier

Transform) algorithms) and interpreting them to readable information or instructions.

 Research

A considerable part of knowledge required for the completion of this project is not part of the

syllabus of the academic program and will therefore require some research and a literature review.

Industrial Project Report by M. Mphego

 11

1.5 Definitions

TCP - Transmission Control Protocol is a standard that defines how to establish and maintain a

network conversation via which application programs can exchange data.

API - Application program interface

UDP - User Datagram Protocol is an alternative communications protocol to Transmission Control

Protocol (TCP) used primarily for establishing low-latency and loss tolerating connections

between applications on the Internet.

SMTP - Simple Mail Transfer Protocol is an Internet standard for electronic mail (email)

transmission.

FFT - A fast Fourier transform (FFT) algorithm computes the discrete Fourier transform (DFT)

of a sequence, or its inverse. Fourier analysis converts a signal from its original domain (often

time or space) to a representation in the frequency domain and vice versa.

Wi-Fi - A local area wireless computer networking technology that allows electronic devices to

network.

DLNA - Digital Living Network Alliance is a standard that allows various consumer electronic

devices to share content with each other across a standard home network.

UPnP - Universal Plug and Play is an Internet protocol set primarily for home networks permitting

devices to access the network.

IR - Infrared radiation refers to energy in the region of the electromagnetic radiation spectrum at

wavelengths longer than those of visible light.

HVAC - heating, ventilating, and air conditioning is the technology of indoor and vehicular

environmental comfort.

DHCP - The Dynamic Host Configuration Protocol is a standardized network protocol used on

Internet Protocol (IP) networks for dynamically distributing network configuration parameters,

such as IP addresses for interfaces and services.

IP - Internet Protocol is the method or protocol by which data is sent from one computer to another

on the Internet.

LDR - Light Dependent Resistor or Photo resistor, is a passive electronic component, basically a

resistor which has a resistance that varies depending of the light intensity.

LAN - A local area network is a network that connects computers and other devices in a relatively

small area, typically a single building or a group of buildings

SMS - Short Message Service (SMS) is a text messaging service component of phone, Web, or

mobile communication systems.

Industrial Project Report by M. Mphego

 12

IoT - The Internet of Things (IoT) refers to the

ever-growing network of physical objects that feature an IP address for internet connectivity, and

the communication that occurs between these objects and other Internet-enabled devices and

systems.

PC - Personal Computer

GUI - Graphical User Interface

Sensor - A device that detects and responds to some type of input from the physical environment.

Push notifications - lets your application notify a user of new messages or events even when the

user is not actively using your application. On Android devices, when a device receives a push

notification, your application's icon and a message appear in the status bar.

RPi - A Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer monitor

or TV, and uses a standard keyboard and mouse.

Web-cam - Is a digital camera that's connected to a computer. It can send live pictures from

wherever it's sited to another location by means of the internet.

SBC - A single board computer is a self-contained computer that only requires a power supply for

operation.

ADC - Analog to Digital Convention.

API - Application program interface

Industrial Project Report by M. Mphego

 13

1.6 Importance and benefits of

the study

There are various commercially available products in the home automation industry that perform

functions similar to the smart home automation system.

However, most current systems in the market do not conveniently integrate the aforementioned

house systems in one product. Instead, the buyer must purchase various devices and integrate them

to form a system, which often requires significant technical knowledge. Furthermore, most

commercially available products integrate their products using a power line technology instead of

wireless network. This leads to decreased network security and increased hassle for installation.

Why is there a need for another system of this type?

The proposed solution adds various unique features not currently found in this market that make

the proposed system unique:

 The proposed system will allow historical data gathering of the system so that they can be

viewed by the user to help detect any significant changes by means of logging. This can

help in the diagnostics of problems by being able to see past data. Many top end building

automation systems provide this feature, but the lower end home automation systems do

not.

 Most of the automation systems on the market today have the ability to send alarms via e-

mail or by pre-recorded voice messages. The problem with these systems is that if the

system fails (loss of power, lighting strike, internet service goes down) the remote interface

does not indicate a problem until the operator tries to access the system. In many cases the

time when you need it most, like loss of power, is the time the system is unable to warn

the owner of the problem.

The solution to this problem is to have the application on the smart-phone test the status of

the system periodically. If the system fails to respond in a present length of time the smart

phone can notify the owner that there may be a potential problem. This handshake between

the systems allows for a more reliable warning system than the currently available 'call out'

systems.

 By choosing a wireless communication medium, we could save wiring and installation cost

as we could reuse existing infrastructure with minimal modification. By developing an

application that enables users to control devices from the computer instead of a dedicated

Industrial Project Report by M. Mphego

 14

console, we could save the cost for the

need of a dedicated automation console.

1.7 Budget

The rough estimation of the project is R3910.00. Refer to appendix A.1 for a detail layout of the

budget.

Table 1-1 Budget of the proposed project

Components Cost [R]

Raspberry Pi B+ 850.00

Arduino Uno R3 190.00

USB Webcam 120.00

USB Wi-Fi Dongle 100.00

USB/3.5mm Speakers 50.00

Various Sensors1 800.00

5V 2A Power supply 150.00

2x Relay modules 250.00

Enclosure 200.00

Other electronic components (approximately) 200.00

Total component cost: R3910.00

1 Various sensors used include PIR, GAS (MQ2), IR, Ultrasonic (HC-SR04), Temp/Humidity (DHT11) sensors(s).

Industrial Project Report by M. Mphego

 15

1.8 Conclusion

Chapter 1 discusses and explains the various aspects of the project proposed and the importance

therein as well as the estimated cost implications. Most importantly the benefits of the project in

terms of everyday life and student gains in terms of skills and knowledge of how things work as

well as the user requirements.

More details will be explained in the following chapters.

Chapter 2 discusses and explains the user 0requirement and specification of the proposed design

of the project.

Chapter 3 explains the development and practical implementation as proposed in chapter 2 and

also how it will be tested.

Chapter 4 shows and discusses, results of the working model or product.

Chapter 5 evaluates the success of this project and gives some recommendations for improvements

and Conclusions.

Industrial Project Report by M. Mphego

 16

2 Chapter 2

2.1 Introduction

As the world of technology advances a lot of automation has been introduced in various fields in

order to maintain with the time, and there has always been a need to automate applications in a

home such as dish washing, laundry washing machines and other automated appliances which at

the end of the day improves human lives. In this chapter we will discuss the proposed projects,

requirements and specifications to transform an ordinary home to an automated home.

2.2 Literature review

As per my research, there exist a lot of home automation systems across the board using a single

board computer such as the Raspberry Pi, with its processing power and connectivity a lot of

project have been researched and done in the past. But nothing as compared to the project that is

being discussed which is the smart home automation system based on the raspberry pi and Arduino

single board computers. Each system that will be discussed below has its own unique features.

The following project have been research and compared with the one in question.

In this section the different types of home automation are discussed:

 Android based home automation using raspberry pi - Shaiju Paul, Ashlin Antony and

Aswathy B

 HomeAutomation – Pratik Gadtaula

 Qwikswitch – light warehouse

Even though there are many available solutions of home automation, the systems are however

limited. The current systems are implemented with a number of hardware, in most cases

installation and maintenance can be a difficult task on its own. They also impose huge installation

costs on the user or consumer.

Industrial Project Report by M. Mphego

 17

2.2.1 Android Based Home

Automation Using Raspberry Pi

The home automation system is working with very popular android phones. It is having mainly

three components; the android enabled user device, a Wi-Fi router having a good scalable range,

and a raspberry pi board .Here the users have provision to control the home appliances through

android enabled device. This will improve the system popularity since there is no need for a wired

connection, internet etc. The instructions from the user will be transmitted through the Wi-Fi

network .The raspberry pi board is configured according to the home system and it will enable the

relay circuit as per user request. The relay circuit can control the home appliances also. We can

add appliances to the system also can add additional security features. The main objectives of the

proposed system is to design and to implement a cheap and open source home automation system

that is capable of controlling and automating most of the house appliances through an android

device.[1]

Advantages of the android based home automation system.

 The new system must provide the following features

 It allows more flexibility through android device.

 It allows a good range of scalability.

 It provides security and authentication.

 Additional vendors can be easily added.

Figure 2-1 Android based Home automation using Raspberry Pi

Industrial Project Report by M. Mphego

 18

2.2.2 HomeAutomation
The product covers the area of monitoring and controlling appliances in home as per user’s

configuration and control. As the automation is performed on Raspberry Pi device along with

Arduino board, it combines the overall benefits from both devices and thus useful in implementing

our tasks. It primarily focus on safety and then other facilities extended along with it. Services like

knowing temperature reading, lights On/Off condition, fan On/Off and other services are featured

in this Home Automation. The Alarm system is also major part in Home Automation which secure

the home and update user with right information in right time to avoid accident and loss. The

controlling section is great importance in Home Automation. User will have automatic settings to

control the appliances. Further, this service is good and one of the reliable way to encapsulate

home from internal and external danger. People in job or outside home can work freely and smartly

having control to their home. They can just sit and login browser and see what is going on in their

home in just a second and feel that their home is with them all time. Home Automation is truly

one of the needs in today's world. People rely and feel safe and warmth in their home with their

family. Home Automation brings closer and safer to them. [2]

2.2.3 Qwik Switch
The Qwikswitch from The Lighting Warehouse provides affordable wireless lighting control that

is easy to install and operate. It presents a number of various benefits, including [3]

 It will save you time, labor and wire.

 It is very useful when renovating or adding a switch to a room, as it allows you to move

switches as your needs change and eliminate unnecessary wiring.

 The Qwikswitch switch plates are easy to install with double sided tape or screws.

 The Qwikswitch makes multi way switching or dimming a quick

and simple process.

 A remote control means you never need to enter your

home in the dark - activate interior or exterior

lights from the safety of your car.

The Qwikswitch however offers very limited

security and minimal control, as compared to the

Smart home automation.

Figure 2-2 QwikSwitch

Industrial Project Report by M. Mphego

 19

2.3 Proposed practical design or

strategy

This section provides an overview of the system and steps in the developments process. The

system interfaces with external aspects. Each of the external aspects is described in the text below.

Figure below shows the interactions among the various interfaces of the system as per the designer.

Figure 2-3 Diagram of proposed system

The system can be modified or monitored remotely.

This kind of system presents many advantages compared to others on the same market.

 Uninterrupted Power Supply in the case of power outages.

 HVAC control using IR and temperature and humidity monitoring (outdoors and

indoors).

 Multi room Audio player (DLNA/UPnP and web-based).

 LPG Gas/Smoke detection with E-Mail, push notification and siren notification in the

case of leaks.

 Wi-Fi-based passive Wi-Fi presence detector, which can be enabled to switch on/off

certain appliances/lights depending on the time.

Industrial Project Report by M. Mphego

 20

 Smart Alarm which wakes the home-

owner up and then reads out the current weather and the day's forecast, as well as the

current news while it opens up the blinds. It switches the coffee maker on such that as

soon as the home-owner is ready to leave the house, he/she can enjoy a freshly brewed

cup of coffee.

 Smart closet which notifies home-owner to carry a jacket or umbrella before they leave

the house depending on the weather.

 Smart doorbell which sends an SMS/E-mail and Push notification as well as takes a

picture of the visitor and sends to home-owner.

 TV proximity sensors, to avoid kid's straining their eyes by standing close to the TV.

 Web-based control and monitoring platform.

 Android mobile based control and monitoring including Voice recognition and gesture

control, by means of shaking the mobile device certain light will be switch on/off in the

house.

Industrial Project Report by M. Mphego

 21

2.4 Product specifications or requirements

Raspberry Pi B+

The Raspberry Pi is a low cost, credit-card sized computer that is running Debian Linux operating

systems it is the major component of the system also called as single board computer.

This computer is the brains of the project all codes will be written in Python and C programming

language.

Figure 2-4 Raspberry Pi B+

Arduino Uno

Arduino Uno is a microcontroller board based on the Atmel ATmega328P. It is responsible for all

Analog to Digital related issues as the Raspberry Pi does not come with an ADC chip on it.

It also has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs

which will be used for connecting to the outside world, it comes with a 16 MHz quartz crystal, a

USB connection, a power jack, an ICSP header and a reset button. This microcontroller codes will

be written in C programming language.

Figure 2-5 Arduino Uno R3

Industrial Project Report by M. Mphego

 22

Relays

A Relay is an electrically controlled switch used for switching a power circuit, similar to a relay

except with higher current ratings. A relay is controlled by a circuit which has a much lower power

level than the switched circuit. It will be responsible for switching lights, plugs and anything else

requiring more than 12V to switch on/off.

LDR

A photo resistor or light dependent resistor is a resistor whose resistance decreases with increasing

incident light intensity; in other words, it exhibits photo conductivity.

Speaker

A loudspeaker (or "speaker") is an electro acoustic transducer that produces sound in response to

an electrical audio signal input. This is used for giving voice information. Such as weather and

presence notifications.

Webcam

A webcam is a video camera that feeds its images in real time to a computer or computer network,

often via USB, Ethernet, or Wi-Fi. It is mainly used in our project for security surveillance and

computer vision.

IR and Remote

An infrared sensor is an electronic device that emits and/or detects infrared radiation in order to

sense some aspect of its surroundings. Infrared sensors can measure the heat of an object, as well

as detect motion. Many of these types of sensors only measure infrared radiation, rather than

emitting it, and thus are known as passive infrared (PIR) sensors.

Smoke Sensor

The MQ series of gas sensors use a small heater inside with an electro-chemical sensor. They are

sensitive for a range of gasses and are used indoors at room temperature. The output is an analog

signal and can be read with an analog input of the Arduino. The MQ-2 Gas Sensor module is useful

for gas leakage detecting in home and industry. It can detect LPG, I-butane, propane, methane,

alcohol, hydrogen and smoke.

Industrial Project Report by M. Mphego

 23

PIR

A passive infrared sensor (PIR sensor) is an electronic sensor that measures infrared (IR) light

radiating from objects in its field of view. They are most often used in PIR-based motion detectors.

It is as a motion detector and presence detector.

Smart doorbell

A smart Alarm which wakes the home-owner up and then reads out the current weather and the

day's forecast, as well as the current news while it opens up the blinds. It switches the coffee maker

on such that as soon as the home-owner is ready to leave the house, he/she can enjoy a freshly

brewed cup of coffee.

Ultrasonic sensor

An ultrasonic sensor will be used for kids distance detection from the TV to mitigate any form of

eye straining and disturbance. If a kid stands close to the TV it sets an alarm notify them to move

away from the TV else the TV is switched off.

Temperature sensor

A digital sensor senses temperature and humidity of the surrounding and converts it into an

electrical signal that can be read by other electronic instrument.

Laptop

A Web-based control and monitoring platform accessible on a laptop connected to the local

network.

Android-based Phone

Android mobile based control and monitoring including Voice recognition and gesture control, by

means of shaking the mobile device certain light will be switch on/off in the house.

2.5 Conclusion

According to this review of the current systems and the proposed system, one can easily point out

why the proposed system is unique and it is a low cost system. The proposed solution adds various

unique features not currently found in the market this makes the proposed system unique, See

Importance and benefits of the study.

Industrial Project Report by M. Mphego

 24

3 Chapter 3

3.1 Introduction

This chapter explains the development and practical implementation in detail as proposed in

chapter 2. We will discuss each feature of the proposed project in detail. We will go through the

features in alphabetical order.

3.2 Design or development of product / strategy

3.2.1 Android Mobile Control

The Android mobile application was written in Java under Android Studio.

Android Studio is the official IDE for Android app development, based on IntelliJ IDEA. On top

of IntelliJ's powerful code editor and developer tools, Android Studio offers even more features

that enhance your productivity when building Android apps.

The mobile application was designed with simplicity in-mind, it uses the Android System

Webview which accesses Google’s chrome with minimal features, and the application on start-up

automatically connects to the Raspberry Pi Apache webserver considering that the mobile phone

is connected to the same network as the Raspberry Pi.

What is Android's Webview?

Android’s Webview, as described by Google, is a “system component powered by Chrome that

allows Android apps to display web content.” In other words, Webview allows 3rd party apps to

show content in an in-app browser or in an app screen that pulls from the web. It’s pretty important,

and has only recently (with Lollipop) been decoupled as a stand-alone system component that can

be updated as Google sees fit. And that’s important, because it allows Google to push security

fixes and other enhancements without the need to push an entire system update.

The code below is the main java and xml code for the application.

Industrial Project Report by M. Mphego

 25

Source code:

Main_Activity.java

//__author__ = "Mpho Mphego"
//__description__ = "Android WebView App controlling Raspberry Pi running Apache2"
//__version__ = "Revision: 1.0 "
//__date__ = "Date: 2015/01/17 22:23 "
//__url__ = "mpho112.wordpress.com"
//__copyright__ = "Copyright (c) 2015 Mpho Mphego"
//__license__ = "Java"

package com.wordpress.mpho112.mobilehomectrl;
import android.os.Bundle;
import android.support.v7.app.ActionBarActivity;
import android.view.Menu;
import android.view.MenuItem;
import android.webkit.WebSettings;
import android.webkit.WebView;

public class MainActivity extends ActionBarActivity {
 private WebView mWebView;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 mWebView = (WebView) findViewById(R.id.activity_main_webview);
 // Enable Javascript
 WebSettings webSettings = mWebView.getSettings();
 webSettings.setJavaScriptEnabled(true);
 mWebView.loadUrl("http://raspberrypi.local");
 }
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 // Inflate the menu; this adds items to the action bar if it is present.
 getMenuInflater().inflate(R.menu.menu_main, menu);
 return true;
 }
 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so long
 // as you specify a parent activity in AndroidManifest.xml.
 int id = item.getItemId();

 //noinspection SimplifiableIfStatement
 if (id == R.id.action_settings) {
 return true;
 }
 return super.onOptionsItemSelected(item);
 }
}

Industrial Project Report by M. Mphego

 26

Activity_main.xml

The Figure 3-1 Android Control below display's how the mobile control interface currently looks

like - with its simplistic controls. It features only the lighting controls. More development shall

follow, for instance adding an indoor temperature monitoring gauge

Figure 3-1 Android Control

<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:id="@+id/container"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".MainActivity">
tools:ignore="MergeRootFrame">

<WebView
android:id="@+id/activity_main_webview"
android:layout_width="match_parent"
android:layout_height="match_parent" />
</FrameLayout>

Industrial Project Report by M. Mphego

 27

3.2.2 Closet Door Warning/

Smart Closet
In this section we will discuss as to what we mean by closet door warning or smart closet.

Imagine if your closet or wardrobe could tell you to take a jacket or an umbrella due to the change

of outside temperature either current temperature outside or forecasted, well a feature that does

exactly that is implemented on the proposed project.

When the user opens the closet or wardrobe, a reed/button switch is triggered. When the system

detects a trigger it retrieves the whole days forecast of maximum and minimum temperatures

including any chances of rain. If there are low temperatures it notifies the user via the speaker that

it will be cold perhaps he/she should take a warm jacket with else if it is going to rain it notifies

the user that he/she should perhaps take an umbrella with.

The voice notes a pre-programmed/recorded and can be modified from the configuration file, we

use Google’s API tts (Text to Speech).

Text to speech, abbreviated as TTS, is a form of speech synthesis that converts text into spoken

voice output.

The weather data is retrieved in real-time, considering that the system is connected to the internet,

the information is retrieved from www.openweathermap.com using OpenWeatherMaps Python

API, OpenWeatherMaps is an online service that provides a free API for weather data, including

current weather data, forecasts, and historical data to the developers of web services and mobile

applications.

The Figure 3-2 Closet door warning flowchart below,

illustrates how this feature of the proposed project

works. A script that monitors the closet door switch is

executed upon system boot, and it wait for an interrupt

on a RPi’s GPIO pin, if an interrupt is detected a

function that retrieves the weather is executed, the

weather information gets retrieved in real-time from

OpenWeatherMaps, if rain or cold is read from the

retrieved data in this case a JSON file, a notification

by means of voice is read out loud from the systems

speakers notifying the user if perhaps he/she should

carry and umbrella or jacket.

Figure 3-2 Closet door warning flowchart

http://www.openweathermap.com/

Industrial Project Report by M. Mphego

 28

3.2.3 Gesture Control
The gesture control consist of two (2) features, namely Voice Recognition and Mobile Shake

control. Figure 3-3 Mobile Gesture Control dialog below shows the dialog box presented upon

application launch.

Figure 3-3 Mobile Gesture Control dialog

3.2.3.1 Voice Recognition

Voice/Speech recognition is the ability of a machine or program to identify words and phrases in

spoken language and convert them to a machine-readable format (binary 1 and/or 0). Basic speech

recognition software has a limited vocabulary of words and phrases and may only identify these

if they are spoken very clearly.

3.2.3.1.1 Front End

By exploiting the Google’s Android API’s we can have access to the low-level controls of an

Android ran smartphone and have control of low-level Offline Google Android application. In this

paragraph we will explain how the Android voice recognitions works.

The Android speech recognizer uses Natural language processing.

What is NLP?

Natural language processing (NLP) is the ability of a computer program to understand human

speech as it is spoken. NLP is a component of artificial intelligence (AI).

There are a couple of layers in processing speech. First Google tries to understand the consonants

and the vowels. That is the foundational layer. Next, it uses those to make intelligent guesses about

the words. And then higher.

The same approach is actually applied to image analysis where you try to first detect edges in an

image. Then check for edges close to each other to find a corner. Then go higher from there.

Industrial Project Report by M. Mphego

 29

Figure 3-4 Block diagram speech recognition

below illustrates how Speech recognition works, however we will not go into details as this is low

level artificial intelligences using natural language processing and pattern recognition/matching.

Figure 3-4 Block diagram speech recognition

How does Google’s Android recognize speech?

There are four different approaches the recogniser can take when turning spoken words to text:

 Simple pattern matching where each spoken word is recognized in its entirety—the way

you instantly recognize a tree or a table without consciously analysing what you're looking

at.

 Pattern and feature analysis where by each word is broken into bits and recognized from

key features, such as the vowels or constant it may contains.

 Language modelling and statistical analysis in which a knowledge of grammar and the

probability of certain words or sounds following on from one another is used to speed up

recognition and improve accuracy – This is evident on Apple Siri where is stores the words

on cloud and uses an algorithm to compare and select speech to text.

 Artificial neural networks or natural language processing : Brain-like computer models

that can reliably recognize patterns, such as word sounds, after exhaustive training

How does the mobile voice recognition work?

In this section we will breakdown how we exploit Google’s API speech to text and how we send

the text or string over UDP to the server, in this case a Raspberry Pi listening in on an open port

and be able to switch different lights/ plugs in and around the house.

The Figure 3-5 Voice Recognition flowchart below, shows how the Python code is implemented

on the mobile device running Android OS.

Industrial Project Report by M. Mphego

 30

Figure 3-5 Voice Recognition flowchart

When the application is launched a dialog box is displayed offering the user two (2) options -

Voice recognition and mobile shake control. When voice recognition option is selected – the

application starts broadcasting its UDP connection to all ports open on the entire subnet network,

if the Raspberry Pi accepts the UDP connection then the Android application requests the user to

input voice commands (Speak Now), Figure 3-6 Voice Recognition Speak request below shows

the pop up,

Figure 3-6 Voice Recognition Speak request

Industrial Project Report by M. Mphego

 31

If words are recognized their sent over to the

server for more processing, else if the words are not clearly recognized it will request user to input

voice commands once more this is done in a loop until the command ‘Exit’ is received.

3.2.3.1.2 Back End

The Raspberry Pi runs a script that constantly listen for UDP packets on a certain port, this script

is executed upon system reboot with an exception of restarting the program in-case of any runtime

failures.

Upon receiving the UDP packets sent from the Android smartphone as a list of strings – voice

converted to text via Android’s API, The script evaluates if whether the string is of text or numbers

(floats accelerometer data), if the raw data received via UDP are a list of strings their compared to

the strings that are already stored on the running script - This strings are programmable via the

configuration file.

The program uses pattern recognition – as it listens to specific words or text if the word is invalid

this gets logged into a file for analysis on a later stage. The Figure 3-7 Speech-to-Text

diagram/schematic below illustrates how this feature of the proposed project is implemented.

Figure 3-7 Speech-to-Text

When a certain known pattern of word is recognized certain relays are switched either on or off.

The Python program below is executed when a string of words are recognized and depending on

the word matched, this will execute a relay control command.

Industrial Project Report by M. Mphego

 32

def voice_recognition(data):
 if data == "bedroom light on" or data == "bedroom on":
 relay_on(Relay1)
 print data
 LOGGER.info('Data: {}'.format(data))

 elif data == "bedroom light off" or data == "bedroom off":
 relay_off(Relay1)
 print data
 LOGGER.info('Data: {}'.format(data))

 elif data == "kitchen light on" or data == "kitchen on":
 relay_on(Relay2)
 print data
 LOGGER.info('Data: {}'.format(data))

 elif data == "kitchen light off" or data == "kitchen off":
 relay_off(Relay2)
 print data
 LOGGER.info('Data: {}'.format(data))

 elif data == "dining light on" or data == "dining light off":
 relay_on(Relay3)
 print data
 LOGGER.info('Data: {}'.format(data))

 elif data == "dining light off" or data == "dining off":
 relay_on(Relay3)
 print data
 LOGGER.info('Data: {}'.format(data))

 elif data == "tv room light on" or data == "tv room light off":
 relay_on(Relay4)
 print data
 LOGGER.info('Data: {}'.format(data))

 elif data == "tv room light off" or data == "tv room off":
 relay_off(Relay4)
 print data
 LOGGER.info('Data: {}'.format(data))
 elif data == "all lights on" or data == "lights on":
 for relay, gpio in relays_conf.iteritems():
 relay_on(gpio)
 print data
 LOGGER.info('Data: {}'.format(data))
 elif data == "all lights off" or data == "lights off":
 for relay, gpio in relays_conf.iteritems():
 relay_off(gpio)
 print data
 LOGGER.info('Data: {}'.format(data))
 else:
 print "invalid parameter: ", data

while True:
listen to UDP
 data, addr = sock.recvfrom(nbytes)
 """ format
 data : str containing list
 addr : 'xxx.xxx.xxx.xxx'
 print 'data length', len(data)
 """
 try:
 eval(data)
 gesture_control()
 except Exception:
 voice_recognition(data)

Industrial Project Report by M. Mphego

 33

3.2.3.2 Mobile shake control

3.2.3.2.1 Front End

By exploiting the Google’s Android API’s we can have access to the low-level controls of an

Android ran smartphone and retrieve sensor data. In this paragraph we will explain how the mobile

shake control works. The Android mobile platforms supports various sensor. Such as:

 Motion sensors: measure acceleration forces and rotational forces along three axes (in most

devices) [e.g.: accelerometers, gravity sensors, gyroscopes and rotational vector sensors]

 Position sensors: measure the physical position of a device [e.g.: orientation sensors and

magnetometers]

 Environmental sensors: measure environmental parameters (temperature and pressure,

illumination, and humidity) (depend on device) [e.g.: Barometers, photometers, and

thermometers.]

The proposed project mainly focuses on Motion sensors which is to say accelerometer sensor. We

will read raw data using Python Script Layer for Android and transmit them over UDP protocol to

the Raspberry Pi for processing.

The Scripting Layer for Android (abridged as SL4A, and previously named Android Scripting

Environment or ASE) is a library that allows the creation and running of scripts written in various

scripting languages directly on Android devices. SL4A is designed for developers and (as of March

2016) is still alpha quality software. [4]

The Figure 3-8 Flow chart mobile shake control below, shows how the Python code is

implemented on the mobile device running Android OS. When the application is launched a dialog

box is displayed offering the user two (2) options - Voice recognition and mobile shake control,

upon selecting mobile shake control the logic on the flow chart is used.

Figure 3-8 Flow chart mobile shake control

UDP Tx

Industrial Project Report by M. Mphego

 34

When the mobile shake control option is selected the application starts broadcasting its UDP

connection to all ports open on the network, If the Raspberry Pi accepts the UDP connection then

the Android application starts sending packets. The packets are a string of raw accelerometer (X,

Y and Z coordinates see Figure 3-9 3-Axis Accelerometer) data read from the Android device at

a sampling rate of 100ms. This activity is done every 500ms until the user decides to exit the

application.

There are no calculations done at this point.

Figure 3-9 3-Axis Accelerometer

What is an accelerometer?

An accelerometer is a device that measures proper acceleration ("g-force"). Proper acceleration

is not the same as coordinate acceleration (rate of change of velocity). For example, an

accelerometer at rest on the surface of the Earth will measure an acceleration g= 9.81 𝑚/𝑠2

straight upwards. By contrast, accelerometers in free fall (falling toward the center of the Earth

at a rate of about 9.81 /𝑠2) will measure zero. [5]

How to measure acceleration?

The accelerometer in the mobile device provides the XYZ coordinate raw values, which is used

to measure the position and the acceleration of the device. The XYZ coordinate represents

direction and position of the device at which acceleration occurred. The rotation direction and

position are measured using gyroscope sensors that are found in the Android devices. The

mobile device rest in the Earth includes the acceleration due to gravity (g = 9.81𝑚/𝑠2) and the

acceleration value. The accelerometer values provided by the device normally includes the

gravity as well. Accelerometer along with the linear acceleration and gyroscope will provide

results close to accuracy. Linear acceleration does not include the gravity.

3.2.3.2.2 Back End

The Raspberry Pi runs a script that constantly listen for UDP packets on a certain port, this script

is executed upon system reboot with an exception of restarting the program in-case of any runtime

failures.

Upon receiving the UDP packets sent from the Android smartphone as a string with 3 raw

accelerator sensor, the raw sensor data from the x, y, and z axes are analysed and used to check

the presence of movements. Here, we stabilize the sensor data values by filtering each value from

the x, y, and z axes through the Low-pass filter. The resulting values are compared with the pre-

selected Threshold value to judge the presence of movements on each axis. The highest value

among the judged values is the directional value for the gesture. Then, we see if there is shake by

integrating data values on each axis. We need to set up interval timings for measurements and also

need to determine the threshold value to judge movements as well as shake information

Industrial Project Report by M. Mphego

 35

Figure 3-10 Mobile Shake Detection-Python

What is low-pass filter?

A low-pass filter is a filter that passes signals with a frequency lower than a certain cutoff

frequency and attenuates signals with frequencies higher than the cutoff frequency. The amount

of attenuation for each frequency depends on the filter design.

Figure 3-11 Mobile Shake Control

A Python function call, retrieves the 3-axis accelerometer raw data passes it through a low pass

filter. Effectively, this “smoothes” out the data by taking out the jittery, high-frequency noise and

then compares the magnitude value to the sensitivity and limit value set upon start-up. If the value

received detects a mobile switch then a relay is triggered on and if another mobile shake is detected

again the relay is triggered off. A basic schematic and android communication is show above

Figure 3-11 Mobile Shake Control

Industrial Project Report by M. Mphego

 36

Low pass filter algorithm used to derive the

results: [6]

3.2.4 Humidity and Temperature sensor (DHT11)

The Figure 3-12 DHT11 Sensor shows the DHT11 sensor which

includes a resistive-type humidity measurement component, an NTC

temperature measurement component and a high-performance 8-bit

microcontroller inside, and provides calibrated digital signal output.

It has high reliability and excellent long-term stability, due to the

digital signal acquisition technique and temperature & humidity

sensing technology.

Each DHT11 is strictly calibrated in the laboratory that is extremely

accurate on humidity calibration. The calibration coefficients are

stored as programmes in the OTP memory, which are used by the sensor’s internal signal detecting

process. The single-wire serial interface makes system integration quick and easy. Its small size,

low power consumption and up-to-20 meter signal transmission.

3.2.4.1 Communication Process: Serial interface

Single bus data format is used for the communication and synchronization between

microcontroller and the DHT11 sensor. Each communication process will last about 4ms.

Data consists of decimal and integral parts. A complete data transmission is 40bit, and the sensor

sends higher data bit first.

Data format:

8bit integral RH data + 8bit decimal RH data + 8bit integral T data + 8bit decimal T data + 8bit

check sum.

If the data transmission is correct, the check-sum should be the last 8bit of "8bit integral RH data

+ 8bit decimal RH data + 8bit integral T data + 8bit decimal T data".

When MCU sends a start signal, DHT11 changes from the low-power-consumption mode to the

running-mode, waiting for MCU completing the start signal. Once it is completed, DHT11 sends

a response signal of 40-bit data that include the relative humidity and temperature information to

MCU. Users can choose to collect (read) some data. Without the start signal from MCU, DHT11

will not give the response signal to MCU. Once data is collected, DHT11 will change to the low

power-consumption mode until it receives a start signal from MCU again.

Figure 3-12 DHT11 Sensor

Industrial Project Report by M. Mphego

 37

Figure 3-13 DHT11 Communication Process

The default status of the DATA pin is high. When the communication between MCU and DHT11

starts, MCU will pull down the DATA pin for least 18ms. This is called “Start Signal” and it is to

ensure DHT11 has detected the signal from MCU. Then MCU will pull up DATA pin for 20-40us

to wait for DHT11’s response.

Figure 3-14 MCU sends out Start signal & sensor responses

Once DHT11 detects the start signal, it will pull down the DATA pin as “Response Signal”, which

will last 80us. Then DHT11 will pull up the DATA pin for 80us, and prepare for data sending.

During the data transition, every bit of data begins with the 50us low-voltage-level and ends with

a high-voltage-level signal. The length of the high-voltage-level signal decides whether the bit is

“0” or “1”.

Data bit “0” has 26-28us high-voltage length:

Figure 3-15 Data '0' indication

While data bit “1” has 70us high-voltage length:

Figure 3-16 Data '1' indication

Industrial Project Report by M. Mphego

 38

If the response signal from DHT is always at

high-voltage-level, it suggests that DHT is not responding properly and please check the

connection. When the last bit data is transmitted, DHT11 pulls down the voltage level and keeps

it for 50us. Then the Single-Bus voltage will be pulled up by the resistor to set it back to the free

status.

Figure 3-17 DHT11 Circuit

The Figure 3-17 DHT11 Circuit above shows the circuit diagram on how the DHT11 is connected

to the Raspberry Pi. To control the DHT11 we use C, as it is a lower level language, it controls the

GPIO pin in a more direct way with minimal amount of read failures.

Industrial Project Report by M. Mphego

 39

3.2.4.2 C code
/*
 * dht11.c:

 * Simple test program to test the wiringPi functions

 * DHT11 test
 */

#include <wiringPi.h>

#include <stdio.h>
#include <stdlib.h>

#include <stdint.h>

#define MAXTIMINGS 85
#define DHTPIN 7

int dht11_dat[5] = { 0, 0, 0, 0, 0 };

void read_dht11_dat()

{

 uint8_t laststate = HIGH;
 uint8_t counter = 0;

 uint8_t j = 0, i;

 float f; /* fahrenheit */

 dht11_dat[0] = dht11_dat[1] = dht11_dat[2] = dht11_dat[3] = dht11_dat[4] = 0;

 /* pull pin down for 18 milliseconds */

 pinMode(DHTPIN, OUTPUT);

 digitalWrite(DHTPIN, LOW);
 delay(18);

 /* then pull it up for 40 microseconds */

 digitalWrite(DHTPIN, HIGH);
 delayMicroseconds(40);

 /* prepare to read the pin */

 pinMode(DHTPIN, INPUT);

 /* detect change and read data */

 for (i = 0; i < MAXTIMINGS; i++)
 {

 counter = 0;

 while (digitalRead(DHTPIN) == laststate)
 {

 counter++;
 delayMicroseconds(1);

 if (counter == 255)

 {
 break;

 }

 }
 laststate = digitalRead(DHTPIN);

 if (counter == 255)
 break;

 /* ignore first 3 transitions */
 if ((i >= 4) && (i % 2 == 0))

 {

 /* shove each bit into the storage bytes */
 dht11_dat[j / 8] <<= 1;

 if (counter > 16)

 dht11_dat[j / 8] |= 1;
 j++;

 }

 }

 /*

 * check we read 40 bits (8bit x 5) + verify checksum in the last byte
 * print it out if data is good

 */

 if ((j >= 40) &&
 (dht11_dat[4] == ((dht11_dat[0] + dht11_dat[1] + dht11_dat[2] + dht11_dat[3]) & 0xFF)))

 {

 f = dht11_dat[2] * 9. / 5. + 32;
 printf("Humidity = %d.%d %% Temperature = %d.%d *C (%.1f *F)\n",

 dht11_dat[0], dht11_dat[1], dht11_dat[2], dht11_dat[3], f);

 }else {
 printf("Data null\n");

 }

}

Industrial Project Report by M. Mphego

 40

int main(void)

{

 printf("Raspberry Pi DHT11 Temperature \n");

 if (wiringPiSetup() == -1)

 exit(1);

 while (1)

 {
 read_dht11_dat();

 delay(1000); /* wait 1sec to refresh */

 }
 return(0);

}

Industrial Project Report by M. Mphego

 41

3.2.5 Linux Infrared Remote

Control

A part of the proposed system is an infrared controller, controlling heating and cooling inside the

house. By using the Linux infrared remote control package it is achievable.

What is IR?

Infrared (IR) light is invisible electromagnetic radiation. Everything absorbs and emits IR, and it's

utilised in a plethora of applications.

IR sensors consist of a photocell & chip tuned to look out for specific wavelengths of invisible

infrared light. This is why IR is used for remote control detection, such as your TV.

In order to use IR for remote sensing, we need an IR LED (in the remote to output the IR signal)

coupled with an IR sensor (inside the TV) which detects the IR pulses and follows the direction

that these pulses are coded to e.g. turn off, change channel etc.

What is LIRC (Linux Infrared Controller)?

LIRC is a package that allows you to decode and send infra-red signals of many (but not all)

commonly used remote controls.

The most important part of LIRC is the lircd daemon which decodes IR signals received by the

device drivers and provides the information on a socket. It also accepts commands for IR signals

to be sent if the hardware supports this. The second daemon program called lircmd will connect

to lircd and translate the decoded IR signals to mouse movements. You can e.g., configure X11 to

use your remote control as an input device.

The user space applications allows you to control your computer with your remote control. You

can send X11 events to applications, start programs and much more on just one button press. The

possible applications are obvious: Infra-red mouse, remote control for your TV tuner card or CD-

ROM, shutdown by remote, program your VCR and/or satellite tuner with your computer, etc. I've

heard that using lirc on Raspberry Pie is quite popular these days. [7]

Setting up LIRC on the Raspberry Pi is easy and straight forward, the Figure 3-18 IR Raspberry

Pi below shows the basic connection between Raspberry Pi and IR receiver. More details will be

described in Chapter 4.

First, we’ll need to install and configure LIRC to run on the Raspberry Pi:

sudo apt-get install lirc

Industrial Project Report by M. Mphego

 42

Figure 3-18 IR Raspberry Pi

Industrial Project Report by M. Mphego

 43

3.2.6 Light sensor

A photoresistor, or light-dependent resistor (LDR), or photocell is

a resistor whose resistance will decrease when incident light

intensity increase; in other words, it exhibits photoconductivity.

A photoresistor is made of a high resistance semiconductor. If

light falling on the device is of high enough frequency, photons

absorbed by the semiconductor give bound electrons enough

energy to jump into the conduction band. The resulting free

electron conduct electricity, thereby lowering resistance.

Reading the LDR value can be tricky, considering that the Raspberry Pi does not have an ADC

(Analogue to Digital Convertor).

All GPIO pins are digital pins, they can only output low and high levels or read high to low

levels, this is useful for digital sensors that output digital values, however the LDR is an

analogue device. In this case for sensors that outputs a variable resistor value there is a simple

solution.

By using an RC circuit, we can be able to use an LDR as a light sensor.

An RC (Resistor-Capacitor) circuit or RC filter is an electric circuit composed of resistors and

capacitors driven by a voltage or current source. In this project we will make use of a first order

RC circuit, we use it to filter a signal by blocking certain frequencies and letting others pass.

In this case, the resistor and capacitor are connected in series, when a voltage is applied across

these components the voltage across the capacitor increases and the time it takes for the voltage

to reach 60% of the maximum is equal to the resistance x capacitance. When using an LDR this

time is directly proportional to the light level. This time is called the time constant and is given

by:

𝑡 = 𝑅𝐶
Where t is the time it takes, R is resistance in ohms and C is capacitance in farads. [8]

Figure 3-19 LDR

Industrial Project Report by M. Mphego

 44

Figure 3-20 LDR sensor

For the LDR to be used as a light level sensor we need to calculate the time it takes for the

circuit’s voltage to reach a value that will register as a ‘HIGH’ on the GPIO input of the

Raspberry Pi. Figure 3-20 LDR sensor shows the circuitry.

By means of calculation in order to get a nominal time constant of about 1 second:

𝑡 = 𝑅𝐶
= (1kΩ + 1MΩ)*1uF, where 1MΩ is the resistance of LDR in the dark [9]

= 1 second

Figure 3-21 LDR reading script, shows the Python code used for reading the light levels and will

be explain in details.

Figure 3-21 LDR reading script

Industrial Project Report by M. Mphego

 45

By setting the GPIO pin as an output and setting it Low, this discharges any charge stored in the

capacitor and ensures that both sides of the capacitor have 0v. Setting the GPIO as an input,

starts a flow of current through the resistors and through the capacitor to ground and the voltage

across the capacitor starts to rise and the time it takes to rise is proportional to the resistance of

the LDR.

Monitoring the GPIO pin and reading its value will increment a counter while it waits this value

is sampled and averaged out, and at most point the capacitor voltage increases enough to be

considered as a ‘HIGH’ by the GPIO pin (approximate value calculated above) the time taken is

proportional to the light level seen by the LDR, and reset GPIO pin as output and restart the

process

3.2.7 Multi Room Media Server
In this section we will discuss the multi room media server feature of the proposed project, but

first we need to understand what a media server is.

A media server refers either to a dedicated computer appliance or to a specialized application

software, a small personal computer or NAS (Network Attached Storage) for the home, dedicated

for storing various digital media (meaning digital videos/movies, audio/music, and picture files).

The proposed system uses UPnP (Universal Plug and Play) protocol.

UPnP (Universal Plug and Play) is a feature that allows the devices on your home network to

discover each other and access certain services. Often, this is used for streaming media between

devices on a network. Tons of different devices support UPnP streaming nowadays or DLNA

(Digital Living Network Alliance), which is great, because it means you can rip or download media

to your home computer and stream it directly to your TV - no transfer of files required.

We are using an application called MiniDLNA which can be found in the Ubuntu repository.

MiniDLNA is server software with the aim of being fully compliant with DLNA/UPnP clients.

The MiniDLNA daemon serves media files (music, pictures, and video) to clients on a network.

Example clients include applications such as totem and xbmc, and devices such as portable media

players, smartphones, and televisions.

The proposed project offers the user an option to plug in their external media storage, such as an

external USB hard disk drive which contains any form of media from audio, videos to pictures.

Upon connecting the disk to the system, a daemon program is instantiated which scans the data

and makes it become available on the home network.

This media can be accessed from a Smartphone, Tablet, Smart TV and many other DLNA

complaint devices - hence multiroom media server.

Setting up the systems was easy. Below are various commands used to setup the environment.

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install minidlna

After installing the packages, we need to configure it.

sudo nano /etc/minidlna.conf

port for HTTP (descriptions, SOAP, media transfer) traffic

port=8200

Industrial Project Report by M. Mphego

 46

network interfaces to serve, comma delimited

#network_interface=eth0

set this to the directory you want scanned.

* if have multiple directories, you can have multiple media_dir= lines

* if you want to restrict a media_dir to a specific content type, you

can prepend the type, followed by a comma, to the directory:

+ "A" for audio (eg. media_dir=A,/home/jmaggard/Music)

+ "V" for video (eg. media_dir=V,/home/jmaggard/Videos)

+ "P" for images (eg. media_dir=P,/home/jmaggard/Pictures)

#media_dir=/opt

media_dir=/mnt

set this if you want to customize the name that shows up on your clients

friendly_name=Media Server

set this if you would like to specify the directory where you want MiniDLNA to store its database

and album art cache

db_dir=/var/lib/minidlna

set this if you would like to specify the directory where you want MiniDLNA to store its log file

log_dir=/tmp/log

set this to change the verbosity of the information that is logged

each section can use a different level: off, fatal, error, warn, info, or debug

#log_level=general,artwork,database,inotify,scanner,metadata,http,ssdp,tivo=warn

this should be a list of file names to check for when searching for album art

note: names should be delimited with a forward slash ("/")

album_art_names=art.jpg/Art.jpg/front.jpg/Front.jpg/Cover.jpg/cover.jpg/AlbumArtSmall.jpg/al

bumartsmall.jpg/AlbumArt.jpg/albumart.jpg/Album.jpg/album.jpg/Folder.jpg/folder.jpg/Thumb.j

pg/thumb.jpg

set this to no to disable inotify monitoring to automatically discover new files

note: the default is yes

inotify=yes

set this to yes to enable support for streaming .jpg and .mp3 files to a TiVo supporting HMO

enable_tivo=no

set this to strictly adhere to DLNA standards.

* This will allow server-side downscaling of very large JPEG images,

which may hurt JPEG serving performance on (at least) Sony DLNA products.

strict_dlna=no

default presentation url is http address on port 80

presentation_url=http://www.mylan/index.php

notify interval in seconds. default is 895 seconds.

notify_interval=900

Industrial Project Report by M. Mphego

 47

serial and model number the daemon will

report to clients

in its XML description

serial=12345678

model_number=1

specify the path to the MiniSSDPd socket

#minissdpdsocket=/var/run/minissdpd.sock

use different container as root of the tree

possible values:

+ "." - use standard container (this is the default)

+ "B" - "Browse Directory"

+ "M" - "Music"

+ "V" - "Video"

+ "P" - "Pictures"

if you specify "B" and client device is audio-only then "Music/Folders" will be used as root

#root_container=.

After the setup, the user is able to plug any external hard drive to the system and stream media

contents locally.

Industrial Project Report by M. Mphego

 48

3.2.8 Presence Detector & PIR Sensor

3.2.8.1 Passive Wi-Fi detection

Imagine you house could know that you are or not at home or around the vicinity of your house,

and certain devices configured by you would switch on or off depending on how the user

configured the system.

For example: You are busy in the kitchen using the stove and all of a sudden an emergency at

work requires you to immediately rush to the office – while still on the call with your boss you

grab your car keys and leave the house – forgetting to switch off the stove behind you.

This is where the presence detector comes in, considering that your mobile devices is always

connected to the home network via Wi-Fi. The moment you disconnect from the network the

proposed system will disconnect or connect whatever is enabled.

Now think if you had a system of this nature in your home, and involved in a scenario more like

the one stated above, you will never have to worry because the system will detect that you have

been disconnected from the home network and switch off the stove for you.

By turning the system to a passive Wi-Fi monitoring system we can achieve the above. The

detection is done in the system whereby it is constantly searching for a known device, in this case

a smart phone.

Figure 3-22 Passive Wi-Fi Detect below, shows the Python script that is executed upon boot. The

script assumes that you have initially configured your devices MAC (Media Access Control)

address.

A media access control address (MAC address), also called physical address, is a unique identifier

assigned to network interfaces for communications on the physical network segment. MAC

addresses are used as a network address for most IEEE 802 network technologies, including

Ethernet and Wi-Fi. [10]

By using a Linux based network packet scanner (arp-scan), we can be able to determine the devices

IP address considering that the system and the mobile device are on the same subnet.

The ARP Scan Tool (also called ARP Sweep or MAC Scanner) is a very fast ARP packet scanner

that shows every active IPv4 device on your Subnet. Since ARP is non-routable, this type of

scanner only works on the local LAN (local subnet or network segment). [11]

When the IP address is established, the program starts to try to detect the mobile device on the

network by using Ping which operates by sending internet control messages protocol (ICMP)

‘Echo requests’ to the target in this case a mobile device and waits for an acknowledgement from

the mobile device ‘Echo Reply’ by measuring the round trip from the transmission we can

determine how far the user is from the Wi-Fi hotspot or link.

If a reply is received from a message is logged to the log file that a mobile device is detected and

if there user configured the system to perform a specific task upon detection it will be done. After

the detection is done the program exits the loop and triggers another instance to rerun the same

script again in case the mobile device gets disconnected.

Industrial Project Report by M. Mphego

 49

Figure 3-22 Passive Wi-Fi Detect

Industrial Project Report by M. Mphego

 50

3.2.8.2 PIR (Passive Infrared)

detection

A passive infrared sensor (PIR sensor) is an electronic sensor that measures infrared (IR) light

radiating from objects in its field of view. They are most often used in PIR-based motion detectors.

How PIR work?

PIRs are basically made of a pyro electric sensor

(which you can see above as the round metal can

with a rectangular crystal in the centre), which can

detect levels of infrared radiation. Everything emits

some low level radiation, and the hotter something

is, the more radiation is emitted. The sensor in a

motion detector is actually split in two halves. The

reason for that is that we are looking to detect

motion (change) not average IR levels. The two

halves are wired up so that they cancel each other

out. If one half sees more or less IR radiation than the other, the output will swing high or low.

In this part of the proposed systems feature, we use the PIR to detect any motion around the vicinity

of the house, this has proved to be a good security feature with the USB camera.

The Figure 3-24 PIR Flowchart below shows the flowchart for the Python script. The script is run

automatically on system boot and waits for 10seconds as it is low priority and will run in the

background. The motion sensor is configured to run with an interrupt handler, upon motion

detection the camera will take an image of the surrounding and sends it to the user via email and

push notification as well as log the incident.

Figure 3-24 PIR Flowchart

Figure 3-23 PIR

Industrial Project Report by M. Mphego

 51

3.2.9 Relay Control
In this section we will go into detail as to how the relay switching process works.

This is this the other main feature of the proposed system. This relays are accessed by various

functions such as the Gesture control, Closet door warning and many more, depending on the

number of relays used – the use if endless.

We are using a 4 way relay module and can be expanded widely by means of using an I/O

expanding IC or with an 𝐼2𝐶 IC.

The Figure 3-25 Relay Module RPi below shows how it the relay modules are currently connected

to the Raspberry Pi and the code Figure 3-26 Relay Control Python below is used to address

specific relays to enable or disable them.

Figure 3-25 Relay Module RPi

Figure 3-26 Relay Control Python

Industrial Project Report by M. Mphego

 52

3.2.10 Sensor Loggers

In this section of the proposed project, we constantly poll the DHT11 (temperature and humidity

sensors), MQ2 (gas sensor connected to an Arduino), LDR (3.2.6 Light sensor), Raspberry Pi’s

CPU temperature sensors every 30 seconds and uploads the data to ThingSpeak

(www.thingspeak.com) - ThingSpeak is a free web service that lets you collect and store sensor

data in the cloud and develop IoT applications.

If certain values retrieved from a sensor are retrieved a push notification is sent to the end user,

for example an increase in temperature or increase in gas levels.

3.2.10.1 Python code:

The Python code below is used to sensor poll the sensors and uploads the data, it is ran on

system boot, and the script integrates multiple python scripts most where explained on chapter 3.

I will briefly explain the Python sensor polling code and what it does.

To begin we import the Adafruit DHT package that reads the DHT11 sensor, we also import the

time package so we’re able to put the script to sleep for when we need to and also import the

urllib2 package provides an updated API for using internet resources identified by URLs. The gc

package provides an interface to the optional garbage collector, the os package provides a portable

way of using operating system dependent functionality, the psutil package is a cross-platform

library for retrieving information on running processes and system utilization (CPU, memory,

disks, network) in Python and sys package provides access to some variables used or maintained

by the interpreter and to functions that interact strongly with the interpreter.
try:

 import Adafruit_DHT as dht

except ImportError:

 import pip

 pip.main(['install', 'Adafruit_DHT'])

import time

import urllib2

import gc

import os

import psutil

import sys

We then import Logger package which is responsible for logging useful information to a CSV file,

yaml package provides features for reading configuration files and Notifier package which is used

to enable push notifications provided an API key.

from logger import LOGGER

from yamlConfigFile import configFile

from Notifier import Notification

sys.path.insert(1, '/home/pi/Scripts/Smoke_Detection/')

sys.path.insert(1, '/home/pi/Scripts/Light_sensor/')

We then import Smoke detection package which is responsible for reading serial output from the

Arduino if it is connected to the Raspberry Pi via USB, ldr_sensor package which is responsible

for polling light sensor and retrieve luminosity levels and also GPIO clean-up for garbage

collection
import Smoke_Detection

from ldr_sensor import RCtime

from ldr_sensor import cleanup

http://www.thingspeak.com/

Industrial Project Report by M. Mphego

 53

#cleanup()

wait_time = 30

pin = 26

ldr_pin = 16

Thingspeak API URL open source Internet of Things (IoT) application and API to store and

retrieve data from things using the HTTP protocol over the Internet or via a Local Area Network.
baseurl = 'https://api.thingspeak.com/update?api_key='

Variables stored in config file
username = configFile()['Email']

password = configFile()['EmailPassword']

send_to = configFile()['Email2']

Notify_api_key = configFile()['PushNotifications']['Pushbullet']

apikey = configFile()['APIs']['thingspeak']

A function that retrieves (3.2.4 Humidity and Temperature sensor (DHT11)) humidity and

temperature from DHT11 sensor, in a try/except in-case the function returns null and void.
def getSensorData():

 try:

 humid, temp = dht.read_retry(dht.DHT11, pin)

 except:

 return (0, 0)

 return (str(humid), str(temp))

A function that reads the smoke detection levels from Arduino via Serial/USB interface, if the

USB communication is disconnected the function returns a Zero.
def getGasSensorData():

 try:

 if Smoke_Detection.get_gas_sensor() is not None:

 smoke_val = Smoke_Detection.get_gas_sensor()

 else:

 smoke_val = 0

 except:

 smoke_val = 0

 return str(smoke_val)

This is where we instantiate the function that reads light levels as explained above (3.2.6 Light

sensor).
def getLightLevels(LDR_pin):

 try:

 if RCtime(LDR_pin) is not None:

 light_val = RCtime(LDR_pin)

 else:

 raise Exception

 except:

 light_val = 0

 return light_val

With this function we can retrieve CPU temperature but it is not a Python command but a UNIX

command hence we needed to use ‘os’ package explained above, if fails to read it returns a Zero.
def getCPUTemp():

 try:

 ostemp = os.popen('vcgencmd measure_temp').readline()

 cpu_temp = (ostemp.replace("temp=", "").replace("'C\n", ""))

 except:

 cpu_temp = 0

 return cpu_temp

#--

API_URL = baseurl + apikey

count = 0

rst_counter = 0

Industrial Project Report by M. Mphego

 54

sensor_name_1 = 'raspberry_pi_cputemp'

sensor_name_2 = 'DHT11_Temp'

sensor_name_3 = 'DHT11_Humidity'

Push notification function used for sending moule notification with the API added above
NotifyMe = Notification(username, password, send_to, Notify_api_key)

def notification(alert, message):

 global rst_counter

 rst_counter += 1

 NotifyMe.send_mail(alert, message)

 NotifyMe.send_pushbullet(alert, message)

def notification_check():

 global rst_counter

 rst_counter = 0

try:

Here we constantly poll the sensor functions every 30 sends.
 while True:

 smoke = getGasSensorData()

 light = getLightLevels(ldr_pin)

 humidity, temperature = getSensorData()

 cpu_temp = getCPUTemp()

Storing all retrieved sensor values to CSV file
 LOGGER.info('Humidity: {}%, Temp: {}, CPU_Temp: {}, Smoke_Level: {}, Light_Levels: {}'.format(

 humidity, temperature, cpu_temp, smoke, light))

 print ('Humidity: {}%, Temp: {}, CPU_Temp: {}, Smoke_Level: {}, Light_Levels: {}'.format(

 humidity, temperature, cpu_temp, smoke, light))

Testing if whether temperature is over 35 degrees, and if it is we send a push notification with a

message, same as with the humidity and smoke levels.
 #if float(temperature) > 35.:

 #alert = 'Temperature Nofication'

 #message = 'Temperature is at {}degrees'.format(temperature)

 #notification(alert, message)

 #if rst_counter > 1:

 #notification_check()

 #if float(humidity) > 50.:

 #alert = 'Humidity Nofication'

 #message = 'Humidity is at {}%'.format(humidity)

 #notification(alert, message)

 #if rst_counter > 1:

 #notification_check()

 #if float(smoke) > 450.:

 #alert = 'Smoke Nofication'

 #message = 'Smoke is at {}'.format(smoke)

 #notification(alert, message)

 #if rst_counter > 1:

 #notification_check()

 try:

In this section we uploading data retrieved from the sensors to Thingspeak API with the URL

provided above, if the is no internet connectivity it raises an exception which closes the

connection and starts a counter which waits for 5*30seconds and disconnects.

Industrial Project Report by M. Mphego

 55

Figure 3-27 Light levels ThingSpeak shows the

results from Thingspeak and one can easily notice that the luminosity levels increased

dramatically between the hours of 6pm to 8pm and someone switch the lights on from 8pm till

around 12pm then lights were off.
 send_data = urllib2.urlopen(API_URL +

 '&field1={}&field2={}&field3={}&field4={}&field5={}&field6={}&field7={}'.format(

 humidity, temperature, cpu_temp, 0,0, smoke, light))

 except:

 count += 1

 send_data.close()

 if count > 5:

 count = 0

Waiting time between polls to decrease CPU usage.
 time.sleep(wait_time)

 send_data.close()

Forcefully collection all garbage’s as in unused variables and etc.
 gc.collect()

except:

An exception that cleans up the GPIO pins in-case of any failures when reading or uploading the

data.
 cleanup()

Figure 3-27 Light levels ThingSpeak

https://thingspeak.com/channels/103450/charts/7?average=15&bgcolor=%23ffffff&color=%23d

62020&dynamic=false&results=700&type=spline

https://thingspeak.com/channels/103450/charts/7?average=15&bgcolor=%23ffffff&color=%23d62020&dynamic=false&results=700&type=spline
https://thingspeak.com/channels/103450/charts/7?average=15&bgcolor=%23ffffff&color=%23d62020&dynamic=false&results=700&type=spline

Industrial Project Report by M. Mphego

 56

3.2.11 Smart Alarm
Imagine instead of hearing a depressing continuous beeping meant to wake you up in the morning,

Instead of beeping it wakes up with ambient noise and then starts reads out the current time which

is followed by the current weather outside and the forecasting for the day. After then forecast it

retrieves current headline news from www.news24.com and reads them out loud, all this is done

while the systems enables the coffee maker in order for the user to get a steaming cup of coffee

before he/she departs from work.

The code is written in Python, and we make use of rss feed parser to access rss feeds from

www.news24.com and www.openweathermaps.com to access the weather, Google tts API for the

audio. The code is straight forward in summary it retrieves all this data from the above mentioned

websites construct a string and parse it to Google while iterating through the words, Google’s tts

API then translates the text to speech, it then downloads the audio as mp3 files while saving them

to our ram disk to preserve the life expectancy of the SD card. After all voice notes are retrieved

from Google they are played over the speakers while a relay is activated to switch on the coffee

maker and after certain period of time the relay is switched off.

__author__ = "Mpho Mphego"

__version__ = "$Revision: 1.3 $"

__description__ = "Voice enabled Smart Alarm with weather, news and coffee notifier"

__date__ = "$Date: 2015/01/31 14:55 $"

__copyright__ = "Copyright (c) 2015 Mpho Mphego"

__url__ = "mpho112.wordpress.com"

__license__ = "Python"

import subprocess

import time

import feedparser

#import RPi.GPIO as GPIO

from better_spoken_time3 import gmt, day

from get_url_weather9 import wtr, frc

from get_url_news8 import news

try:

 import gtts

except ImportError:

 import pip

 pip.main(['install', 'gTTS'])

finally:

 from gtts import gTTS

#coffeemaker = 4 #GPIO0

end = " That's all for now. Have a nice day."

url = 'http://feeds.feedburner.com/brainyquote/QUOTEBR'

url_quote = 'https://www.quotesdaddy.com/feed/tagged/Inspirational'

rss = feedparser.parse(url_quote)

#GPIO.setwarnings(True)

#GPIO.setmode(GPIO.BCM)

#time.sleep(0.01)

#GPIO.setup(coffeemaker, GPIO.OUT)

#time.sleep(0.01)

Turn all of the parts into a single string

if rss['status'] == 200:

 quote = '. And todays quote: ' + str(rss['entries'][0]['summary'])

else:

 quote = ''

try:

http://www.news24.com/
http://www.news24.com/
http://www.openweathermaps.com/

Industrial Project Report by M. Mphego

 57

 words = str(gmt + day + wtr + frc + news + quote + end)

except UnicodeEncodeError:

 words = str(gmt + day + wtr + frc + news.encode('ascii', 'ignore') + quote + end)

strip any quotation marks

words = words.replace('"', '').strip().split('. ')

try:

 for i,line in enumerate(words):

 tts = gTTS(text=line, lang='en')

 tts.save('{}.mp3'.format(i))

 # Play the mp3s returned

 [subprocess.call ('mpg123 {}.mp3 '.format(mp3_file), shell=True)

 for mp3_file in range(i)]

festival is now called in case of error reaching Google

except subprocess.CalledProcessError:

 subprocess.check_output("echo " + words + " | festival --tts ", shell=True)

Cleanup any mp3 files created in this directory.

subprocess.call ('sudo rm *.mp3', shell=True)

Enabling GPIO for relay switch to turn on coffee maker

#GPIO.output(coffeemaker, True)

Time can be dependent on the make and model of the coffee maker.

#time.sleep(600)

#GPIO.output(coffeemaker, False)

Industrial Project Report by M. Mphego

 58

3.2.12 Smart Doorbell
A classic doorbell can be defined as a signalling device typically placed near an entry door to a

building. When a visitor presses a button the bell rings inside the building, alerting the occupant

to the presence of the visitor.

The proposed smart doorbell feature of the project, works in that manner however when a visitor

presses the doorbell button it notifies the occupant with an images of the visitor and also sends an

email, sms and push notification (to an smart device) to the occupant in case they are not able to

hear the bell ringing.

The Figure 3-28 Smart Doorbell flowchart illustrate how the Python code architecture. On boot

up the script is activated, an interrupt on a GPIO is a set which waits for the individual to press the

button, by making use of interrupts instead of polling a GPIO pin decreases the amount of

resources used.

If the button is pressed a pre-recorded voice notification is played for the occupant to check the

door as there might be someone, this happens concurrently with an sms notification while a picture

of the visitor is captured and sent to both email and push notification. Initially there was a feature

to enable 2-way real-time video communication but due to network latency and high resource

usage the feature was deprecated.

Figure 3-28 Smart Doorbell flowchart

Industrial Project Report by M. Mphego

 59

3.2.13 Smoke Detection

Due to the limitation of the Raspberry Pi when it comes to measuring analogue signals, we have

resorted in using an additional microcontroller board, the Arduino Uno R3.

The reasoning looks at expanding the capabilities of the proposed systems, but having additional

GPIO pins, ADC and I2C to use. The current setup is configured primarily for retrieving gas levels

and sending them to the Raspberry Pi – More work on the Arduino will be implemented on a later

stage.

What is a Smoke/Gas sensor?

A gas sensor is a transducer that detects gas molecules and which produces an electrical signal

with a magnitude proportional to the concentration of the gas.

Unlike other types of measurement, types that are relatively straightforward and deal with voltage,

temperature, and humidity, the measurement of gases is much more complicated. Because there

are literally hundreds of different gases, and there is a wide array of diverse applications in which

these gases are present, each application must implement a unique set of requirements.

The proposed project makes use of a MQ2 gas sensor which

is connected to an Arduino.

The MQ series of gas sensors use a small heater inside with

an electro-chemical sensor. They are sensitive for a range of

gasses and are used indoors at room temperature. Figure 3-29

MQ2 Gas Sensor shows a MQ-2 electro-chemical gas sensor

used in this project.

They can be calibrated more or less sensitive but a known

concentration of the measured gas or gasses is needed for that.

The output is an analogue signal and can be read with an

analogue input of an Arduino or ADC. [12]

Figure 3-30 MQ2 sensitivity graph shows the typical sensitivity characteristics of the MQ-2 for

several gases.

In their: Temp: 20 degree C

Humidity: 65%

O2 concentration: 21%

RL=5k

Ro: sensor resistance at 1000ppm of H2 in the clean air.

Rs: sensor resistance at various concentrations of gases.

According to the graph, we can see that the minimum concentration we can test is 100ppm and the

maximum is 10000ppm, in other word, we can get a concentration of gas between 0.01% and 1%.

However, we can't provide a formula because the relation between ratio and concentration is

nonlinear.

Figure 3-29 MQ2 Gas Sensor

Industrial Project Report by M. Mphego

 60

Figure 3-30 MQ2 sensitivity graph

Figure 3-31 Arduino MQ2 below shows how the gas sensor is configured on the Arduino, the

Arduino is then connected to the Raspberry Pi via USB interface

Figure 3-31 Arduino MQ2

Industrial Project Report by M. Mphego

 61

3.2.14 TV Proximity Sensor
The aim of this feature of the proposed project is to provide a way that prevents children from

watching TV from a close distance to safeguard their eyes health.

The system uses an ultrasonic sensor to determine distance of not more than 40cm away from the

TV, If a child is standing in front of the TV for a limited amount of time they will get a warning

voice note, that they should move away from the TV, if they do not move away in the amount of

time configured the TV will switch off until they move away.

What is an ultrasonic sensor?

Active ultrasonic sensors generate high-frequency sound waves and evaluate the echo which is

received back by the sensor, measuring the time interval between sending the signal and receiving

the echo to determine the distance to an object. [13]

The Figure 3-32 HC-SR04 shows an ultrasonic sensor which uses

sonar to determine distance to an object like bats or dolphins do. It

offers excellent non-contact range detection with high accuracy and

stable readings in an easy-to-use package. From 2cm to 400 cm. It

operation is not affected by sunlight or black material like Sharp

rangefinders are (although acoustically soft materials like cloth can

be difficult to detect). It comes complete with ultrasonic transmitter

and receiver module.

The Figure 3-33 TV Proximity Flowchart shows the Python and C script meant to control the

proximity sensor. The reason why the sensor sampling is written in C language is because Python

is slow as compared to C in terms of execution and running.

On system boot the script is executed which then reads configured variables such as sampling size

and rate, wait time and etc. After the initialisation a function that reads the distance and compares

it with a pre-set threshold goes on an endless loop testing whether the is someone in front of the

TV, if there is, it sends out a notification and waits for a pre-set time.

If the child is still in front of the TV after the notification is executed, the TV is then switched off

until the child has stepped away, then it switched back on.

Figure 3-32 HC-SR04

Industrial Project Report by M. Mphego

 62

Figure 3-33 TV Proximity Flowchart

The code below was written in C, with the time it takes for the signal to travel to an object and

back again, we can calculate the distance using the following formula.

𝑆𝑝𝑒𝑒𝑑 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑇𝑖𝑚𝑒

The speed of sound is variable, depending on what medium it’s travelling through, in addition to

the temperature of that medium. However, some clever physicists have calculated the speed of

sound at sea level so we’ll take our baseline as the 343m/s.

34300 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑖𝑚𝑒/2

17150 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒/𝑡𝑖𝑚𝑒

 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 17150 ∗ 𝑡𝑖𝑚𝑒
We also need to divide our time by two because what we’ve calculated above is actually the time

it takes for the ultrasonic pulse to travel the distance to the object and back again. We simply want

the distance to the object! We can simplify the calculation to be completed in our C code as

follows:

Industrial Project Report by M. Mphego

 63

3.2.14.1 C Code
#include <stdio.h>

#include <stdlib.h>

#include <wiringPi.h>

#define TRIG 28

#define ECHO 29

void setup() {

 wiringPiSetup();

 pinMode(TRIG, OUTPUT);

 pinMode(ECHO, INPUT);

 //TRIG pin must start LOW

 digitalWrite(TRIG, LOW);

 delay(30);

}

int getCM() {

 //Send trig pulse

 digitalWrite(TRIG, HIGH);

 delayMicroseconds(10);

 digitalWrite(TRIG, LOW);

 //Wait for echo start

 while(digitalRead(ECHO) == LOW);

 //Wait for echo end

 float startTime = micros();

 while(digitalRead(ECHO) == HIGH);

 float travelTime = micros() - startTime;

 //Get distance in cm

 float distance = travelTime * 17150;

 printf ("%f", distance);

 return distance;

}

int main(void) {

 setup();

 delay(0.5);

 getCM();

 return 0;

}

Industrial Project Report by M. Mphego

 64

3.2.15 Website Interface Control

The Web-control interface is written in both Python and HTML/CSS and it is being hosted on an

Apache web server.

Apache is developed and maintained by an open community of developers under the auspices of

the Apache Software Foundation. Most commonly used on a Unix-like system (usually Linux),

the software is available for a wide variety of operating systems besides Unix, including

eComStation, Microsoft Windows, NetWare, OpenVMS, OS/2, and TPF.

The web-server is running on the raspberry pi as the primary web-server.

Figure 3-34 Website Control Interface shows the web-control with graphs listing humidity, CPU

temp, indoor temp and gas sensor levels data/sensor logging retrieved from ThingSpeak API.

ThingSpeak is an open source Internet of Things (IoT) application and API to store and retrieve

data from things using the HTTP protocol over the Internet or via a Local Area Network.

ThingSpeak enables the creation of sensor logging applications, location tracking applications,

and a social network of things with status updates.

The sensor data is uploaded to the Thingspeak server every 30 seconds intervals.

Main python code for running the webserver. The sensor data logging is done separately and it is

independent of the webserver.

The code below is the main webserver.py python script.

#!/usr/bin/python2

__author__ = "Mpho Mphego"

__description__ = "Home Automation Webserver and Control Center"

__version__ = "$Revision: 2.0 $"

__date__ = "$Date: 2015/01/22 22:54 $"

__url__ = "mpho112.wordpress.com"

__copyright__ = "Copyright (c) 2015 Mpho Mphego"

__license__ = "Python/HTML"

import sys

import os

from wsgiref.simple_server import make_server

from urlparse import parse_qsl

from html_site import html

from yamlConfigFile import configFile

sys.path.insert(1, '/home/pi/Scripts/Relay_Control/')

from relay_control import *

try:

 locals().update(relays_conf)

except:

 pass

rst_counter = 0

def gesture_switch_on(pin):

 global rst_counter

 rst_counter += 1

 relay_on(pin)

def gesture_switch_off(pin):

Industrial Project Report by M. Mphego

 65

 global rst_counter

 rst_counter = 0

 relay_off(pin)

def application(environ, start_response):

 """Returns a dictionary containing lists as values."""

 d = parse_qsl(environ['QUERY_STRING'])

 try:

 if (d[0][0]=="led1"):

 gesture_switch_on(Relay1)

 if rst_counter > 1:

 gesture_switch_off(Relay1)

 if (d[0][0]=="led2"):

 gesture_switch_on(Relay2)

 if rst_counter > 1:

 gesture_switch_off(Relay2)

 if (d[0][0]=="led3"):

 gesture_switch_on(Relay3)

 if rst_counter > 1:

 gesture_switch_off(Relay3)

 if (d[0][0]=="led4"):

 gesture_switch_on(Relay4)

 if rst_counter > 1:

 gesture_switch_off(Relay4)

 if (d[0][0]=="led5"):

 gesture_switch_on(Relay1)

 relay_on(Relay2)

 relay_on(Relay3)

 relay_on(Relay4)

 if rst_counter > 1:

 gesture_switch_off(Relay1)

 gesture_switch_off(Relay2)

 gesture_switch_off(Relay3)

 gesture_switch_off(Relay4)

 relay_off(Relay1)

 relay_off(Relay2)

 relay_off(Relay3)

 relay_off(Relay4)

 except:

 pass

 response_body = html()

 status = '200 OK'

 # Now content type is text/html

 response_headers = [('Content-Type', 'text/html'),

 ('Content-Length', str(len(response_body)))]

 start_response(status, response_headers)

 return [response_body]

httpd = make_server('0.0.0.0', 8000, application)

Now it is serve_forever() in instead of handle_request().

In Linux a Ctrl-C will do it.

#reloader.install()

httpd.serve_forever()

#httpd.handle_request()

Industrial Project Report by M. Mphego

 66

The above script basically, instantiate a webserver by using a python package called make_server

which then creates a webserver on localhost port 8000 which servers the function named

'application'.

The application function consists of an html code, headers and also relay controls by means of

using CGI.

Common Gateway Interface (CGI) is a standard way for web servers to interface with executable

programs installed on a server that generate web pages dynamically. Such programs are known as

CGI scripts or simply CGIs; they are usually written in a scripting language, but can be written in

any programming language.

Figure 3-34 Website Control Interface

Industrial Project Report by M. Mphego

 67

3.2.16 What’s My IP
Any device connected to a Wireless/Local Area Network is assigned an IP address automatically

considering that the Raspberry Pi is configured as a DHCP client.

What is DHCP?

Dynamic Host Configuration Protocol (DHCP) is a client/server protocol that automatically

provides an Internet Protocol (IP) host with its IP address and other related configuration

information such as the subnet mask and default gateway.

In order to connect to your Raspberry Pi from another machine using SSH or VNC, you need to

know the Raspberry Pi's IP address. This is easy if you have a display connected, and there are a

number of methods for finding it remotely from another machine on the network.

What is SSH?

Secure Shell, or SSH, is a cryptographic (encrypted) network protocol operating at layer 7 of the

OSI Model (Open Systems Interconnection model) to allow remote login and other network

services to operate securely over an unsecured network.

SSH provides a secure channel over an unsecured network in a client-server architecture,

connecting an SSH client application with an SSH server. Common applications include remote

command-line login and remote command execution, but any network service can be secured with

SSH. The protocol specification distinguishes between two major versions, referred to as SSH-1

and SSH-2.

However, considering that the Raspberry Pi will not be connected to a display, finding an IP

address becomes difficult. We use the IP address to access the Raspberry Pi remotely either via

SSH or webserver to configure, monitor and control.

Hence the development of a Python script that will execute at after every reboot of the Pi. The

script retrieves the current IP on the PI and emails it to the users email address in case it has

changed from previous more development to the script are still needed for instance a button which

a user can just press and then an IP address gets sent to the user’s email address.

Figure 3-35 what’s my IP below shows an email inbox with the current IP address.

Industrial Project Report by M. Mphego

 68

Figure 3-35 what’s my IP

By using the Pushbullet’s API’s we configured the script to also send push notifications to an

Android based smartphone.

What is Pushbullet?

Pushbullet is an Android application that allows extensive connectivity between any of your

devices, whether that be smartphone to tablet, smartphone to laptop, laptop to tablet, and so on.

Through Pushbullet, you can send pictures, links, street addresses, notes and other files between

any devices that also have the app.

For example, you take a really awesome photo on your phone that you want to quickly send to

your laptop. Or maybe you’re reading a web article on your desktop when you suddenly need to

leave, and decide to “push” that web address to your smartphone to read on the go. Another great

feature of Pushbullet is the ability to mirror notifications from your smartphone to your desktop

so you can see alerts from your phone without having it nearby, and then also have the ability to

interact with them all from your desktop.

The script can be accessed from: https://github.com/mmphego/Home-Auto-Pi

https://github.com/mmphego/Home-Auto-Pi

Industrial Project Report by M. Mphego

 69

3.3 Implementation of product / strategy

The Implementation and construction of this project will be implemented in four separate units

(stages) connected with the appropriate use of connecting cables and soldered and then mounted

into the enclosure. In order to achieve the design, the following separate stages are illustrated.

3.3.1 Relay and Raspberry Pi integration

Figure 3-36 Relay and RPi integration

3.3.2 MQ-2 and Arduino integration

Figure 3-37 MQ-2 and Arduino integration

Industrial Project Report by M. Mphego

 70

3.3.3 Sensors and Raspberry Pi

integration

Figure 3-38 Sensors and RPi integration

Industrial Project Report by M. Mphego

 71

3.3.4 Webcam, Speaker,

Raspberry Pi and Arduino integration

Figure 3-39 RPi and Arduino integration

5v

2A

Industrial Project Report by M. Mphego

 72

3.3.5 Final product

Figure 3-40 Final Product (preliminary)

The final product still requires a package which is to say an enclosure, by the time the image was

taken an enclosure hadn’t been procured.

Industrial Project Report by M. Mphego

 73

3.4 Testing procedure

Due to the modular nature of the design of the proposed project, it was straight forward to test

each module individually. In doing so, bugs were easy to spot, locate, and fixed.

3.4.1 Infrared control with RPi

In this section we're going to test an IR sensor and then hook it up to our Raspberry Pi and

programme a remote to interact with it!

 IR connection to RPi

Figure 3-41 IR Receiver

Figure 3-41 IR Receiver shows, an IR receiver pin out connections.

Connect up the sensor like so:

 Pin 1 is the output

 Pin 2 is GND

 Pin 3 is VCC, connect to 5V

The positive (longer) head of the Red LED connects to the +5V pin and the negative (shorter lead)

connects through a 200 to 1kohm resistor to the first pin on the IR sensor.

Industrial Project Report by M. Mphego

 74

Attaching IR Sensor to the Raspberry Pi

Figure 3-42 IR and RPi interface

Now that we're happy our receiver is working, we're going to hook it up to our Raspberry Pi, and

configure it with a remote control.

 Pin 1 is DATA, goes to RPi pin 12 (GPIO 18);

 Pin 2 is GND, goes to RPI pin 6 (GROUND)

 Pin 3 is POWER, goes RPi pin 1 (5V)

Testing the IR Sensor on the Raspberry Pi

To check if the IR Sensor is working on the Pi, we run the following commands one after each

other, see output on Figure

sudo modprobe lirc_rpi

sudo kill $(pidof lircd)

mode2 -d /dev/lirc0

Industrial Project Report by M. Mphego

 75

Figure 3-43 IR Commands

Now, when you press buttons on your remote, assuming your receiver is connected correctly, you

should see something resembling this appear on the screen with each press, See Figure below.

Industrial Project Report by M. Mphego

 76

Figure 3-44 IR Test output

Recording your remote

First thing to do is to get the list of KEY commands that are accepted.

To do this, we run the commands

sudo kill $(pidof lircd)

irrecord --list-namespace | grep KEY

Once that is saved to the list we are ready to record the remote.

To record your remote, run the following commands

sudo kill $(pidof lircd)

irrecord -d /dev/lirc0 ~/lircd.conf

Industrial Project Report by M. Mphego

 77

Figure 3-45 Setting up remote}

We follow the instructions given by irrecord exactly.

When you get to the bit where you are asked "Please enter the name for the next button (press

<ENTER> to finish recording)"

This is where you start to configure each button.

So we pick a button on the remote we want to configure, for example on our IR Remote Control,

the first button is the Volume Down button.

So we need to find the KEY command that we want to associate with the Volume Down button.

In this case, it makes sense to use the KEY_VOLUMEDOWN key. You can however configure

any KEY command to any button. See Figure

Once you have found the KEY command for the button you want configure, simply enter that

KEY and hit ENTER, you should now be prompted to press and hold the button on the remote you

want to assign to this KEY.

Now do that for every button you want to use on the remote.

After you have configured the last button, simply hit ENTER to stop recording.

Industrial Project Report by M. Mphego

 78

We'll be asked to repeatedly press an arbitrary

button as fast as you can (make sure you press the same button each time, and that you don't hold

the button down).

The recording has now been completed, and hopefully our lircd.conf has been created (this can be

found here: /home/pi/lircd.conf)

Reconfigure codes to use on Python

import lirc
"""
begin
 prog = irexec
 button = KEY_1
 config = echo "You pressed one"
 repeat = 0
end
"""
lirc.init('irexec')

while True:
 btn = lirc.nextcode()
 if btn != []:
 print btn

Industrial Project Report by M. Mphego

 79

3.4.2 Temperature and

Humidity Sensing with RPi
The DHT11 is a basic, ultra low-cost digital temperature and humidity sensor. It uses a capacitive

humidity sensor and a thermistor to measure the surrounding air, and spits out a digital signal on

the data pin (no analog input pins needed). It’s fairly simple to use, but requires careful timing to

grab data. The only real downside of this sensor is you can only get new data from it once every 2

seconds, so when using our library, sensor readings can be up to 2 seconds old.

Figure 3-12 DHT11 Sensor shows, The DHT11 is a 4-pin (one pin is unused) temperature and

humidity sensor capable of measuring 20% - 90% relative humidity and 0 to 50°C. The sensor can

operate between 3 and 5.5V DC and communicates using its own proprietary One-Wire protocol.

 This protocol requires very precise timing in order to get the data from the sensor. The LOW and

HIGH bits are coded on the wire by the length of time the signal is HIGH. The total time to take a

reading is at most 23.4ms. This includes a 18ms delay required to start the data transfer and a

window of up to 5.4ms for the data. Individual signals can be as short as 20uS and as long as 80uS.

Interfacing DHT11 with Raspberry P

Figure 3-46 DHT11 Pin Connection shows the connections on

DHT11, To power the sensor, we connect pin '1' to the 5V terminal

of the RPi, pin '2' to voltage divide resistor 4k7 ohms and the Vout

will be our input to the RPi GPIO16, pin '3' is unused and pin '4' to

the GND terminal of the RPi, This gives the sensor the 5 volts it

needs to be powered.

Figure 3-47 DHT11-Wiring shows, the physical connections in

order for our circuit to work.

Figure 3-47 DHT11-Wiring

Bash Script Testing

First we will need to grab and install the bcm2835 library before building it. I grabbed the latest

sources for Mike McCauley’s bcm2835 library and installed them on the pi. [15]

pi@raspberrypi ~ $ wget http://www.open.com.au/mikem/bcm2835/bcm2835-1.14.tar.gz

pi@raspberrypi ~ $ tar xvzf bcm2835-1.14.tar.gz

pi@raspberrypi ~ $ cd bcm2835-1.14

pi@raspberrypi ~/bcm2835-1.14 $./configure

pi@raspberrypi ~/bcm2835-1.14 $ make

pi@raspberrypi ~/bcm2835-1.14 $ sudo make install

Figure 3-46 DHT11 Pin

Connection

Industrial Project Report by M. Mphego

 80

Download the software, you will need git so install that first.

pi@raspberrypi ~ $ apt-get install git

pi@raspberrypi ~ $ git clone https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code.git

pi@raspberrypi ~ $ cd Adafruit-Raspberry-Pi-Python-Code/

pi@raspberrypi ~ $~/Adafruit-Raspberry-Pi-Python-Code

Build the software.

pi@raspberrypi ~ $ cd ~/Adafruit-Raspberry-Pi-Python-Code/Adafruit_DHT_Driver $ make

Run the Adafruit_DHT command.

pi@raspberrypi ~ $ cd ~/Adafruit-Raspberry-Pi-Python-Code/Adafruit_DHT_Driver

pi@raspberrypi ~ $ sudo ./Adafruit_DHT 2302 4

Adafruit_DHT 2302 4

Using pin #4

Data (40): 0x2 0x3e 0x0 0xde 0x1e

Temp = 22.2 *C, Hum = 57.4 %

3.4.3 Ultrasonic Distance Sensors with RPi
Sound consists of oscillating waves through a medium (such as air) with the pitch being

determined by the closeness of those waves to each other, defined as the frequency. Only some of

the sound spectrum (the range of sound wave frequencies) is audible to the human ear, defined as

the “Acoustic” range. Very low frequency sound below Acoustic is defined as “Infrasound”, with

high frequency sounds above, called “Ultrasound”. Ultrasonic sensors are designed to sense object

proximity or range using ultrasound reflection, similar to radar, to calculate the time it takes to

reflect ultrasound waves between the sensor and a solid object. Ultrasound is mainly used because

it’s inaudible to the human ear and is relatively accurate within short distances. You could of

course use Acoustic sound for this purpose, but you would have a noisy robot, beeping every few

seconds.

Figure 3-48 HC-SR04 Tx/Rx shows a basic ultrasonic sensor consists of one or more ultrasonic

transmitters (basically speakers), a receiver, and a control circuit. The transmitters emit a high

frequency ultrasonic sound, which bounce off any nearby solid objects.

Figure 3-48 HC-SR04 Tx/Rx

Some of that ultrasonic noise is reflected and detected by the receiver on the sensor. That return

signal is then processed by the control circuit to calculate the time difference between the signal

being transmitted and received. This time can subsequently be used, along with some clever math,

to calculate the distance between the sensor and the reflecting object.

The HC-SR04 Ultrasonic sensor we’ll be using has four pins: ground (GND), Echo Pulse Output

(ECHO), Trigger Pulse Input (TRIG), and 5V Supply (Vcc). See Figure 3-32 HC-SR04

We power the module using Vcc, ground it using GND, and use our Raspberry Pi to send an input

signal to TRIG, which triggers the sensor to send an ultrasonic pulse. The pulse waves bounce off

any nearby objects and some are reflected back to the sensor. The sensor detects these return waves

Industrial Project Report by M. Mphego

 81

and measures the time between the trigger and

returned pulse, and then sends a 5V signal on the ECHO pin.

ECHO will be “low” (0V) until the sensor is triggered when it receives the echo pulse. Once a

return pulse has been located ECHO is set “high” (5V) for the duration of that pulse. Pulse duration

is the full time between the sensor outputting an ultrasonic pulse, and the return pulse being

detected by the sensor receiver. Our Python script must therefore measure the pulse duration and

then calculate distance from this.

IMPORTANT. The sensor output signal (ECHO) on the HC-SR04 is rated at 5V. However, the

input pin on the Raspberry Pi GPIO is rated at 3.3V. Sending a 5V signal into that unprotected

3.3V input port could damage your GPIO pins, which is something we want to avoid! We’ll need

to use a small voltage divider circuit, consisting of two resistors, to lower the sensor output voltage

to something our Raspberry Pi can handle.

Voltage Dividers

A voltage divider consists of two resistors (R1 and R2) in series connected

to an input voltage (Vin), which needs to be reduced to our output voltage

(Vout). In our circuit, Vin will be ECHO, which needs to be decreased

from 5V to our Vout of 3.3V.

The voltage divider equation is:
𝑉𝑜

𝑉𝑖
=

𝑅2

𝑅1 + 𝑅2

We will use a 1k ohm for R1 and a 2k ohm resistor as R2 to get a Vout of

3V3 with Vin 5V!

Assemble the Circuit

We’ll be using four pins on the Raspberry Pi for this project:

GPIO 5V [Pin 2], Vcc (5V Power), GPIO GND [Pin 6], GND (0V Ground), GPIO 23 [Pin 16],

TRIG (GPIO Output) and GPIO 24 [Pin 18], ECHO (GPIO Input)

Figure 3-50 HC-SR04 Connections

Figure 3-49 Voltage

Divider Circuit

Industrial Project Report by M. Mphego

 82

Figure 3-51 HC-SR04 and RPi Connection

below shows the completed connection between HC-SR04 sensor and Raspberry Pi!

Figure 3-51 HC-SR04 and RPi Connection

Sensing with Python

Now that we have connected our Ultrasonic Sensor up to our RPi, we need to program a Python

script to detect distance!

The Ultrasonic sensor output (ECHO) will always output low (0V) unless it’s been triggered in

which case it will output 5V (3.3V with our voltage divider!). We therefore need to set one GPIO

pin as an output, to trigger the sensor, and one as an input to detect the ECHO voltage change.

Distance Calculation

Figure 3-52 Timing RPi and HC-SR04

Time taken by pulse is actually for to and fro travel of ultrasonic signals, while we need only half

of this.

Therefore time is taken as Time/2.

Distance = Speed * Time/2

Speed of sound at sea level = 343 m/s or 34300 cm/s

Thus, Distance = 17150 * Time (unit cm)

Industrial Project Report by M. Mphego

 83

Python Programming

import RPi.GPIO as GPIO #Import GPIO library

import time #Import time library

GPIO.setmode(GPIO.BCM) #Set GPIO pin numbering

TRIG = 23 #Associate pin 23 to TRIG

ECHO = 24 #Associate pin 24 to ECHO

print "Distance measurement in progress"

GPIO.setup(TRIG,GPIO.OUT) #Set pin as GPIO out

GPIO.setup(ECHO,GPIO.IN) #Set pin as GPIO in

while True:

 GPIO.output(TRIG, False) #Set TRIG as LOW

 print "Waiting For Sensor To Settle"

 time.sleep(2) #Delay of 2 seconds

 GPIO.output(TRIG, True) #Set TRIG as HIGH

 time.sleep(0.00001) #Delay of 0.00001 seconds

 GPIO.output(TRIG, False) #Set TRIG as LOW

 while GPIO.input(ECHO)==0: #Check whether the ECHO is LOW

 pulse_start = time.time() #Saves the last known time of LOW pulse

 while GPIO.input(ECHO)==1: #Check whether the ECHO is HIGH

 pulse_end = time.time() #Saves the last known time of HIGH pulse

 pulse_duration = pulse_end - pulse_start #Get pulse duration to a variable

 distance = pulse_duration * 17150 #Multiply pulse duration by 17150 to get distance

 distance = round(distance, 2) #Round to two decimal points

 print "Distance:",distance,"cm" #Print distance in cm calibration

 GPIO.cleanup()

Figure 3-53 SR-HC04 Readings

Industrial Project Report by M. Mphego

 84

3.4.4 MQ-2 Smoke Sensor connected to an Arduino

In this section, we will go over how to build a smoke sensor circuit with an Arduino board.

The smoke sensor we use is the MQ-2. This is sensor is not only sensitive to smoke, but also to

flammable gas.

The MQ-2 smoke sensor reports smoke by the voltage level that it outputs. The more smoke there

is, the greater the voltage that it outputs. Conversely, the less smoke that it is exposed to, the less

voltage it outputs.

We will wire the MQ-2 to an Arduino so that the Arduino can read the amount of voltage output

by the sensor to serial output.

The code that we need to upload is shown below.
/*

 Testing MQ-2 GAS sensor with serial monitor

*/

// Analog pin 0 will be called 'sensor'

const int sensorPin = A0;

// Set the initial sensorValue to 0

int sensorValue = 0;

// The setup routine runs once when you press reset

void setup() {

 // Initialize serial communication at 9600 bits per second

 Serial.begin(9600);

}

// The loop routine runs over and over again forever

void loop() {

 // Read the input on analog pin 0 (named 'sensor')

 sensorValue = analogRead(sensor);

 // Print out the value you read

 Serial.println(sensorValue);

 delay(1000); // Print value every 1 sec.

}

The first block of code declares and initialises 2 variables. The sensorPin represents the smoke

sensor. The sensorValue is initialized to 0, because it will be connected to analog pin A0 of the

Arduino board.

The next block of code defines the baud rate and the input and output of the circuit. The sensorPin,

which is the smoke sensor pin, serves as the input of the circuit. This sensor is input into the

Arduino so that the Arduino can read and process the value.

The next block of code uses the analogRead() function to read the value from the sensorPin (the

smoke sensor). This will be a numerical value from 0 to 1023. 0 represents no smoke, while 1023

represents smoke at the absolute maximum highest level. So the variable, sensorValue, represents

the smoke level that can range from 0 to 1023. We put a line to print this value just for debugging

purposes, so that you can see what values are being returned from this function.

This last block of code was the loop() function. This is the part of code that repeats over and over

in an infinite loop with 1 second delay. This means that our code is always checking to see what

the sensorValue is.

And this is how a smoke sensor works with an MQ-2 and an Arduino.

Industrial Project Report by M. Mphego

 85

Figure 3-54 Arduino IDE with serial output

Industrial Project Report by M. Mphego

 86

Arduino MQ-2 Smoke Sensor Circuit

Schematic

Figure 3-55 MQ2 connections

Figure 3-55 MQ2 connections shows the connections, To power the smoke sensor, we connect pin

'A' and 'H' of the smoke sensor to the 5V terminal of the Arduino and pin 'H' to the GND terminal

of the Arduino, pin 'B' to 10k ohm resistor then to the GND terminal of the Arduino.

This gives the smoke sensor the 5 volts it needs to be powered.

The output pin 'B' of the sensor goes into analog pin A0 of the Arduino. Through this connection,

the Arduino can read the analog voltage output from the sensor. The Arduino board has a built-in

analog-to-digital converter, so it is able to read analog values without any external ADC chip.

Depending on the value that the Arduino reads determines the action that will occur with the

circuit. Our current setup is just to read real-time values being received by the sensor.

Figure 3-56 Arduino-MQ2 testing shows, the physical connections in order for our circuit to work.

Figure 3-56 Arduino-MQ2 testing

Industrial Project Report by M. Mphego

 87

3.4.5 Necessary changes

encountered
Since the project inception there has been various form of changes, mainly on the software

architecture and also in terms of integration between various features of the proposed project.

Initially the relay modules where to be ran on the Arduino instead of the Raspberry Pi due to the

limited GPIO pins the Raspberry Pi has, the reason behind this change was due to the Arduino

serial CTS(Clear to send) which was resetting the GPIO pins of the Arduino.

The Raspberry PI’s GPIO are configured differently, most are configured as inputs and others as

outputs upon boot by default, and this led to some components of the project to be moved around

from input pin to output pin.

The API used for plotting the sensor data was changed from Plotly to Thinkspeak as Plotly was a

pay per use service as compared to Thinkspeak being an open source service.

Most of the software requires continuous integration and package updates, for instance Google’s

text to speech API encountered a lot of changes due to the security feature Google has

implemented by making use of Captcha’s to access their API’s. A Captcha is a computer program

or system intended to distinguish human from machine input, typically as a way of preventing

spam and automated extraction of data from websites.

The Smart Doorbell feature initially had to be configured with a feature to make a Telepresense

possible. Telepresense refers to the application of complex video technologies to give

geographically separated participants a sense of being together in the same location. [14]

But due to the network latency, the was a 2 seconds lag time, which mean the video would not

be in real-time and the resources of the proposed project where over used when this feature was

enable. This led to the feature to be deprecated.

3.5 Conclusion

The project was designed according to the specifications and testing procedures have been

developed to test whether actual results are favourable with regards to the required result. With

regards to this chapter, we have been able to look at different stage to accomplish the project. The

next chapter will deal with the result and comparison with the actual and required result.

Industrial Project Report by M. Mphego

 88

4 Chapter 4

4.1 Introduction

This chapter shows and discusses, results of the working model or product that is this section will

cover the measurements done during testing and tested procedure performed and analyzed during

the implementation of this product. A comparison will be drawn from the requirement on the

project and what has been done in the project

4.2 Results of the tested product / procedure

Table 4-1 Results of the tested product

Product Requirement

Raspberry Pi The prime use of the Raspberry Pi is to control all features of the

proposed project. The Raspberry Pi is the brain of the project and it is

where 70% of the project including software was written with the

main programming language being Python and C

Arduino Uno The Arduino Uno is currently being used as an ADC with the MQ2 gas

sensor connected to it. Future plans to utilize its GPIO pins and

additional processing power are in planning phase

Integrated Modules Relays: As per 3.3.1, By using relays were where able to control

appliances and lightings that use AC supplies, instead of directly

connecting them to the Raspberry Pi – which would never be advisable.

LDR: By means of connecting the LDR directly to the Raspberry Pi

without wasting any ADC pins on the Arduino Uno we were successful

into reading light intensity levels and upload them to an online graphing

website

Speakers: By means of having speakers connected to the Raspberry Pi

we were able to listen to the output from and feedback/notifications

from the various features such as the Smart Doorbell and Smart Alarm

Webcam: However not being able to stream real time video via UDP

protocol, we were able to use the webcam as real time security

surveillance and smart doorbell notification by capturing an image of

the visitor and sending it to the user as explained in chapter 3

IR: By using the IR receiver we were able to control actions on the

Industrial Project Report by M. Mphego

 89

Raspberry Pi, such as switching on/off appliances(HVAC/Heater and

Fan) and lightings

Smoke Sensor: With the smoke sensor connected to the Arduino and

having the Arduino connected to the Raspberry Pi via serial we were

able to retrieve smoke levels from the sensor with push notification and

cloud data upload implemented or included.

PIR: Having a PIR on the project meant that we are able to have an

additional feature in the form of security.

4.3 Comparison of results vs. requirements

In this section we will compare the requirements mentioned in paragraph and results
Table 4-2 Comparison of results vs. requirements

Product Results Comparison

Raspberry Pi Worked as expected Similar

Arduino Uno Worked as expected Similar

Relays Worked as expected Similar

LDR Worked as expected Similar

Speakers Worked as expected Similar

Webcam It was discovered that real-time

video streaming was not

achievable due to various issues

arising from network latency and

resource management as it

increased the amount of CPU and

Memory usages.

Different, an option of using

static images instead of video

was implemented

IR remote Worked as expected Similar

Smoke sensor Worked as expected Similar

PIR Worked as expected Similar

Smart Doorbell Due to API’s used changes were

made to the feature of the project

and it requires constant package

updates

Due to API updates, software

requires occasional updates

Ultrasonic sensor Worked as expected Similar

Temperature and It was realized after noticing that Results are the same however,

Industrial Project Report by M. Mphego

 90

humidity sensor the Python script requires more

resources and it is also slow when

retrieving data, a C code to read

temperature and humidity values

was written as it offers low level

communication and it is also fast

resources are managed better

Laptop Worked as expected Website control offered reliable

results and does not require

updates

Android based-phone Android application needs

improvements as the URL is

static instead of being dynamic

Results are similar, with a

simple option of dynamically

inputting the URL

.

4.4 Conclusion

The comparison between the task required and the result on the project was discussed. We can

conclude that the project has met the requirement as we have discussed the results obtained vs

requirements.

Industrial Project Report by M. Mphego

 91

5 Chapter 5

5.1 Introduction

This chapter evaluates the success of this project and gives some recommendations for

improvements and conclusions. The overview of the entire project and summary will be

discussed here. The challenges and the duration taken for the completion will also be mentioned

likewise the final financial budget compared to the proposed budget and a proposed further

study.

5.2 Conclusions and recommendations

It is evident from this project work that an individual control home automation system can be

cheaply made from low-cost locally available components and can be used to control

miscellaneous home appliances ranging from the security lightings, television control, air

conditioning system, security surveillance and even the entire house lighting system.

The components required are small and few that they can be packaged into a small inconspicuous

enclosure considering it has air flow capabilities. The proposed system was tested a numerous

amount of times and certified to control different home appliances used in the lighting system, air

conditioning system, heating system, home entertainment system and many more (this is as long

as the maximum power and current rating of the appliance does not exceed that of the used relay

which is 220V 10A). Finally, this system can be also implemented over Wi-Fi or LAN connectivity

without much change to the design and yet still be able to control a variety of home appliances.

Hence, this system is scalable and flexible.

In conclusion, we feel that our product is completely sound, and has great market value.

The advantage of our product is that there are no known competitors, as it has its own unique

features. Secondly, our project allows for greater development of products. The code is open

source and we are providing for development by others for application in several ways.

With our software, we could develop it for more complicated applications such as sophisticated

home surveillance and security with geolocation and monitoring, pet tracker or kid’s tracker. In

particular, we will provide installation instructions on setting up the product. Even though we were

unable to fully complete most of the features of the project in time, we have the system almost

complete and ready. Hence we feel that there is no better product available in the market.

Industrial Project Report by M. Mphego

 92

5.3 Financial cost and time

evaluation

Table 5-1 Overall Budget Evaluation

Item Description Quantity Unit

Estimated

Price (ZAR)

Unit Actual

Price (ZAR)

Source Total

Price

(ZAR)

1 Raspberry Pi B+ 1 850.00 741 communica 741.00

2 Arduino Uno R3 1 190.00 307 communica 190

3 USB Webcam 1 120.00 125 communica 125.00

4 USB Wi-Fi Dongle 1 100.00 189 communica 189.00

5 USB Speakers 1 50.00 79.90 communica 79.90

6 5V 2A Power

supply

1 150.00 150 communica 150

7 Relay modules 2 250.00 129 communica 258

8 Enclosure 1 200.00 329 communica 329.00

9 Prototype Board 1 10.00 75 communica 75.00

10 Pack of various

Resistors

100 200

355 communica 355

11 1uF 16V capacitor 4 .66 communica 2.64

12 Push Button 2 33 communica 66

13 DHT11 1 800.00 85 communica 85.00

14 HC-SR04 1 85 communica 85.00

15 PIR 1 75 communica 75.00

16 LDR 2 1.50 communica 3.00

17 MQ2 1 49 communica 49.00

18 IR Rx 1 65 communica 65.00

 Total Cost R2920 R 2922.40

By visually comparing the estimated cost of the overall project cost evaluation one can see that

the estimated prices do not differ much from the estimated, which means that the project is cost

efficient and mass production would not cost large amounts of money.

Figure 5-1 Brief Gantt chart

Initially the project report was compiled using LATEX, due to unforeseen circumstances I had to

redo the almost complete project documentation using the Microsoft Word template issued by the

university.

Other factors include continuous improvement on the software architecture which took more time

than expected, as well as integration.

Industrial Project Report by M. Mphego

 93

5.4 Proposed further study

5.4.1 Natural Language Processing: Speech Recognition
Natural language processing (NLP) is a method to translate between computer and human

languages. It is a method of getting a computer to understandably read a line of text without the

computer being fed some sort of clue or calculation. In other words, NLP automates the translation

process between computers and humans.

5.4.2 Smart Pet Feeder

With the smart pet feeder, you can monitor your pet’s eating habits, remotely schedule feedings,

and dispense perfectly portioned meals with the app.

5.4.3 Smart Wardrobe

People nowadays like to shopping and buy clothes. However most of the clothes will be stored

inside wardrobe for long time even up to several years. Clothes can easily get moulded if placed

aside for long time.

Smart wardrobe will help them to manage their clothes inside wardrobe. It will also push all data

into Google Drive and further sync up data with Android mobile application. User(s) can get

suggestion on what to wear today from their phone app based on what event are there in their

Google calendar and also the weather via Openweather's API.

The application will provide a dashboard to show which cloth has the highest frequency of being

worn and which has not been worn over long periods of time. Application can further suggest

users to sell it into second hand platform or make a donation for charity.

5.4.4 Android Geolocation Detector
A system whereby Lights or plugs can be switched on or off remotely via geolocation. For

instance, Imagine you driving home in the middle of the night and considering that the might not

be anyone in the house at that time. As soon as Google Maps API detects that you are on a 5km

radius of your home, the phone sends a signal to your home automation system which then

switches on selected lights, TV and etc.

5.4.5 Light Alarm Clock
Instead of having being woken up by a dreaded ringing loud noise, this alarm system would

gradually increase its light intensity until it is bright enough in one’s room, simulating a sunrise.

Together integrated with ambient noise this makes the waking up experience natural.

Industrial Project Report by M. Mphego

 94

Appendix

5.5 A.1 Final Gantt chart

Figure 5-2 Detailed Gantt chart

https://drive.google.com/open?id=0B0gORe2m_qleM1F3bE4wbTJJSlk

https://drive.google.com/open?id=0B0gORe2m_qleM1F3bE4wbTJJSlk

Industrial Project Report by M. Mphego

 95

5.6 A.2 Bibliography

[1] Android Based Home Automation Using Raspberry Pi

http://www.ijcat.org/IJCAT-2014/1-1/Android-Based-Home-Automation-Using-Raspberry-

Pi.pdf

Accessed on [2016-02-09]

[2] HomeAutomation

http://home.hit.no/~hansha/documents/theses/2015/Home%20Automation/home_automation_20

15_report.pdf

Accessed on [2016-02-15]

[3] Qwik Switch

www.lightingwarehouse.co.za/Articles/LW-QwikSwitch-2012-02.pdf

Accessed on [2015-11-27]

[4] Scripting layer for Android

https://en.wikipedia.org/wiki/Scripting_Layer_for_Android

Accessed on [2014-12-07]

[5] Accelerometer

https://en.wikipedia.org/wiki/Accelerometer

Accessed on [2016-04-12]

[6] Low pass filter

https://en.wikipedia.org/wiki/Low-pass_filter

Accessed on [2016-04-16]

[7] LIRC

http://www.lirc.org/

Accessed on [2016-04-16]

[8] RC Circuit

https://en.wikipedia.org/wiki/RC_circuit

Accessed on [2016-04-30]

[9] LDR datasheet

http://www.gotronic.fr/pj-1284.pdf

Accessed on [2016-04-17]

[10] MAC address

https://en.wikipedia.org/wiki/MAC_address

Accessed on [2016-04-17]

[11] Use arp-scan to find hidden devices in your network

http://www.ijcat.org/IJCAT-2014/1-1/Android-Based-Home-Automation-Using-Raspberry-Pi.pdf
http://www.ijcat.org/IJCAT-2014/1-1/Android-Based-Home-Automation-Using-Raspberry-Pi.pdf
http://home.hit.no/~hansha/documents/theses/2015/Home%20Automation/home_automation_2015_report.pdf
http://home.hit.no/~hansha/documents/theses/2015/Home%20Automation/home_automation_2015_report.pdf
http://www.lightingwarehouse.co.za/Articles/LW-QwikSwitch-2012-02.pdf
https://en.wikipedia.org/wiki/Scripting_Layer_for_Android
https://en.wikipedia.org/wiki/Accelerometer
https://en.wikipedia.org/wiki/Low-pass_filter
http://www.lirc.org/
https://en.wikipedia.org/wiki/RC_circuit
http://www.gotronic.fr/pj-1284.pdf
https://en.wikipedia.org/wiki/MAC_address

Industrial Project Report by M. Mphego

 96

https://www.blackmoreops.com/2015/12/31/use-arp-scan-to-find-hidden-devices-in-your-

network/

Accessed on [2016-04-26]

[12] MQ Gas Sensors

http://playground.arduino.cc/Main/MQGasSensors

Accessed on [2016-02-26]

[13] Ultrasonic Transducer

https://en.wikipedia.org/wiki/Ultrasonic_transducer

Accessed on [2016-05-05]

[14] What is Telepresense?

https://net.educause.edu/ir/library/pdf/ELI7053.pdf

Accessed on [2016-05-10]

[15] C library for Broadcom BCM 2835 as used in Raspberry Pi

http://www.airspayce.com/mikem/bcm2835/

Accessed on [2016-02-12]

https://www.blackmoreops.com/2015/12/31/use-arp-scan-to-find-hidden-devices-in-your-network/
https://www.blackmoreops.com/2015/12/31/use-arp-scan-to-find-hidden-devices-in-your-network/
http://playground.arduino.cc/Main/MQGasSensors
https://en.wikipedia.org/wiki/Ultrasonic_transducer
https://net.educause.edu/ir/library/pdf/ELI7053.pdf
http://www.airspayce.com/mikem/bcm2835/

Industrial Project Report by M. Mphego

 97

5.7 A.3 Detail designs

Schematic:

Figure 5-3 Detail Schematic

Industrial Project Report by M. Mphego

 98

Component list:

1x Raspberry Pi B+

1x Arduino Uno R3

1x USB-A to USB-B cable

1x USB-A to USB-Micro Cable

1x 8 GB Micro SD Card

1x Nano USB Wi-Fi dongle

2x 4x 5V Relay Modules

1x PIR

1x IR Rx

1x HC-SR04

1x MQ2

1x USB Webcam

2x Push Button switch

1x 1uF 16V Electrolyte Capacitor

1x DHT11

1x USB Speakers

10x 1k Resistors

Industrial Project Report by M. Mphego

 99

5.8 A.4 Software

All software (open source) can be accessed from Github:

https://github.com/mmphego/Home-Auto-Pi

Figure 5-4 GitHub Language Frequency

https://github.com/mmphego/Home-Auto-Pi

Industrial Project Report by M. Mphego

 100

5.9 A.5 Datasheets

Industrial Project Report by M. Mphego

 101

Industrial Project Report by M. Mphego

 102

Industrial Project Report by M. Mphego

 103

Industrial Project Report by M. Mphego

 104

Industrial Project Report by M. Mphego

 105

Industrial Project Report by M. Mphego

 106

Industrial Project Report by M. Mphego

 107

	1 Chapter 1
	1.1 Introduction
	1.2 Problem statement
	1.3 User requirement specification
	1.4 Study objectives
	1.5 Definitions
	1.6 Importance and benefits of the study
	1.7 Budget
	1.8 Conclusion

	2 Chapter 2
	2.1 Introduction
	2.2 Literature review
	2.2.1 Android Based Home Automation Using Raspberry Pi
	2.2.2 HomeAutomation
	2.2.3 Qwik Switch

	2.3 Proposed practical design or strategy
	2.4 Product specifications or requirements
	2.5 Conclusion

	3 Chapter 3
	3.1 Introduction
	3.2 Design or development of product / strategy
	3.2.1 Android Mobile Control
	3.2.2 Closet Door Warning/ Smart Closet
	3.2.3 Gesture Control
	3.2.3.1 Voice Recognition
	3.2.3.1.1 Front End
	3.2.3.1.2 Back End

	3.2.3.2 Mobile shake control
	3.2.3.2.1 Front End
	3.2.3.2.2 Back End

	3.2.4 Humidity and Temperature sensor (DHT11)
	3.2.4.1 Communication Process: Serial interface
	3.2.4.2 C code

	3.2.5 Linux Infrared Remote Control
	3.2.6 Light sensor
	3.2.7 Multi Room Media Server
	3.2.8 Presence Detector & PIR Sensor
	3.2.8.1 Passive Wi-Fi detection
	3.2.8.2 PIR (Passive Infrared) detection

	3.2.9 Relay Control
	3.2.10 Sensor Loggers
	3.2.10.1 Python code:

	3.2.11 Smart Alarm
	3.2.12 Smart Doorbell
	3.2.13 Smoke Detection
	3.2.14 TV Proximity Sensor
	3.2.14.1 C Code

	3.2.15 Website Interface Control
	3.2.16 What’s My IP

	3.3 Implementation of product / strategy
	3.3.1 Relay and Raspberry Pi integration
	3.3.2 MQ-2 and Arduino integration
	3.3.3 Sensors and Raspberry Pi integration
	3.3.4 Webcam, Speaker, Raspberry Pi and Arduino integration
	3.3.5 Final product

	3.4 Testing procedure
	3.4.1 Infrared control with RPi
	3.4.2 Temperature and Humidity Sensing with RPi
	3.4.3 Ultrasonic Distance Sensors with RPi
	3.4.4 MQ-2 Smoke Sensor connected to an Arduino
	3.4.5 Necessary changes encountered

	3.5 Conclusion

	4 Chapter 4
	4.1 Introduction
	4.2 Results of the tested product / procedure
	4.3 Comparison of results vs. requirements
	4.4 Conclusion

	5 Chapter 5
	5.1 Introduction
	5.2 Conclusions and recommendations
	5.3 Financial cost and time evaluation
	5.4 Proposed further study
	5.4.1 Natural Language Processing: Speech Recognition
	5.4.2 Smart Pet Feeder
	5.4.3 Smart Wardrobe
	5.4.4 Android Geolocation Detector
	5.4.5 Light Alarm Clock

	5.5 A.1 Final Gantt chart
	5.6 A.2 Bibliography
	5.7 A.3 Detail designs
	5.8 A.4 Software
	5.9 A.5 Datasheets

