Skip to main content
Log in

Specific Heat Measurements by a Thermal Relaxation Method: Influence of Convection and Conduction

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

This paper involves the well-known thermal relaxation method for measurement of the specific heat (c) of thin solid samples. Although this method was applied successfully in recent years for the characterization of different materials, in this work some aspects that must be taken into account in order to avoid problems based on satisfying the required experimental conditions of heat flux imposed by the physical model used for data analysis and processing will be discussed. For this purpose, for a given experimental geometry, the heat diffusion equation will be solved in order to obtain the sample’s requirements for reliable measurements of c, regarding its thickness and thermal conductivity. An experimental device is described that can be used for the study of the influence of heat dissipation by convection on the method. A computer simulation was performed for comparing the simple model with one that takes to in account the gradient of temperature inside the sample. The results of measurements are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Touloukian Y.S. (1970). ed. Thermophysical Properties of Matter, Vols. 4 and 5 IFI/Plenum Press, New York

    Google Scholar 

  2. Kraftmakher Y. (2002). Phys. Rep. 356:1

    Article  ADS  Google Scholar 

  3. Gutiérrez-Juárez G., Camacho J., Vargas-Luna M., Bernal Alvarado J., Sosa M., González J.L., Alvarado-Gil J.J. (2003). Rev. Sci. Instrum. 74:845

    Article  ADS  Google Scholar 

  4. Delgado-Vasallo O., Peña Rodríguez G., Marin E., Peña J.L., Díaz Gongora J.A.I., Calderón A. (2005). J. Phys. IV 125:201

    Google Scholar 

  5. Bachmann R., DiSalvo F.J., Jr., Geballe T.H., Greene R.L., Howard R.E., King C.N., Kirsch H.C., Lee K.N., Schwall R.E., Thomas H.-U., Zubeck R.B. (1972). Rev. Sci. Instrum. 43:205

    Article  ADS  Google Scholar 

  6. Shutz R.J. (1974). Rev. Sci. Instrum. 45:548

    Article  Google Scholar 

  7. Djurek D., Baturic-Rubidic J. (1972) J. Phys E 5:424

    Article  ADS  Google Scholar 

  8. Zinov’ev O.S., Lebedev S.V. (1976). High Temp. 14:73

    Google Scholar 

  9. Hatta I. (1979). Rev. Sci. Instrum. 50:292

    Article  ADS  Google Scholar 

  10. Mansanares A.M., Bento A.C., Vargas H., Leite N.F., Miranda L.C.M. (1990). Phys. Rev. B 42:4477

    Article  ADS  Google Scholar 

  11. Pichardo J.L., Marín E., Alvarado-Gil J.J., Mendoza-Alvarez J.G., Cruz-Orea A., Delgadillo I., Torres-Delgado G., Vargas H. (1997). Appl. Phys. A 65:69

    Article  ADS  Google Scholar 

  12. Rodríguez M.E., Yañez J.M., Figueroa J.D.C., Martínez B.F., González Hernández J., Martínez Montes J.L. (1995). Z. Lebensm. Unters. Forsch. 200:100

    Article  Google Scholar 

  13. Balderas-Lopez J.A., Yañez Limon J.M., Tomás S.A., Alvarado-Gil J.J., Vargas H., Frías-Hernández J., Olalde-Portugal V., Leia Scheinvar, Baquero R., Falconi C., Delgadillo I., Silva M.D., Miranda L.C.M. (1996). Forest Products J. 46:84

    Google Scholar 

  14. G. Gutiérrez-Juárez, O. Zelaya-Angel, J. J. Alvarado-Gil, H. Vargas, H. de O. Pastore, J. S. Barone, M. Hernandez-Velez, and L. Baños, J. Chem. Soc. Faraday Trans. 92:2651 (1996).

  15. Alexandre J., Saboya F., Marques B.C., Ribeiro M.L.P., Salles C., da Silva M.G., Sthel M.S., Auler L.T., Vargas H. (1999). The Analyst 124:1209

    Article  Google Scholar 

  16. Martínez E., García S., Marin E., Vasallo O., Peña Rodríguez G., Calderón A., Siqueiros J.M. (2004). J. Mater. Sci. 39:1233

    Article  Google Scholar 

  17. García S., Marin E., Delgado-Vasallo O., Portelles J., Peña Rodríguez G., Calderón A., Martínez E., Siqueiros J.M. (2005). J. Phys. IV 125: 309

    Google Scholar 

  18. Carballo-Sánchez A.F., Gurevich Yu.G., Logvinov G.N., Drogobitski Yu.V. (1999). Phys. Solid State 41:544

    Article  ADS  Google Scholar 

  19. Gurevich Y., Logvinova G., Niño de Rivera L., Titov O. (2003). Rev. Sci. Instrum. 74:441

    Article  ADS  Google Scholar 

  20. Marín E., Marin J., Hechavarría R. (2005). J. Phys. IV 125:165

    Google Scholar 

  21. Carballo Sánchez A.F., González de la Cruz G., Gurevich Yu G., Logvinov G.N. (1999). Phys. Rev. B 59:10630

    Article  ADS  Google Scholar 

  22. Gurevich Yu.G., Logvinova G.N., Carballo-Sanchez A.F., Drogobitskiy Yu.V., Salazar J.L. (2002). J. Appl. Phys. 91:183

    Article  ADS  Google Scholar 

  23. Marín E., Delgado-Vasallo O., Valiente H. (2003). Am. J. Phys 71:1032

    Article  ADS  Google Scholar 

  24. Valiente H., Marín E. (2005). J. Phys. IV 125:305

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Calderón.

Additional information

Part of this work was performed when the author was at Universidad de La Habana, Facultad de Física, San Lázaro y L, Vedado 10400, La Habana, Cuba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valiente, H., Delgado-Vasallo, O., Abdelarrague, R. et al. Specific Heat Measurements by a Thermal Relaxation Method: Influence of Convection and Conduction. Int J Thermophys 27, 1859–1872 (2006). https://doi.org/10.1007/s10765-006-0127-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0127-1

Keywords

Navigation