Skip to main content
Log in

Mechanical contraction to guide CRT left-ventricular lead placement instead of electrical activation in myocardial infarction with left ventricular dysfunction: An experimental study based on non-invasive gated myocardial perfusion imaging and invasive electroanatomic mapping

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Whether the region of the latest electrical activation (LEA) corresponds with the segment of the latest mechanical contraction (LMC) in ischemic cardiomyopathy (ICM) is uncertain. We aimed to investigate the relationship between the left-ventricular (LV) viable segments with LEA and with LMC after myocardial infarction (MI) and analyze the acute hemodynamic responses (dP/dtmax) after cardiac resynchronization therapy (CRT) pacing at different LV sites.

Methods and results

Bama suckling pigs (n = 6) were subjected to create MI models. Both gated myocardial perfusion imaging (GMPI) and electroanatomic mapping (EAM) were performed successfully before MI and 4 weeks after MI. LMC was assessed by phase analysis of GMPI, while LEA was evaluated by EAM. The dP/dtmax was measured before CRT and when the CRT LV electrode was implanted in viable segments of LMC, viable segments of lateral wall and scar, respectively. The viable segments of LEA were consistent with the sites of LMC for five in six cases. The dP/dtmax increased significantly compared with that before CRT when the CRT LV electrode was implanted in viable segments of LMC (1103.33 ± 195.76 vs 717.83 ± 80.74 mmHg·s−1, P = .001), which was also significantly higher than in viable segments of lateral wall (751.17 ± 105.62 mmHg·s−1, P = .000) and scar (679.50 ± 60.87 mmHg·s−1, P = .001).

Conclusions

Non-invasive GMPI may be a better option than invasive EAM for guiding LV electrode implantation for CRT in ICM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

ICM:

Ischemic cardiomyopathy

CRT:

Cardiac resynchronization therapy

LV:

Left ventricular

LVMD:

Left ventricular mechanical dyssynchrony

EAM:

Electroanatomical mapping

LEA:

Latest electrical activation

GMPI:

Gated myocardial perfusion imaging

LVED:

Left ventricular electrical dyssynchrony

MI:

Myocardial infarction

SPECT:

Single photon emission computed tomography

References

  1. Braunwald E. Heart failure. JACC Heart Fail 2013;1:1-20.

    Article  Google Scholar 

  2. Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA, et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: The Task Force on Cardiac Pacing and Resynchronization Therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J 2013;34:2281-329.

    Article  Google Scholar 

  3. Auricchio A, Prinzen FW. Non-responders to cardiac resynchronization therapy: The magnitude of the problem and the issues. Circ J 2011;75:521-7.

    Article  Google Scholar 

  4. Rickard J, Michtalik H, Sharma R, Berger Z, Iyoha E, Green AR, et al. Predictors of response to cardiac resynchronization therapy: A systematic review. Int J Cardiol 2016;225:345-52.

    Article  Google Scholar 

  5. Delgado V, van Bommel RJ, Bertini M, Borleffs CJ, Marsan NA, Arnold CT, et al. Relative merits of left ventricular dyssynchrony, left ventricular lead position, and myocardial scar to predict long-term survival of ischemic heart failure patients undergoing cardiac resynchronization therapy. Circulation 2011;123:70-8.

    Article  Google Scholar 

  6. Dong YX, Powell BD, Asirvatham SJ, Friedman PA, Rea RF, Webster TL, et al. Left ventricular lead position for cardiac resynchronization: A comprehensive cinegraphic, echocardiographic, clinical, and survival analysis. Europace 2012;14:1139-47.

    Article  Google Scholar 

  7. Liang Y, Yu H, Zhou W, Xu G, Sun YI, Liu R, et al. Left ventricular lead placement targeted at the latest activated site guided by electrophysiological mapping in coronary sinus branches improves response to cardiac resynchronization therapy. J Cardiovasc Electrophysiol 2015;26:1333-9.

    Article  Google Scholar 

  8. Rad MM, Blaauw Y, Dinh T, Pison L, Crijns HJ, Prinzen FW, et al. Left ventricular lead placement in the latest activated region guided by coronary venous electroanatomic mapping. Europace 2015;17:84-93.

    Article  Google Scholar 

  9. Sommer A, Kronborg MB, Norgaard BL, Poulsen SH, Bouchelouche K, Bottcher M, et al. Multimodality imaging-guided left ventricular lead placement in cardiac resynchronization therapy: A randomized controlled trial. Eur J Heart Fail 2016;18:1365-74.

    Article  Google Scholar 

  10. Stephansen C, Sommer A, Kronborg MB, Jensen JM, Bouchelouche K, Nielsen JC, et al. Electrically guided versus imaging-guided implant of the left ventricular lead in cardiac resynchronization therapy: A study protocol for a double-blinded randomized controlled clinical trial (ElectroCRT). Trials 2018;19:600.

    Article  Google Scholar 

  11. Mafi-Rad M, Van’t Sant J, Blaauw Y, Doevendans PA, Cramer MJ, Crijns HJ, et al. Regional left ventricular electrical activation and peak contraction are closely related in candidates for cardiac resynchronization therapy. JACC Clin Electrophysiol 2017;3:854-62.

    Article  Google Scholar 

  12. Fujiwara R, Yoshida A, Fukuzawa K, Takei A, Kiuchi K, Itoh M, et al. Discrepancy between electrical and mechanical dyssynchrony in patients with heart failure and an electrical disturbance. Pacing Clin Electrophysiol 2014;37:576-84.

    Article  Google Scholar 

  13. Richardson WJ, Clarke SA, Quinn TA, Holmes JW. Physiological implications of myocardial scar structure. Compr Physiol 2015;5:1877-909.

    Article  Google Scholar 

  14. Gepstein L, Hayam G, Ben-Haim SA. A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart. In vitro and in vivo accuracy results. Circulation 1997;95:1611-22.

    Article  CAS  Google Scholar 

  15. Del Greco M, Maines M, Marini M, Colella A, Zecchin M, Vitali-Serdoz L, et al. Three-dimensional electroanatomic mapping system-enhanced cardiac resynchronization therapy device implantation: Results from a multicenter registry. J Cardiovasc Electrophysiol 2017;28:85-93.

    Article  Google Scholar 

  16. Tao N, Qiu Y, Tang H, Qian Z, Wu H, Zhu R, et al. Assessment of left ventricular contraction patterns using gated SPECT MPI to predict cardiac resynchronization therapy response. J Nucl Cardiol 2017. https://doi.org/10.1007/s12350-017-0949-1.

    Article  PubMed  Google Scholar 

  17. Lin X, Xu H, Zhao X, Chen J. Sites of latest mechanical activation as assessed by SPECT myocardial perfusion imaging in ischemic and dilated cardiomyopathy patients with LBBB. Eur J Nucl Med Mol Imaging 2014;41:1232-9.

    Article  Google Scholar 

  18. Trimble MA, Velazquez EJ, Adams GL, Honeycutt EF, Pagnanelli RA, Barnhart HX, et al. Repeatability and reproducibility of phase analysis of gated single-photon emission computed tomography myocardial perfusion imaging used to quantify cardiac dyssynchrony. Nucl Med Commun 2008;29:374-81.

    Article  Google Scholar 

  19. Al-Jaroudi W, Iqbal F, Heo J, Iskandrian AE. Relation between heart rate and left ventricular mechanical dyssynchrony in patients with end-stage renal disease. Am J Cardiol 2011;107:1235-40.

    Article  Google Scholar 

  20. Cheung A, Zhou Y, Faber TL, Garcia EV, Zhu L, Chen J. The performance of phase analysis of gated SPECT myocardial perfusion imaging in the presence of perfusion defects: A simulation study. J Nucl Cardiol 2012;19:500-6.

    Article  Google Scholar 

  21. Vo Thang TT, Thibault B, Finnerty V, Pelletier-Galarneau M, Khairy P, Gregoire J, et al. Canine left ventricle electromechanical behavior under different pacing modes. J Interv Card Electrophysiol 2012;35:11-7.

    Article  Google Scholar 

  22. Prinzen FW, Augustijn CH, Allessie MA, Arts T, Delhaas T, Reneman RS. The time sequence of electrical and mechanical activation during spontaneous beating and ectopic stimulation. Eur Heart J 1992;13:535-43.

    Article  CAS  Google Scholar 

  23. Suever JD, Hartlage GR, Magrath RP III, Iravanian S, Lloyd MS, Oshinski JN. Relationship between mechanical dyssynchrony and intra-operative electrical delay times in patients undergoing cardiac resynchronization therapy. J Cardiovasc Magn Reson 2014;16:4.

    Article  Google Scholar 

  24. del Romeral LM, Stillson C, Lesh M, Dae M, Botvinick E. The relationship of myocardial contraction and electrical excitation—The correlation between scintigraphic phase image analysis and electrophysiologic mapping. J Nucl Cardiol 2009;16:792-800.

    Article  Google Scholar 

  25. Bax JJ, Abraham T, Barold SS, Breithardt OA, Fung JW, Garrigue S, et al. Cardiac resynchronization therapy: Part 1—Issues before device implantation. J Am Coll Cardiol 2005;46:2153-67.

    Article  Google Scholar 

  26. Abd-Elmoniem KZ, Tomas MS, Sasano T, Soleimanifard S, Vonken EJ, Youssef A, et al. Assessment of distribution and evolution of mechanical dyssynchrony in a porcine model of myocardial infarction by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012;14:1.

    Article  Google Scholar 

  27. Saba S, Marek J, Schwartzman D, Jain S, Adelstein E, White P, et al. Echocardiography-guided left ventricular lead placement for cardiac resynchronization therapy: Results of the Speckle Tracking Assisted Resynchronization Therapy for Electrode Region Trial. Circ Heart Fail 2013;6:427-34.

    Article  CAS  Google Scholar 

  28. Khan FZ, Virdee MS, Palmer CR, Pugh PJ, O’Halloran D, Elsik M, et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: The TARGET Study: A randomized, controlled trial. J Am Coll Cardiol 2012;59:1509-18.

    Article  Google Scholar 

  29. Zanon F, Baracca E, Pastore G, Fraccaro C, Roncon L, Aggio S, et al. Determination of the longest intrapatient left ventricular electrical delay may predict acute hemodynamic improvement in patients after cardiac resynchronization therapy. Circ Arrhythm Electrophysiol 2014;7:377-83.

    Article  CAS  Google Scholar 

  30. Zhou W, Garcia EV. Image-guided approaches for cardiac resynchronization therapy (CRT). Curr Cardiol Rep 2016;18:7.

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the National Natural Science Foundation of China (81471690, PI: Yuetao Wang), Youth Science Fund Project of National Natural Science Foundation of China (81701737, PI: Jianfeng Wang; 81701734, PI: Xiaoliang Shao), Jiangsu Province Science and Technology Program-Project of Standardized Diagnosis and Treatment of Key Diseases (BE2015635, PI: Yuetao Wang), and Key Project of Changzhou Municipal Health Bureau (ZD201409, PI: Xiaosong Wang). It was also supported by a Grant from the American Heart Association (17AIREA33700016, PI: Weihua Zhou).

Disclosures

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuetao Wang MD.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1289 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Y., Yang, M. et al. Mechanical contraction to guide CRT left-ventricular lead placement instead of electrical activation in myocardial infarction with left ventricular dysfunction: An experimental study based on non-invasive gated myocardial perfusion imaging and invasive electroanatomic mapping. J. Nucl. Cardiol. 27, 419–430 (2020). https://doi.org/10.1007/s12350-019-01710-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-019-01710-2

Keywords

Navigation