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Abstract—Digital societies increasingly rely on secure commu-
nication between parties. Certificate enrollment protocols are
used by certificate authorities to issue public key certificates
to clients. Key agreement protocols, such as Diffie-Hellman, are
used to compute secret keys, using public keys as input, for
establishing secure communication channels. Whenever the keys
are generated by clients, the bootstrap process requires either (a)
an out-of-band verification for certification of keys when those
are generated by the clients themselves, or (b) a trusted server
to generate both the public and secret parameters. This paper
presents a novel constrained key agreement protocol, built upon
a constrained Diffie-Hellman, which is used to generate a secure
public-private key pair, and to set up a certification environment
without disclosing the private keys. In this way, the servers can
guarantee that the generated key parameters are safe, and the
clients do not disclose any secret information to the servers.

Index Terms—Public Key Generation, Privacy, Security, Cer-
tification, Protocol.

I. INTRODUCTION

Electronic services permeate the fabric of today’s society,

which results in an increase need for communication between

parties. The setting up of these communication channels has

many network-related requirements. In this paper, we address

a fundamental security and privacy requirement: the generation

and certification of public keys, which are the basis for

establishing secure communications channels.

A well-known method for two communicating parties to

agree on a symmetric shared encryption key, which is used

to establish a secure communication channel, is to perform

a secret handshake based on the Diffie-Hellman (DH) key

exchange protocol [1]. DH is vulnerable to man-in-the-middle
attacks, i.e., the communicating parties have no guarantees

that their communication channel is not tampered. To perform

an authenticated DH key exchange protocol, both parties are

required to have their public keys certified and available for

verification, i.e., vouched by a trusted third party.

Internet services generally use a certificate enrollment pro-

tocol based on standards like PKCS#11 [2], that requires an

out-of-band verification channel for identity verification, e.g.,

email. In this case, the key pair is generated on the client

side and then a proof is sent to the server for verification. A

second method to provide certification is for a trusted server

to generate the key pairs and to deliver the public and secret

parameters to its clients (end users), who may have their

identity proven using, again, an out-of-band protocol. This is

generally the case for electronic identity cards (eID) and smart

meters (for the Smart Grid). Both methods present security and

privacy issues. While, the first requires an extra channel for

verification the later requires a trusted server and may also

require an out-of-band verification. Furthermore, the second

method requires the key generation server to be fully trusted,

as it has fully knowledge of the private key.

Recently, the trusted computing group (TCG) outlined an

Endorsement Key (EK) Credential and Platform Credential

enrollment standard for TPMv1.2 [3]. The EK is embedded in

the Trusted Platform Module (TPM) security hardware, usually

at the time of manufacture. In the standard the TCG highlights

the importance of the EK to be more constrained than a general

RSA private key, i.e., it can only be accessed by the TPM to

decrypt specific structures. However, it is important to avoid

insecure parameters along with some sort of certification.

Boneh and Matthew [4] showed how parties can share a

RSA key without any of them knowing the prime numbers.

Distributed processing may be used to ensure that the TPM

generated secure parameters. However, it may also leak infor-

mation about the secret key. Further, Boneh and Franklin [5]

and Gilboa [6] present two-party distributed protocols for

generating RSA keys. However, their protocols allow both

communicating parties to have knowledge of the private keys.

In this paper, we introduce a new paradigm on public key

certification, where the key is generated in a collaborative man-

ner with the certification entity. Hence, we present a practical

and the first, to the best of our knowledge, constrained key

agreement protocol. We follow the definition of key agreement

as given in [7], i.e., it is a key exchange in which two or

more entities equally contribute toward the computation of the

resultant shared key values. Thereby, we define a constrained
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key agreement to be a key agreement protocol that is achieved

in collaboration between the interested parties, and is subject

to constraints, such as the prevention of insecure parameters

from being chosen in the key exchange. Our novel scheme

allows for public key generation in collaboration with the

certification authority without the need of an extra out-of-

band verification. It also prevents the selection of insecure

parameters in the key agreement. For instance, small prime

exponent is usually used to improve the performance of RSA

[8] as modular exponentiation using large exponentiations is a

resource demanding operation [9]. However, the selection of

short exponents can lead to security vulnerabilities [7], [10].
a) Contributions: We present a novel paradigm for key

agreement and generation without extra certification verifica-

tion. The constrained key agreement protocol allows parties to

collaborate on the generation of a unique public-private key

pair, along with an authority, without disclosing the private

part. Our protocol is based on the DH assumption.
b) Outline: Section II presents the motivation for our

work and applications scenarios. In Section III, we review a

key agreement protocol that is used as a server-aided key gen-

eration protocol. In Section IV, we introduce the preliminaries

to our work. Our cryptographic construction is presented in

Section V, which is followed by a practical evaluation of our

proposal in Section VI. Section VII concludes the paper.

II. APPLICATION SCENARIOS

The motivation for this work comes from security and

privacy-preserving applications for the Smart Grid. In addition,

our proposed protocol is also applicable in other scenarios,

such as electronic identity cards.

A. Electronic Identity Cards
National identity cards in the European Union (EU) are now

mostly electronic. EU citizens can sign digital documents using

a private key stored in their electronic identity cards (eID). An

EU citizen obtains an eID with a public-private key pair already

stored in it. This setting is not optimal from the computer

security perspective, as there is no strong guarantee that the

eID holder is the only one that possesses the eID’s private

key. The reason behind this is that eIDs are collected at a

Registration Authority (RA), which verifies citizens’ identities,

and the eID is produced by a Certificate Authority (CA) [11].

EID holders are the ultimate responsible for their public-private

key pairs. To increase their protection, the key pairs in an eID

are PIN protected, i.e., they can only be accessed with the

knowledge of a (short) numerical authentication code.
Ideally, eID holders should generate their key pairs and

choose their PIN codes simultaneously, as the key pairs are

not PIN protected from their generation until a PIN code is

selected. The keys also need to be safe, but literature shows

that massive production of new and unique key pairs is a

challenge to the pseudorandom algorithms involved in the

operation [8]. Furthermore, the RA needs also to be trusted.
Our proposed constrained key agreement protocol can be

used in the communication between a CA and eID holders. It

allows citizens to generate unique and safe key pairs.

B. The Smart Grid

The Smart Grid can be shortly described as a computerized

electrical power grid that can provide benefits and services

to utilities and end-consumers, such as micro-generation and

dynamic pricing for end-consumers, which are not possible in

non-computerized power grids. Economic and environmental

benefits to the society include, for instance, lowering the

ceiling for power generation total capacity as dynamic pricing

schemes would tend to flat out peaks in power consumption.

The Smart Grid is, however, an intrusive technology. The smart

meters that collect power consumption information also allow

utilities to profile the habits of their end-customers, i.e., when

they are at home or not, when and which appliance is turned

on and off, and which TV program is being watched [12].

Preserving end-consumers privacy in the Smart Grid is a

research problem that has attracted significant attention of

the academic community and a number of privacy-enhancing

protocols have already been proposed, e.g., [13]–[15]. A

significant share of these protocols require the smart meters

to communicate with each other and with the utility. A CA is

usually needed to certify public keys. The CA signs a public

key and sends the signed key to the smart meter. In addition,

every smart meter should generate a safe and unique key pair.

C. Insecure Cryptographic Parameters

The selection of insecure cryptographic parameters can

drastically reduce the level of security and usefulness of

security protocols. For instance, two entities running a key

agreement protocol need to choose a group over an elliptic

curve. Restrictions on the curve selection include avoiding

anomalous and supersingular curves. For instance, supersin-

gular curves result in a reduction that provides a probabilistic

subexponential time algorithm for solving the Discrete Loga-

rithm Problem (DLP) [16].

A more practical example on the selection of insecure

cryptographic parameters came from Lenstra et al. [8]. They

show that more than 95% of the public exponent in the Internet

is 65537. They also show that the probability to find an

insecure public key in the Internet is one in five hundred. Our

proposed protocol can be used to enforce the randomization

of a public key or enforce finding a n = pq such that n starts,

contains, or finishes with some sequence of digits. In summary,

a constrained key agreement can be used to avoid the selection

of insecure parameters.

III. PRELIMINARIES

In this section, we present the preliminaries related to our

proposed key agreement protocol as elaborated throughout this

paper. Without loss of generality, we consider that an entity

A wants to be connected and certified by an entity B. The

entity A can be seen as a user that wishes to create an account

for a service offered by B, which does not trust A with the

generation of its secret factors. Further, we assume that the

two parties are online when they perform the key enrollment

protocol and do it over a secure channel. In addition, it should

be hard for B to compute the private key of A. We define
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privacy-friendly public key generation and certification as the

setup of a public key and its certificate with computations

of both A and B where B ensures that A has chosen safe

parameters without A disclosing secret information.

Key Agreement: A key agreement protocol is a crypto-

graphic method that allows two entities, A and B to collaborate

and agree on a shared secret. The most common cryptographic

method for two entities to agree on a secret value is to use the

Diffie-Hellman (DH) key agreement [1] over Zp. The entity A
sends kA ≡ ga mod p to B and B sends kB ≡ gb mod p
to A. Hence, both A and B can compute K ≡ (kB)

a ≡ (kA)
b

mod p. Thus, K is the shared secret between A and B. Usually,

the shared secret K is used as the secret key for a symmetric

encryption algorithm to establish a secure channel. However,

K can also be used by both parties to agree on a public key.

Note that the value of K is determined by A and B in a

collaborative manner. In this way, both parties can secure their

communication from an external party by using K.

RSA Key Agreement: To the best of our knowledge, the

work in [17] is the unique that presents an improvement over

the DH designed to test for invalid RSA public keys. The

related algorithm differs from the DH on two factors. First, it

works over Zn instead of Zp. Second, it verifies if the public

key is valid by evaluating gcd(e, ϕ(n)) �= 1, where ϕ is Euler’s

totient function. Note that this algorithm allows A and B to

agree on a RSA public key e, where the private key d is only

known by A. The algorithm is depicted by Algorithm 1 and

its security is based on the discrete logarithm problem (DLP),

i.e., it is hard for B to learn r from (kr)s.

Algorithm 1: DH for an RSA public key [17]

1 begin
2 A chooses two primes p and q, and computes n = pq
3 A chooses 1 < k ∈ Zn such that gcd(k, n) = 1
4 A sends (k, n) to B
5 A chooses r ∈ Zn

6 A calculates kr and sends the result to B while

keeping r secret

7 B chooses s ∈ Zn

8 B calculates ks and sends the result to A while

keeping s secret

9 Both A and B calculate e = (kr)s = (ks)r

10 if gcd(e, ϕ(n)) �= 1 then
11 A sends false to B
12 A runs goto begin
13 else
14 A sends true to B
15 A calculates d = e−1

IV. OUR CONSTRUCTION

In this section, we present the construction of our con-

strained key agreement protocol. The result of the construction

is presented in the end of this section in Algorithm 2.

Only A can compute d, since only A knows the values of

p and q. For the same reason, only A can compute n = pq
and ϕ = ϕ(n) = (p − 1)(q − 1) and only A can verify that

e is correct. Note that if one of the primes is known, i.e.,

if an entity C can solve the DLP or the integer factorization

problem, it can calculate ϕ and, therefore, the inverse exponent

d = e−1.

The efficient key agreement protocol subject to constraints

proposed in this paper builds upon the DH key agreement to

establish an RSA key, i.e., it satisfies the restriction

gcd(e, ϕ(n)) = 1. (1)

Let U be a multiplicative group formed by the ring Zn, i.e.,

U = {x ∈ Zn| gcd(x, n) = 1}. (2)

If k ∈ U , therefore gcd(k, n) = 1 from (2), then (ks)r does

not belong to U for all values of r and s ∈ N. Because we

can write

(ks)
r
= k · · · k︸ ︷︷ ︸

rs=aϕ(n)+b

(3)

and kϕ = 1, since ϕ is the order of U , therefore from (3), we

have

(ks)r = kaϕ+b = kb, (4)

for some a and b ∈ N. Notice that if rs < (p−1)(q−1), then

a = 0. Thus, the restriction gcd((ks)r, ϕ) = 1 is not always

satisfied. Appropriate values for ks and r need to be chosen.

These values are in the range between 2 and ϕ−1. This range

contains values that are not co-prime with ϕ, i.e., that do not

satisfy the restriction (1). However, a valid exponent r from

(3) can be searched until a valid b for (4) is found, i.e., that

satisfies the restriction (1).

For example, consider p = 3 and q = 5, if we choose

k = 2, then we have k|ϕ. However, k4 ≡ 1 mod pq and for

all exponents r, we have

gcd(kr, ϕ) = 2(r mod 4),

i.e., every exponent r that is not of the form 4t, where t ∈ N,

provides results with some factor in common with ϕ. However,

if gcd(k, ϕ) �= 1 then gcd((kr)s mod pq, ϕ) �= 1. Therefore,

gcd(k, ϕ) = 1 is a necessary condition of restriction (1), but it

is not a sufficient condition of gcd((kr)s mod pq, ϕ) = 1. To

illustrate the necessary condition, we consider the following

numerical example. If k = 12, then k2 ≡ 9 mod 15 and

gcd(9, 8) = 1. To illustrate the gcd(k, ϕ) = 1 is not sufficient

condition for gcd((kr)s mod pq, ϕ) = 1, we consider the

following numerical example. If k = 7, then k2 ≡ 4 mod pq
and gcd(k2 mod pq, ϕ) = 4. Not every exponent rs of the

form 2t, where t ∈ N, provides a valid exponent. However, if

we choose the next exponent k3, then k3 ≡ 13 mod pq and

gcd(k3, ϕ) = 1.

Therefore, an iterative procedure that searches for valid

exponents can be designed. Such an iterative procedure can

prevent unnecessary selection of new exponents and unneces-

sary data retransmission between A and B. The constrained
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key agreement, which includes the iterative procedure, is

presented in Algorithm 2. The algorithm checks for invalid

RSA exponents before to send kr. It thus does not require all

values to be chosen again and then retransmitted.

Algorithm 2: Constrained Diffie-Hellman on RSA

1 begin
2 A chooses two safe primes p and q, and computes

n = pq
3 A chooses k < n with big order.

4 A sends n and k to B
5 B chooses a randomized s ∈ Zn

6 B calculates ks and sends the result to A while

keeping s secret

7 e = 0
8 while gcd(e, ϕ(n)) �= 1 do
9 A chooses randomized r ∈ Zn

10 A calculates e = (ks)r

11 A calculates kr and sends the result to B while

keeping r secret

12 B calculates e = (kr)s = (ks)r

13 A calculates d = e−1

The key agreement protocols that implement the Algo-

rithm 1 and 2 are presented in Figure 1. They show a key

agreement procedure of two parties A and B and the data

payload exchanged in each step of it.

Figure 1 illustrates that a key agreement protocol imple-

mented using the Algorithm 1 requires one extra message

to be exchanged at least. If the restriction of Algorithm 1

is not satisfied, all messages need to be retransmitted (and

new values chosen). This procedure is repeated while the

restriction is not satisfied. The constrained key agreement

protocol implemented using Algorithm 2 always requires only

3 messages to be exchanged between A and B.

Beside the communication, the Algorithm 2 requires an

iteration from line 8 to 10, when the Algorithm 1 requires

an iteration from line 1 to 12.

The key agreement protocol implemented using Algorithm 1

requires a Boolean value to be transmitted to inform if the

restriction was satisfied or not. Algorithm 2 verifies if the

exponent values are valid before sending kr. Therefore, the

constrained key agreement reduces the amount of messages

exchanged between A and B. It also reduces the number of

modular exponentiations required.

V. ANALYSIS

In this section, we analyze our protocol regarding to cor-

rectness, complexity, and security.

A. Correctness

The goto step of Algorithm 1, which returns the procedure

to its beginning if the restriction is not satisfied, results into

choosing all values again and the recalculation of all exponen-

tiations. In the proposed Algorithm 2 a while procedure is

used to choose r and to compute a single exponentiation until

the restriction is satisfied. In both Algorithm 1 and 2, only A
can verify if the restriction gcd(e, ϕ(n)) = 1 is satisfied or

not.
For simplicity, Algorithm 1 and 2 omit the fact that the

exponents r and s cannot be a multiple of the order of the

element k ∈ Zn as it leads to e = 1 (since k = 1r and then

e = (kr)s = 1).
It is important to notice how big the order of k is. The order

o of a primitive roots of unity k in Zn is divisors of λ(n), i.e.,

o|λ(n), where λ(n) is a generalization of ϕ(n) and is defined

as the smallest positive integer o such that ko = 1 for ever

integer k that is coprime to n. For an analysis of the average

and minimal order of λ(n), see [18]. The function λ(n) can

be defined as λ(1) = ϕ(1) = 1; and

λ(pv) =

{
pv−1(p− 1) = ϕ(pv) if p � 3 or v � 2,

2v−2 = ϕ(pv)
2 if p = 2 and v � 3,

for a prime p and positive integers v and n � 2; and

λ(n) = lcm(λ(pv1
1 ), . . . , λ(pvi

i )),

when n = pv1
1 . . . pvi

i is the prime factorization of n. Euler’s

theorem states that kϕ(n) = 1 for k and n coprime, thus λ(n)
divides ϕ(n) and o divides ϕ(n). For this reason, we choose

safe primes in Algorithm 2, they are prime numbers of the

form 2p′+1 where p′ is also prime. Therefore, from two safe

prime numbers p and q, we have

λ(pq) = lcm(λ(p), λ(q)) = lcm(2p′, 2q′) = 2p′q′, (5)

and the only possible values for o are

{1, 2, p′, q′, 2p′, 2q′, p′q′, 2p′q′}, thus either k has order

less than 3 or has big order.

B. Complexity Analysis
The set U from (2) is also denoted Z

×
n since Z

×
n ⊂ Zn.

Every RSA key is indeed in the subset Z×n . Thus, the number

of valid keys is given by ϕ(n). Therefore, the probability of

randomly choosing an invalid key I in n possible values is

given by

Pr[I] = 1− ϕ(n)

n
. (6)

Equation (6) is the probability of Algorithm 1 and 2

selecting an invalid key I . In such an event, Algorithm 1

returns to its initial step, i.e., it goes to begin and Algorithm 2

remains in the while loop. Assuming that those values are

randomly chosen then the events are independent by definition.

Hence, the independent probability from (6) remains the same

for every interaction.
Let t be an arbitrary number of iterations. Thus, the prob-

ability of having t iterations that results in invalid keys I is

given by

Pr[I|t] = Pr[I] + (1− Pr[I]) · Pr[I]

+ (1− Pr[I])2 · Pr[I] (7)

...

+ (1− Pr[I])t · Pr[I].
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A B

n and k

kA = kr
mod n

kB = ks mod n

[true,false]

...

Certificate

A B

n and k

kB = ks mod n

kA = kr
mod n

Certificate

Figure 1: The key agreement protocols between two entities A and B implemented using the Algorithm 1 (left) and Algorithm 2

(right).

The equation (7) can be rewritten as

Pr[I|t] =

t∑
i=0

(1− Pr[I])
i · Pr[I] (8)

=
Pr[I] · (1− (1− Pr[I])t+1

)
Pr[I]

.

From (8) it is possible to calculate the complexity of

Algorithm 1 and 2. The complexity is calculated in terms of

number of modular exponentiations, which represent the most

relevant and expensive operations. In both algorithms, entities

A and B compute at least two exponentiations each. Therefore,

in the best case, both algorithms have the same complexity,

i.e., they use the same amount of processing time. However,

on the average case, the complexity of both algorithms is

different.

To demonstrate this, let E be the cost of a modu-

lar exponentiation. Thus, the Algorithm 1 has complexity

O(4E + 4E · Pr[I|t]) while Algorithm 2 has complexity

O(4E + E · Pr[I|t]). In Algorithm 2, B always computes

two exponentiations, i.e., O(2E), and A computes two expo-

nentiations plus one based on the probability Pr[I|t] (8), i.e.,

O(2E +E · Pr[I|t]). In Algorithm 1, both A and B have the

same complexity O(2E+2E ·Pr[I|t]), which depends on the

probability Pr[I|t]. Therefore, Algorithm 2 is O(3E ·Pr[I|t])
efficient than Algorithm 1.

C. Security

As aforementioned, the goal is to protect the private part of

the key from the server, i.e., B. Thereby, it should be hard for

B to compute or learn d. For this, the Algorithm 2 relies on

the DLP, as it is hard for B to compute r by having ks. Notice

that B can verity if n is a product of safe primes without A
discloses their values [19]. Hence, B can also verify if k has

high order.

Besides the generation of keys based on constrain, the

security of the key agreement is the same as the DH. We now

turn and evaluate the generation of keys based on constrain.

1) Key Space: The requirement of the privacy-friendly

public key generation and certification protocol is that all

operations lie over the ring Zn and, thus, all keys need to

be over the multiplicative group Z
×
n to be valid.

First, we need verify if the probability of Algorithm 2 finds

a valid key K is acceptable. We know that the probability to

find a valid key is

Pr[K] =
ϕ(n)

n
=

pq − p− q

n
= 1− p+ q

n
.

Let log2(n) ≈ N , therefore log2(p+ q) ≈ N
2 and

Pr[K] ≈ − 1

22/N
.

Thus, the probability to find a valid key tends to 1 when N
tends to ∞. Moreover, for the minimum acceptable N in the

RSA we have

Pr[K] ≈ 1− 1

2512
.

Thus, the Algorithm 2 can find a valid key with very high

probability.
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2) Probability to Find a Unique Key: Peeking randomly

valid key K, the independent probability to peek K again is

P [K,K] =

(
1

ϕ(n)

)2

,

therefore,

P [K,K] ≈ 1

N2N − 2NNN1/2N +NN

For all N greater than 2, we have

1

N2N
< P [K,K] <

1

NN
.

As the probability to find a different key is 1 − P [K,K],
then the Algorithm 2 can find a unique key with very high

probability .

3) Probability to Find a Safe Key: Let E be the number

of bits to represent an exponent, then the probability to find a

key K with length E is

Pr[KE ] =
2E

λ(n)

and log2(λ(n)) ≈ N − 1, therefore,

Pr[KE ] ≈ 1

2N−1−E
. (9)

When E tends to N , the probability tends to 1, and when E
tends to zero, the probability tends to a very small ε close to

zero. Since we chose safe primes, from equation (5), we have

maximum values to exponents e and d are either very small

or very big. Nevertheless, equation (9) shows that very small

exponent is highly improbable.

Here an important point may arise: what a safe key is.

For save processing time many software use the public key

65 537 = 216 + 1 [8], but the private key is generated by

the Euclidean algorithm, which can be assumed as randomly.

In this case, the key size has the same probability than Al-

gorithm 2. Nevertheless, the Algorithm 2 generates randomly

both key.

As aforementioned small keys should be avoided [7], [10],

but today it is very common the use of a key with 16

bits. Algorithm 2 generates much large keys with very high

probability.

D. Man-in-the-middle attack

Algorithm 2 was developed to enforce the generation of

unique and safe keys, and should run on a secure channel of

communication. However, if a third entity perform a man-in-

the-middle attack pretending be A to B and B to A then at

the end of the algorithm A will not receive the certification of

B. In the case of the smart metering scenario, the smart meter

will not receive the valid certificate.

VI. PRACTICAL EVALUATION

To demonstrate the practical feasibility and efficiency of our

protocol, we have performed a practical evaluation based on

simulations. In addition, we compared with the Algorithm 1.

Thereby, we developed two client-server applications that

implement the two key agreement protocols presented in this

work, i.e., one implements the Algorithm 1 and the other the

Algorithm 2. The applications were implemented in Python
version 2.7.1+ [GCC 4.5.2] using gmpy – Multiprecision arith-

metic for Python version 1.14 as library. The applications were

running on an Intel Core(TM)2 Duo CPU T9400 2.53GHz

processor with 4GB of memory. The operating system used

was Windows 7 Enterprise 64 bits as host and two identical

virtual machines Linux Mint version 2.6.38-8-generic for 64

bits with 1GB of memory on VirtualBox version 4.1.6. One

virtual machine ran the server program and the other the

client program. Both virtual machines communicated directly

over their virtual network interfaces and were isolated from

any external network traffic. The application parameters are

chosen using a pseudo-random number generator. The value

n has 1024 bits such that the primes p and q have 512 bits

each, and other parameters have 1024 bits. The metric used is

the processing time required to establish the key. To obtain

statistical confidence in our results, 10 000 simulation runs

were used for each key agreement protocol.

The outcome of our simulation is depicted in Figure 2,

and shows that our constrained key agreement protocol, i.e.,

Algorithm 2, outperforms the protocol implemented using

Algorithm 1. In fact, while the server side on our protocol

takes 73ms on average, the key agreement protocol using

Algorithm 1 needs 136ms on average to agree on one key.

On the client side, our constrained key agreement protocol

needs 64ms on average while the protocol using Algorithm 1

requires 130ms on average to agree on one key. Figure 2 also

illustrates the variance bars. The standard error is negligible

and, thus, omitted from the figure. The figure shows that the

server requires on average more processing time than the client

in both key agreement protocols. This is an expected fact as

servers need to perform more operations per key agreement

than the clients, as depicted in Figure 2.

Figure 3 presents the box plot of the total processing time

required by both key agreement protocols to agree on one key

on the client A and server B sides. The lower, median and

upper quartiles are shown in the figure. The average and the

smallest and largest observations are also depicted. Figure 3

shows that the upper and lower quartiles are closer to the

median in the case of the constrained key agreement, which

indicates predictable results regarding the required processing

time in comparison to the key agreement protocol using the

Algorithm 1. Furthermore, the largest observations for the

Algorithm 1 are 1.96s for the server side and 1.97s for the

client side, which are considerably higher than the largest

observations for the constrained key agreement using the

Algorithm 2, which are 1.50s for the server side and 1.52s

for the client side.
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Figure 3: Total processing time required by clients and servers to agree on a key using the key agreement protocol using the

Algorithm 1 (left) and using the constrained key agreement that implements the Algorithm 2 (right). The outliers are not shown

in the box plot.
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Figure 2: The mean processing time for clients and servers

needed to run the key agreement protocol using the Algo-

rithm 1 and the constrained key agreement using Algorithm 2

are compared in this figure.

Moreover, Figure 4 illustrates the box plot of the total

number of failed attempts in the client and server sides to

agree on one key. Fails are understood differently on the server

and client sides. On the server side, a fail means that the

server had to choose a new value. In the case of the key

agreement protocol using the Algorithm 1, a fail means that

the restriction was not satisfied and the algorithm goes to the

begin. In the case of the constrained key agreement protocol

(using Algorithm 2) a fail means that the restriction was not

satisfied and the while loop continues. On the client side,

a fails means that the client has tried to start a run of the

key agreement protocol and the server was busy and unable

to reply. Servers are considered busy when they have yet not

finished the last key agreement session. The lower, median and

upper quartiles are shown in Figure 4. The average and the

smallest and largest observations are also depicted. Figure 4

shows that the number of fail attempts is practically the same

in both key agreements. That was expected, as all values are

chosen using a pseudo-random number generator. Hence, the

odds for choosing a value that does not satisfy the restriction

(in the server B) is the same for both key agreement protocols

being evaluated. On the client side, a similar number of failed

attempts was expected as the amount of time required for a

server to end the protocol is the same on both key agreement

protocols, i.e., the time required to close the TCP connection.
In our evaluation, we have measured the required processing

time for both key agreement protocols. Our measurements did

not consider the end-to-end network delay since that would

add an uncontrolled parameter in our evaluation. Hence, to

eliminate the influence of such parameters, both client and

server were implemented using two virtual machines running

on the same host. However, by introducing the end-to-end

network delay into our evaluation would further improve

our results, because the constrained key agreement protocol

requires fewer messages to be exchanged than the DH key

agreement for an RSA public key.

VII. CONCLUSION

In this paper, we have presented a constrained key agree-

ment protocol that is used to setup an initial environment

for certification protocol with privacy. The protocol ensures

that the key pairs are secure and unique. The constrained

key agreement protocol is built upon a constrained DH on

RSA algorithm. It uses an iterative procedure that searches for

valid exponents and prevents the re-selection of unnecessary

values and data retransmissions. Our protocol was evaluated

and compared against a DH key agreement for an RSA public
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Figure 4: Number of failed attempts of clients and servers to agree on one key using the Algorithm 1 (left) and using the

constrained key agreement that implements the Algorithm 2 (right). The outliers are not shown in the box plot.

key (Algorithm 1) [17]. We implemented both key agreement

protocols in two client-server applications in order to compare

and evaluate both protocols. Our simulation results have shown

that our proposal outperforms the DH key agreement for an

RSA public key by approximately a factor of 2 regarding the

average processing time.

Constrained key agreement protocols prevent insecure pa-

rameters from being chosen by pre-defining the restrictions

in the key agreement. Thus, multiple application scenarios

presenting such restriction can profit from such protocols.

Constrained key agreement protocols can also be used in one-

to-many applications [20]. For instance, in ad-hoc networks

running anonymous authentication protocols would require the

key set to belong to Z
×
n . Hence, the constrained key agreement

is needed. In addition, smart meters running a privacy-friendly

public key generation and certification protocol would have a

similar requirement and, thus, the same need for a constrained

key agreement protocol.
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[12] U. Greveler, B. Justus, and D. Löhr, “Multimedia content identification
through smart meter power usage profiles,” in Computers, Privacy and
Data Protection (CPDP 2012), 2012.

[13] F. Borges, L. A. Martucci, and M. Mühlhäuser, “Analysis of Privacy-
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