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ABSTRACT
Monero is a cryptocurrency that has rapidly gained popularity since

its launch in April 2014. The source of its growth can be mainly

attributed to its unique privacy properties that go well beyond the

pseudonymity property of cryptocurrencies such as Bitcoin.

In this work, we conduct a forensic analysis of the Monero

blockchain. Our main goal is to investigate Monero’s untraceability
guarantee, which essentially means that given a transaction input,

the real output being redeemed in it should be anonymous among

a set of other outputs. To this end, we develop three heuristics that

lead to simple-to-implement attack routines.

We evaluate our attacks on the Monero blockchain and show

that in 87% of cases, the real output being redeemed can be easily

identi�ed with certainty. Moreover, we have compelling evidence

that two of our attacks also extend to Monero RingCTs — the second

generation Monero that even hides the transaction value.

Furthermore, we observe that for over 98% of the inputs that

we have been able to trace, the real output being redeemed in it

is the one that has been on the blockchain for the shortest period

of time. This result shows that the mitigation measures currently

employed in Monero fall short of preventing temporal analysis. Mo-

tivated by our �ndings, we also propose a new mitigation strategy

against temporal analysis. Our mitigation strategy leverages the

real spending habit of Monero users.

1 INTRODUCTION
Distributed e-cash systems such as Bitcoin have seen widespread

adoption and popularity. Both professionals and the general public

have come to appreciate the convenient combination of public

transactions and proof-of-work as a trust model.

However, as outlined by Chaum in the �rst e-cash proposal [3],

privacy and anonymity properties remain important desiderata for

any e-cash system. In fact, Bitcoin, the most popular cryptocurrency

fairs poorly in terms of privacy and anonymity as evidenced by

several analyses in the past [6, 11, 14, 16]. These works show that

it is possible to build a large part of the Bitcoin transaction graph

that would show which entity pays what amount to whom. These

works have further provided an impetus to the industry to develop

automated tools to perform a forensic analysis of the Bitcoin’s

public blockchain [5].

Considering the privacy issues in Bitcoin, a new cryptocurrency

called Monero was launched on April 18
th
2014. Monero addresses

the privacy issues by requiring the currency to ensure the following

two properties (de�nitions are informal):

(1) Unlinkability: For any two transactions, it should be im-

possible to prove that they were sent to the same person.

(2) Untraceability: Given a transaction input, the real output

being redeemed in it should be anonymous among a set of

other outputs.

In order to guarantee unlinkability, Monero by design introduces

the notion of one-time random addresses. The idea is that each

sender of a transaction generates a new one-time random address

for the recipient in a way that only the recipient can spend it using

a long-term secret key. If each address is generated using fresh

randomness and is used only once, then it should be hard for an

adversary to link two addresses. Monero enforces untraceability

using a cryptographic primitive called ring signatures [7, 15]. The
primitive allows a sender (also the signer) to anonymously sign the

transaction (the message) on behalf of a set of other users. As a

result, the real output being redeemed remains anonymous amongst

the chosen set of outputs belonging to other users. The guarantee

that Monero aims to achieve is the privacy à la anonymity-set size.
While there are several other cryptocurrencies that have imple-

mented privacy solutions (e.g., Zcash [1, 20], and Dash [4]) and also

a few proposals for implementations of privacy features on top of

the largest blockchains (e.g., Mimblewimble [8] and Con�dential

transactions [10]), Monero currently has the most momentum of

all the live privacy projects
1
. The value of Monero in terms of USD

shot up by around 27 fold in the year 2016 from its value in 2015.

Its rise to popularity is mainly due to its strong privacy properties

and its design simplicity. Since January 2017, Monero has further

strengthened its privacy guarantees by incorporating ring con�den-
tial transaction (RingCTs) [13]. In addition to hiding the real output

being redeemed, RingCTs also hide the transaction value.

In this work, we present a forensic analysis of the Monero

blockchain to test the adverted untraceability guarantees. We as-

sume throughout this work a global passive adversary who has

access to the public blockchain data. Our study takes a two dimen-

sional approach, where, we �rst design our attack routines and then

evaluate it on Monero blockchain data.

Contributions & Findings.We summarize our contributions

and �ndings below:

(1) In order to set the ground for our traceability analysis, we

�rst conduct a study of the network and usage statistics

1
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on Monero. This gives us several interesting insights into

how Monero is used and its ensuing privacy impact. One

of the most important observations that we make here is

that over 65% of inputs have an anonymity-set size of one.

This means that these inputs are traceable by default.

(2) Next, we leverage our statistical �ndings to develop three

heuristics that allow us to mount traceability attacks. Our

�rst heuristic (Heuristic I) leverages the fact that over 65%

of inputs are traceable due to zero mix-ins. We show that

such inputs in fact lead to a cascade e�ect, where they a�ect
the untraceability of other inputs with which they have

a non-empty anonymity-set intersection. Our evaluation

shows that the cascade e�ect renders another 22% of input

traceable. Moreover, results from Heuristic I serve as a

ground truth as it only yields true positives. Unfortunately,

we do not obtain any ground truth on RingCTs.

(3) Our second heuristic (Heuristic II) exploits the fact that sev-

eral outputs from a previous transaction are often merged

to aggregate funds when creating a new transaction. Such

idioms of use leak information on the real outputs being

redeemed. We employ Heuristic II on both RingCTs and

non RingCTs. On non RingCTs, Heuristic II has a true pos-

itive rate of 95%. Due to its high true positive rate, we

believe that it should extrapolate well even to RingCTs.

Moreover, Heuristic II also identi�es merging of outputs

in 1% of RingCTs.

(4) Our third heuristic (Heuristic III) considers an attack based

on the temporal analysis of transaction outputs. In fact,

Heuristic III considers the most recent output (in terms of

block height) in the anonymity-set as the real one being

redeemed. Surprisingly, Heuristic III has a true positive

rate of 98.5% on non RingCTS. We believe that it should

also extrapolate well even to RingCTs.

(5) Motivated by the results of Heuristic III, we also propose a

bettermethod to choose outputs to include in the anonymity-

set. Our method takes into account the actual spending

habit of users.

It is important to note that Monero designers and developers are

aware of the theoretical possibility of our attacks [9] and have put

in place some measures to mitigate the risks. In light of [9], our

work has three goals:

(1) To show that the attacks entail huge risks in practice and

are not merely theoretical.

(2) The existing measures often fall short in mitigating the

risks.

(3) Propose better mitigation strategies.

Roadmap. This paper takes the following roadmap. In Section 2,

we present the essential background on Monero. In Section 3, we

present network and usage statistics on Monero. This allows us to

understand how Monero is currently used and gives an insight into

the ensuing privacy implications. Section 4 presents the general

methodology to our traceability analysis and in Section 5, we de-

velop heuristics to break the untraceability guarantees in Monero.

Lastly, in Section 6, we present the related work.

2 MONERO BACKGROUND
Monero (XMR) is a privacy-by-design cryptocurrency. It is based on

the CryptoNote protocol [19] that attempts to solve the traceability

and linkability issues in Bitcoin. Monero incorporates a mixing

protocol that is autonomous and spontaneous. The system is au-

tonomous as a user can mix his coins on its own and spontaneous

since the mixing process does not incur any latency.

In this section, we present the essential background on Mon-

ero. The material provided here is largely a presentation of the

CryptoNote protocol. Interested readers may refer to [19] for fur-

ther details. In the following, we �rst list the Monero system pa-

rameters and then present the details on how Monero achieves

unlinkability and untraceability.

2.1 System Parameters
As in Bitcoin, transactions in Monero are signed by the sender using

a digital signature scheme, thereby, authorizing the transfer of funds

to the receiver. Monero’s digital signature algorithm employs the

elliptic curve Ed25519, popularized by Bernstein et al. [2]. Table 1
abstractly presents the curve parameters. The table also includes

two special hash functionsHs andHp employed in Monero. We

refer the interested readers to the CryptoNote whitepaper [19] for

a detailed construction of the hash functions and the instantiations

of the parameters. In the rest of the paper, we use the parameters

in the notational form while abstracting their actual instantiations.

Table 1: Monero system parameters.

q: a large prime number;

Fq : a �nite �eld of order q;
E(Fq ): an elliptic curve on Fq ;
G: a base point on E(Fq );
`: a prime order of G;
Hs : a cryptographic hash function {0, 1}∗ → Fq ;
Hp : a cryptographic hash function E(Fq ) → E(Fq ).

Each Monero user has a long-term public, private key pair that

we denote by (pkuser
LT
, skuser

LT
). A long-term public (resp. private) key

is a pair of classical public (resp. private) keys of an elliptic curve

cryptosystem:

skuser
LT
= (a,b), where, a,b $← [1, ` − 1],

pkuser
LT
= (A,B), where, A = aG and B = bG .

The long-term public key can be made public without the risk of

sacri�cing privacy.

2.2 Ensuring Unlinkability
Contrary to the Bitcoin’s model, where a user possesses a unique

public, private key pair (corresponding to an address), in Monero,

a sender generates a one-time public key based on the recipient’s

address and some randomness. In this sense, transactions destined

to the same recipient are in fact sent to di�erent one-time public

keys (not directly to a unique address) and only the recipient can

recover the one-time private keys to redeem the funds.

More concretely, when a user say Alice wishes to pay to another

user Bob, she �rst asks for Bob’s long-term public key pkBob
LT
=
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(A,B). She then generates a one-time public key pkBob
OT

for Bob in

the following manner:

Choose r
$← [1, ` − 1],

Set R ← rG and P ←Hs (rA)G + B,
return pkBob

OT
= P .

The value R referred to as the transaction public key is made public

by including it in the transaction. Note that:

P = Hs (rA)G + B = Hs (raG) + B
= Hs (aR)G + bG = (Hs (aR) + b)G . (1)

Hence, the corresponding one-time secret key skBob
OT
= Hs (aR) + b

(Cf. Equation 1). Since, only Bob knows (a,b) as skBob
LT
= (a,b), only

he can derive skBob
OT

. Alice then creates a transaction, where, she

pays to pkBob
OT

. The one-time key serves as a single-use payment

address for Bob. Since, an address is always generated using fresh

randomness and is used only once, it is hard for anyone other than

the sender and the receiver to link two addresses to the same user.

In case there are multiple outputs (in the transaction) paying

to the same recipient, a new one-time public key is generated per

output. As a result, each transaction output (TXO) can then be

identi�ed by its corresponding one-time public key.

Bob can easily identify whether a TXO belongs to him by using

a,B and R. It su�ces for Bob to check whether a, B and R when

combined generate P (Cf. Equation 1). If so, the TXO (identi�ed by

P ) belongs to him. To spend the funds received, Bob �rst recovers

R and derives skBob
OT

. He can then use these data to redeem funds in

a later transaction using a procedure presented in the next section.

In order to lighten the notation, we will henceforth refrain from

using pkOT to denote a one-time public key (identifying a TXO),

and instead used P with an eventual subscript. Similarly, the corre-

sponding secret key skOT will henceforth be denoted by s with an

eventual subscript. Under this shorthand, P = sG.

2.3 Ensuring Untraceability
Monero aims to ensure untraceability using a cryptographic primi-

tive called ring signatures. Monero uses a modi�ed version of the

ring signature proposed by Fujisaki et al. [7]. A ring signature al-

lows a user to sign a message on behalf of a “ring” of users. In order

to do so, the signer only needs to know his own secret signing

key. After signing the message, the user provides (for veri�cation

purposes) not his own public key but the public keys of all the other

users in the ring. A veri�er is convinced that the real signer is a

member of the ring but cannot ascertain its identity. The signer is

hence anonymous in the ring that forms its anonymity-set.
In order to see how Monero employs ring signatures, let us

consider an example where a user Alice wishes to send 10 XMR

to another user Bob. She �rst asks for pkBob
LT

and then creates a

one-time public key from it using some randomness (as discussed

in Section 2.2). Now, instead of signing the transaction as in Bitcoin,

Alice takes some other TXOs available on the blockchain of value 10

XMR. Recall that these TXOs are identi�ed by their corresponding

one-time public keys. Let this set be S = {P1, . . . , Pm }; it also
includes Alice’s own input Pt = stG, for t ∈ [1,m]. Her input key

Pt will then be anonymous among the keys inS. Since, Alice knows
st , she can create a ring signature and sign the transaction.

Now, when an adversary (possibly the recipient or a miner) sees

the transaction, she may only conclude that a TXO corresponding

to one of the input keys from S was spent but cannot ascertain the

real one. The extra input keys that Alice includes in S are referred

to as the mix-ins. Since Alice’s real input key is anonymous among

the keys in S, larger is the number of mix-ins used, the better is

the anonymity achieved. Clearly, the ring signature provides an

in-built mixing service within Monero, where each user can mix

his coins in an autonomous manner.

However, with only a ring signature, it becomes possible for Alice

to carry out a double spend. It su�ces to chose another set of mix-

ins and create a new transaction with a new ring signature. Miners

cannot detect the double spend since they do not know the TXO

being redeemed in a transaction. In order to prevent this, Monero

requires the signer to include a special data in the transaction called

the key image which is I = sHp (P), where P = sG is the signer’s

one-time public key. The key image creates a deterministic tag

for the signer’s input key. Signing using the same key twice, will

generate the same tag and hence double spending can be detected.

Note that this requires modifying the ring signature to prove in

NIZK that one of the keys in S indeed generates I. The key image

is is made available to miners by including it in the transaction.

Linking a key image to an input key in S is not feasible since the

key image uses the secret one-time key s known only to the signer.

In case there are multiple inputs in the transaction, a ring signa-

ture and the corresponding key image are required for each input.

Figure 1 schematically presents a typical Monero transaction. Each

TXO also includes a transaction public key, R (not shown).

In amount

Inkey 1

Inkey 2

Key image

In amount

Tx inputs

Inkey 1

Inkey 2

Inkey 3

Key image Out amount

Tx Outputs

OT Pubkey

Out amount OT Pubkey

Out amount OT Pubkey

Ring signature

Ring signature

Figure 1: A schematic representation of a typical Monero
transaction. It has two inputs and three outputs. The �rst
input uses two mix-ins (hence three input keys), while the
second one uses one. The sumof all output amountsmust be
equal to the sum of all input amounts. Ring signatures hide
the real input key corresponding to the TXO being spent.
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2.4 RingCTs
Recently, on January 10

th
2017, Monero launched a special type

of transaction called ring con�dential transactions (RingCTs). As
in a regular transaction, a RingCT hides the real TXO being spent,

but additionally, it also hides the amount in a TXO. In fact, every

TXO in a RingCT is of value ’0’ (meaning unknown). The construc-

tion uses commitments to hide the output amount. Moreover, the

commitment scheme is homomorphic and allows miners to verify

whether the sum of input commitments is equal to the sum of out-

put commitments [13]. This prevents the creation of new coins. It

is important to note that with the advent of RingCTs, a TXO can be

mixed with any other output (for creating the ring signature) on

the blockchain as all TXOs now have the same value.

RingCT is currently in its experimental phase and has been

incorporated in Monero as a soft fork. It is slated to be introduced

as a hard fork in September 2017.

3 MONERO NETWORK STATISTICS
In this section, we present network and usage statistics on Monero.

As we show, the statistics reveal interesting insights into how Mon-

ero is currently used and its ensuing privacy impact. The results

shown here are important as they form the basis of our traceability

attacks presented in Section 5.

Below, we present the dataset for our statistical analysis. The

same dataset will also be used to evaluate the impact of our trace-

ability attacks later in Section 5.

3.1 Dataset
We acquired the entire Monero history from the �rst transaction

on April 18
th

2014 up to and including the last transaction on

February 6
th

2017. The last transaction is included in the block

with height 1,240,503. The resulting dataset comprises of a total of

961,463 non-coinbase transactions included in 418,910 blocks. The

�rst non-coinbase transaction appears in the block with height 110.

It is important to note that our dataset also includes 47,428 RingCTs.

The �rst RingCT appears in the block with height 1,220,517 (on

January 10
th
2017). We purposefully decide to include RingCTs so

as to have a more representative dataset.

Throughout our analysis, we maintain the raw data in the form

of a blockchain and use Monero daemon (monerod) to access it. The
daemon handles interactions with the Monero blockchain through

Remote Procedure Calls (RPC). The RPC interface provides two

main methods: getheight and gettransactions, both returning

output in the JSON format [12]. The former returns information on

a given block height, while the latter on a list of transaction hashes.

In the remainder of the section, we present results of our statis-

tical analysis on the dataset. Unless otherwise stated, we do not

include coinbase transactions. Our analysis focuses on three im-

portant aspects: 1) available liquidity, where the goal is to know

the di�erent output amounts currently available on the blockchain

and their frequency. Note that low liquidity implies that it may

not always be possible to �nd su�cient number of mix-ins for a

given amount; 2) the number of mix-ins used. Clearly, the larger it

is the higher is the anonymity; 3) number of input and outputs in a

transaction. Roughly speaking larger is the number of inputs and

outputs, the higher is the probability that one of our attacks would

work.

3.2 Available Liquidity
There are 1,339,733 di�erent output amounts in the dataset. The

largest being 500,000 XMR.We also observe that approximately 85%

of all outputs have an amount less than 0.01 XMR (≈ 0.13 USD2
).

We refer to them as dust values.
Figure 2 presents the cumulative frequency of the available liq-

uidity. We observe that values less than 1 XMR cover 87% of all

the outputs. This shows that lower denominations dominate the

blockchain, and users often transact with small amounts.
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Figure 2: The plot presents the cumulative frequency of out-
put amounts. Only 1 out of every 100 data points are shown.

We further observe that a total of 1,244,165 (93%) output values

have a frequency of 1. This means that when these outputs have to

be redeemed, they cannot be mixed with any other output. The only

possible way to create an untraceable transaction redeeming these

outputs is to create a RingCT. These output values sum to a total

of 1,012,231.3 XMR. Moreover, 84.5% of these outputs correspond

to dust values. The dust values themselves total to 1,723.36 XMR.

Lastly, there are �ve outputs: i) with value greater than 1 XMR, ii)

and that appear only once on the blockchain: 1.67 XMR, 3.45 XMR,

200,000 XMR and 300,000 XMR and 500,000 XMR.

Another important observation is regarding the number of out-

put values that do not respect the usual denomination format in

Monero. A usual Monero output value is of the form:A×10B , where
1 ≤ A ≤ 9 and B ≥ −12 [9]. We found that 99.98% of output values

are not in the usual format. Moreover, 92.8% of these values appear

only once on the blockchain. The total value of these outputs that

appear only once and are non-denomination compliant is 12231.27

XMR. The large number of non-denomination compliant output

values can be attributed to the simple fact that denominations per

se cannot be enforced in Monero. This is essentially due to the

2
Source https://www.cryptonator.com/rates/XMR-USD, Accessed on February 23

rd

2017.
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Figure 3: Results on the number of mix-ins. (a): The plot presents the cumulative frequency of the number of mix-ins used in
an input of a transaction. (b): The plot presents the variation (with time) of the average number ofmix-ins used in a transaction.
The x-axis represents the number of weeks after the launch of Monero. (c): The plot presents the average number of mix-ins
used for an input amount. Only 1 out of every 100 data points are shown.

underlying design and parameter choices. For instance, the block

reward in Monero is often not denomination compliant by the

way it evolves over time. The same is true for transaction fee that

depends on the transaction size.

3.3 Number of Mix-ins
We �rst note that di�erent inputs in a transaction may have dif-

ferent number of mix-ins. In fact, a total of 115 di�erent number

of mix-ins have been used until now. The minimum and the maxi-

mum numbers being 0 and 851 respectively. Figure 3a presents the

cumulative frequency of the number of mix-ins used in an input.

One may observe that lower number of mix-ins, i.e., 0, 1, 2, 3 and
4 correspond to roughly 96% of all mix-ins. Moreover, 65.9% of all

inputs have zero mix-ins.

Figure 3b presents the evolution of the average number of mix-

ins used per input over time. The curve shows three distinct regions

with noticeable characteristics. The �rst region starts from the �rst

week and ends roughly in the 46
th
week. The average number of

mix-ins used per input during this period is less than 1. The second

region starts from the 47
th
week and ends in the 101

st
week. Note

that it was in the 101
st
week (on March 23

rd
2016) that Monero

developers enforced a network-wide minimum mix-in of 2. As a

result, miners reject transactions with number of mix-ins lower

than 2 with the exception where a higher mix-in is impossible due

to insu�cient liquidity. During this period, the average number

of mix-ins continued to increase but remained less than 1. The

third region starts from the 106
th
week. It was in this period that

the network-wide minimum could actually come into e�ect. This

means that starting from week number 101 and until week number

106, users could not �nd enough suitable outputs to mix with.

We also observe that there are 9 di�erent mix-in values (7.8%)

that are unique in the sense that these many mix-ins are used in

only one input (across the entire dataset). Such transactions can be

attributed to unique users. In other words, the number of mix-ins

used may become an identifying trait of Monero users.

In Figure 3c, we present the average number mix-ins used per

input amount. The goal is to know whether users employ a larger

number of mix-ins when they spend a larger amount. We observe

that this is true to some extent since as the input amount increases,

the plot shows some spikes. However, the phenomenon is not con-

sistent as mix-in numbers of 0, and 1 tend to dominate all through

the plot.

As we have seen in Figure 3a, smaller number of mix-ins dom-

inate the blockchain. There are two possible explanations to this

phenomenon. First, it could be possible that at the time a user cre-

ates a transaction, he may not �nd enough suitable outputs to mix

with and hence is forced to choose a lower number of mix-ins.

This may indeed happen since majority of the output amounts are

non-denomination compliant. Second, enough outputs are indeed

available at any given time, but users deliberately choose a low

number of mix-ins. The incentive here being a lower transaction

fee. Indeed, a larger number of mix-ins implies a larger transaction

size and hence a larger transaction fee.

In order to investigate further, we provide in Table 2, the cumu-

lative frequency of the �rst 11 values from 0 to 10. The table also

presents the percentage of cases when it was possible to choose a

higher number of mix-ins. In order to compute these data, we in-

clude coinbase transactions. It is to note that a coinbase transaction

output cannot be used as a mix-in for 60 blocks. We take this fact

into our account when computing the data for the last column.

We �rst observe that the secondmost frequent number of mix-ins

used after 0 is 2. This is mainly due to the network-wide minimum

imposed since March 23
rd

2016. We now focus on the last column of

the table. In the case of inputs with zeromix-ins, 85.9% of them could

have been spent using a higher number of mix-ins. As for the rest,

over 99% of the inputs could have been spent using a higher number

of mix-ins. These results clearly show that users deliberately use a

lower mix-in value to avoid paying a larger transaction fee.
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Table 2: Cumulative frequency of the number of mix-ins
(only the �rst 11 are shown). The last column counts the
number of instanceswhere itwas possible to choose a higher
number of mix-ins.

Mix-ins Freq Cumul. freq.
(in %)

Higher #mix-ins
possib. (in %)

0 12148623 65.9 10434988 (85.9)

1 707788 69.7 701252 (99.1)

2 2908304 85.5 2902246 (99.8)

3 1313596 92.6 1313530 (99.9)

4 709686 96.5 709681 (99.9)

5 141800 97.3 141797 (99.9)

6 365720 99.2 365718 (99.9)

7 9616 99.3 9614 (99.9)

8 8593 99.3 8593 (100)

9 5369 99.4 5366 (99.9)

10 76524 99.8 76523 (99.9)

3.4 Number of Inputs and Outputs
Our last result is on the number of inputs and outputs in a trans-

action. It is important to note that the existence of denominations

in Monero has a direct impact on the number of outputs that a

transaction can have. In order to understand this, let us consider

the following example, where, a user Alice has 1000 XMR in one

of her addresses and wishes to pay 11 XMR to another user Bob.

For the sake of simplicity, let us assume that there is no transaction

fee. Since 11 XMR is not denomination compliant, Alice cannot

create a transaction with just two outputs where the �rst output

pays 11 XMR to Bob, while the second output sends back a sum

of 989 XMR as a change to Alice. Rather, the very best that Alice

can do is to create two outputs for Bob for 10 XMR and 1 XMR

respectively. Similarly, for the change she can (at the very best)

create three change outputs for 900 XMR, 80 XMR and 9 XMR re-

spectively. As a consequence, the number of outputs can become

large. This also leads to a large number of inputs per transaction.

To see this, consider the situation when Bob wishes to spend 11

XMR that he previously received from Alice. Bob is now forced to

create a transaction with two inputs.

Figure 4 presents the evolution of the number of inputs and

outputs per transaction.We �rst observe that the average number of

inputs and outputs per transaction are 19 and 17 respectively. These

large numbers can be seen as a direct impact of denominations. The

general observation is that the number of inputs and outputs were

relatively large in the �rst few weeks and they gradually decreased

as the currency matured over time. The number of inputs reaches

a maximum of 104 in the fourth week and gradually reached to 3

in the last week. Similarly, the number of outputs has a maximum

value of 76 in the sixth week and gradually reached to 2 in the

last week. Smaller number of inputs and outputs at the tail can be

attributed to RingCTs, which made denominations redundant. With

RingCTs, the number of outputs in a transaction can be limited to

two: one for the payment to the recipient, the other for the change.

We now focus on the impact of RingCTs on the number of inputs

and outputs. On an average, a RingCT has 3.7 inputs and only 1.2

output. Figure 5 shows the evolution of these values over time.
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Figure 4: The plot presents the average number of inputs and
outputs in a transaction. The x-axis represents the number
of weeks after the launch of Monero.

Clearly, with the advent of RingCTs, the number of outputs per

transaction was consistently around 2. The number of inputs how-

ever does not show a stable and consistent pattern. The peaks in

the curve do however tend to lower. It could be due to the exis-

tence of denominations from non RingCTs. As a result, users were

still forced to merge a large number of inputs to reach a desired

transaction amount.
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Figure 5: The plot presents the average number of inputs and
outputs in a RingCT. The x-axis represents the number of
days after the launch of RingCTs.

3.5 Summary of Our Findings
We summarize the main results of this section in Table 3.
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Table 3: Monero network and usage statistics summary.

Observable Key �ndings

Liquidity

1. 93% of output values appear only once.

2. 99.98% of output values are not

denomination compliant.

Nb. mix-ins

1. 96% of inputs mix-ins in [0, 4].

2. 65.9% use zero mix-ins.

3. In at least 85% of cases, a higher number of

mix-ins could have been chosen.

Nb. inputs/outputs

1. Non RingCTs: Average number of inputs

and outputs per transaction is 19 and 17 resp.

2. RingCTs: Average number of inputs

and outputs per transaction is 3.7 and 1.2 resp.

4 TRACEABILITY ANALYSIS:
METHODOLOGY AND DEFINITIONS

Our goal in the rest of the paper is to exploit the �ndings of the

previous section to mount traceability attacks on Monero. In this

section, we set the ground for our attacks by presenting the general

methodology and the underlying reason for their potential success.

We �rst recall that if an input key in a transaction is mixed with

m mix-ins, then the input key should be untraceable among the

m + 1 keys being used to create the ring signature. In other words,

the anonymity-set size of the real input key is expected to bem + 1.
A critical hypothesis in the anonymity-set size argument is that

all them + 1 input keys that form an input are equally likely to

be the real input key being spent
3
. If this condition does not hold,

the anonymity-set size gets reduced and it becomes possible to

distinguish a mix-in key from the real input key. This argument

is reminiscent of a similar criticism previously made by Serjantov

and Danezis in [17] in the context of mix-nets.

To see this, let us consider the following scenario where a user

Alice pays to another user Bob using one mix-in. The corresponding

transaction has one input composed of two input keys: P1 (belong-
ing to Alice) and P2 belonging to some unknown user (Cf. Table 4a).

The corresponding output key will be P
Bob

. Now, consider a situa-

tion where another user with key P3 decides to spend his output

using two mix-ins by making a payment to Charlie (Cf. Table 4b).

The user choses P1 and P2 as the mix-ins.

Table 4: View of a global passive adversary. Each key in Tx-2
does not have the same probability of being spent. P3 has a
higher probability than P1 and P2 as they also appear in a
previous transaction Tx-1.

(a) Tx-1.

Input keys Output keys
P1 P

BobP2

(b) Tx-2.

Input keys Output keys
P1
P2 P

Charlie

P3

3
We abusively use the term ‘a key being spent’ rather than the more conventional ‘a

TXO being spent’. This is only to ease the presentation as each TXO is identi�ed by a

one-time public key.

Any global passive adversary looking at the blockchain will

observe the two transactions as given in Table 4 and conclude the

following:

(1) With only Tx-1, the probability that funds in P1 was spent
is 1/2, the same for P2.

(2) With only Tx-2, the probability that funds in P1 was spent
is 1/3, the same for P2 and P3. This is the expected behavior
in Monero.

(3) Looking at both Tx-1 and Tx-2, the adversary may con-

clude that the probability that P1 was spent in the second

transaction is 1/4, the same for P2. But, the probability that
P3 was spent is 1/2. Hence, each input keymay not have the

same probability of being spent in a transaction given that

one of them has a priori (non-zero) probability of being

already spent.

While the above example does show that all input keys in a

transaction input may not necessarily have the same probability

of being spent. It however does not show how to trace (identify)

the real input key. One of our heuristics (developed in the next

section) extends this idea by analyzing whether an input key has

been previously spent in a transaction with a probability 1. If such

a key is identi�ed and used later as a mix-in in another transaction,

then the anonymity-set size of the input can be reduced by 1.

In the rest of this paper, we use the following de�nitions to de�ne

what it means to be traceable at di�erent granularity.

De�nition 4.1. [E�ective anonymity-set size] Consider a trans-
action Tx and one of its inputs I that usesm mix-ins keys to create

the ring signature for I . If it is possible to identify any k mix-in

keys out ofm, then the e�ective anonymity-set size of I ism + 1 − k .
For instance, consider a scenario where an input is spent using

say two mix-ins, and the adversary is able to identify only one

mix-in (because it was previously spent in an another transaction).

In this scenario, the e�ective anonymity-set size is two instead of

the expected size of three. In the best case (from an adversarial

perspective), it may be possible to identify all mix-ins used in an

input. We refer to such inputs as traceable inputs.

De�nition 4.2. [Traceable input] Given a transaction Tx and

one of its inputs I , I is traceable if its e�ective anonymity-set size

is one.

Extending the de�nition of traceability to transactions, we have

the following de�nition.

De�nition 4.3. [Traceable transaction] A transaction Tx is said

to be traceable if each of its inputs is traceable.

The untraceability guarantee in Monero relies on the assumption

that it is hard for an adversary to distinguish a spent TXO from an

unspent TXO. In the next section, we develop three heuristics that

allow us to test this hypothesis and reduce the anonymity-set size

for an input.

5 TRACEABILITY ATTACKS
We present three heuristics that de�ne our attack strategies on

existing Monero transactions. For each of the heuristic, we present

the attack routine and then evaluate its impact on the Monero

blockchain.
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Tx-a Tx-b Tx-c Tx-d

...

#mix-in = 0 #mix-in = 1 #mix-in = 2
. . .

#mix-in =m

Figure 6: Heuristic I: Cascade e�ect due to zero mixins. Each transaction has only one input (left of the transaction) and one
output (on the right). The number ofmix-ins used increases from left to right. Dashed lines represent the input keys identi�ed
as a mix-in. Lines in bold are the real input keys being spent.

5.1 Heuristic I: Leveraging Zero Mix-ins
We �rst make the following observation. Consider the case, where,

a user Alice creates a transaction Tx-a with an input that she spends

without using any mix-in. Alice’s input key can clearly be identi�ed

as spent. Now, consider a later transaction Tx-b created by another

user Bob who uses Alice’s input key as a mix-in for his input. If

the number of mix-ins used by Bob is one. Then, any adversary

looking at the blockchain can identify the real input key being

spent in Bob’s transaction and his input becomes traceable too.

More generally, if the number of mix-ins used by Bob is m > 1,

then the e�ective anonymity-set size now becomesm (instead of

the expected value ofm + 1).
A closer look reveals that use of zero mix-in leads to a cascade

e�ect where the traceability of an input a�ects the traceability of

another input in a later transaction. Figure 6 schematically presents

this cascade e�ect triggered by Tx-a that uses no mix-in. Input in

Tx-a is clearly traceable. Tx-b uses one mix-in in the form of the

previously traced input and hence is also traceable. Tx-c now uses

two mix-ins as the real inputs of Tx-a and Tx-b respectively. Since,

these inputs have been previously identi�ed as spent, Tx-c is also

traceable.

One must note that the cascade e�ect may not always make an

input traceable. In fact, it is also possible that it may only reduce the

e�ective anonymity-set size but still less than the expected value.

For instance, Tx-d usesm mix-ins but only one of those have been

previously identi�ed as spent. Hence, Tx-d remains untraceable but

its e�ective anonymity-set size ism (instead of the expected value

ofm + 1).

5.1.1 A�ack routine. Implementing Heuristic I as a full �edged

attack routine is straightforward and a pseudocode is presented

in Algorithm 1. For the sake of �exibility and future deployability

in robust applications, the algorithm takes two parameters T and

η. T is the highest block height to analyze and η is the maximum

number of iterations.

The algorithm runs in three steps. In the �rst step (Lines 1-2),

it initializes two data structures: spentKeys and keysToAnalyze.
The former stores a set of input keys that have been identi�ed as

already spent. This set would grow with the number of iterations

and will reach a stable point when no new key can be marked as

Algorithm 1: Heuristic I
Data: η: the number of iterations and T : the maximum block

height to analyze.

Result: A set spentKeys of spent output keys.
1 spentKeys← ∅
// Each entry of keysToAnalyze is a list of keys.

2 keysToAnalyze← [ ]

3 foreach height ≤ T do
// Retrieve block with given height

4 block← getBlock(height)
// Retrieve non-coinbase transactions

5 transactions← getTransactions(block)
6 foreach tx ∈ transactions do

// Retrieve inputs in the transaction

7 inputs← getInputs(tx)
8 foreach input ∈ inputs do

// Retrieve input keys in this input

9 inKeys← getInputKeys(input)
// Add all keys as a list

10 keysToAnalyze.add(inKeys)

11 repeat η times or until spentKeys reaches stable point
12 foreach inKeys ∈ keysToAnalyze do

// Store keys that are note spent.

13 untracedKeys← ∅
14 foreach inKey ∈ inKeys do
15 if inKey < spentKeys then
16 untracedKeys← untracedKeys ∪ inKey

17 if |untracedKeys| = 1 then
18 spentKeys← spentKeys ∪ untracedKeys

/* Remove newly identified spent key

from each entry of keysToAnalyze */

19 keysToAnalyze.removeAll(untracedKeys)

20 return spentKeys
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Figure 7: Results on traceability using Heuristic I. In (a), we present the percentage of traceable inputs as a function of the
number of mix-ins. In (b), we plot the cumulative percentage of traceable inputs as a function of the number of mix-ins. In
(c), we present the evolution of the percentage of traceable inputs over time. In the x-axis, we have the number of weeks after
the launch of Monero.
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Figure 8: Results on e�ective anonymity-set size using Heuristic I. In x-axis, we have the number of mix-ins from 0 to 10.
For each of these mix-ins we plot three stacked bars corresponding to η = 1, 3, 5. Each stacked bar for a �xed η represents the
percentage of inputs that have an e�ective anonymity-set size between 1 to 11. For instance, for inputs using only 2 mix-ins,
and for η = 5, the percentage of inputs with e�fective anonymity-set size of 1 is 59%, the percentage of inputs with e�ective
anonymity-set size of 2 is 21% and the percentage of inputs with e�ective anonymity-set size of 3 is 20%.

spent. The second data structure keysToAnalyze stores yet-to-be-

analyzed keys. It can very simply be seen as a list of items, where

each item is itself a list of input keys. The data structure provides

two interfaces: add() and removeAll(). The former adds a list of

input keys corresponding to an input to the data structure, while the

latter removes an input key from every entry of the data structure.

The number of keys in this data structure will decrease with the

number of iterations until no new key can be marked as spent.

In step 2 (Lines 3-10), the algorithm usesMonero’s JSON interface

to retrieve all blocks with height less than or equal toT , the coinbase

transactions therein, the inputs and all the corresponding input

keys. These input keys are then used to populate keysToAnalyze.
In step 3, the heuristic is applied on every set of input keys

(corresponding to an input) in keysToAnalyze. The algorithm is

bootstrapped by all inputs which use no mix-in. An input key kin
from an input is marked as spent if all other input keys for that input

have been previously marked as spent. In fact, the key kin is the real
input being spent here. Once, such a key is identi�ed (Lines 14-18),

it is added to the list of keys identi�ed as already spent. Finally,

the newly identi�ed spent key is removed from keysToAnalyze to
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avoid analyzing the same key multiple times. This step is repeated

until no more spent keys can be identi�ed or when the number of

iterations reaches its maximum value η (whichever is earlier). The

parameter η is used in the algorithm only for the sake of �exibility

where an early stop is desired.

It is also possible to run step 3 in a more optimal manner. The

optimization exploits the cascade e�ect of Figure 6. In fact, before

analyzing the inputs of a block, they can �rst be sorted by their

number of mix-ins, which is a greedy attempt to identifying trace-

able inputs as soon as possible. It is not developed in Algorithm 1

to ease presentation.

5.1.2 Impact. The impact of Heuristic I on the traceability of

inputs is collectively shown in Figure 7. We �rst note that the

success of our attack based on Heuristic I is mainly due to the

fact that over 65% of inputs do not use any mix-ins. It impacts the

traceability of another 22% of the inputs, leading to a total of 87%

of traceable inputs.

In Figure 7a, we present the percentage of traceable inputs for

number of mix-ins less than or equal to eleven. Note that these

mix-in sizes together cover 99.8% of all inputs in our dataset. We

present histograms for three values of η (1,3 and 5). With η = 5,

we observe that the set of spent keys almost reaches a �xed point.

Just after the �rst iteration (η = 1), the number of traceable inputs

using one mix-in reaches as high as 81%. For η = 5, this percentage

of traceable inputs using one mix-in becomes 87%. The plot also

shows the cascade e�ect as inputs using a high number of mix-ins

such as 10 also have a considerable percentage of traceable inputs

(27% for η = 5).

Figure 7b presents the cumulative percentage of traceable inputs

as a function of the number of mix-ins. Clearly, as the number of

mix-ins increases, the cascade e�ect deteriorates and roughly 87% of

all inputs become traceable. It is interesting to note that the cascade

e�ect leads to one traceable input that uses 153 mix-ins. This is the

largest number of mix-ins that gets a�ected by the cascade e�ect.

Figure 7c presents the evolution of the percentage of traceable

inputs over time grouped by week. Since, the initial transactions did

not use any mix-in, a large majority (over 95%) of the inputs were

traceable. The maximum percentage of traceable inputs per week is

98.9% (in the 10
th
week). In fact, the percentage dropped to roughly

62% in the 105
th
week when the network-wide minimum mix-in

of 2 could come into e�ect. Since then, the percentage of traceable

inputs has seen a consistent decline. For the last week, only 8% of

all inputs were found to be traceable. Note that Heuristic I could

not �nd at any result on RingCT inputs.

We found several instances where Heuristic I could not identify

a traceable input, but it did nevertheless succeeded in reducing

the e�ective anonymity-set size. Figure 8 presents these �ndings.

For the sake of completeness, it also includes the results presented

in Figure 7a. We observe that for η = 5, roughly 24% of inputs that

use 10 mix-ins have an e�ective anonymity-set size of two. This

shows how close Heuristic I can be in identifying the real input.

Moreover, the plot shows that as the number of mix-in increases,

the percentage of inputs on which Heuristic I does not work at all

tends to decrease. In fact, for inputs using 10 mix-ins, Heuristic I

does not a�ect the e�ective anonymity-set size for only 0.9% of all

such inputs.

5.2 Heuristic II: Leveraging Output Merging
We develop Heuristic II to mainly trace RingCTs which Heuristic I

failed to do. However, it naturally extends to non RingCTs just

as well. In order to present the underlying idea, let us consider a

scenario where a user creates a transaction Tx-a having one input

and two outputs O1,O2. (Cf. Figure 9). Without loss of generality,

let us assume that only 1 mix-in is used. At a later time, another user

creates a transaction Tx-b with two inputs I1, I2 and one output. Let
us suppose that both the inputs use one mix-in each. The �rst input

I1 uses one of the outputs O1 of Tx-a as an input key. Similarly, the

second input I2 uses the other output O2 of Tx-a as an input key.

Heuristic II then identi�es O1 and O2 as the real input keys being

spent in Tx-b.

Tx-a

Tx-b

I1

I2

O1

O2

Figure 9: Heuristic II. Tx-a is a transaction with one input
that uses one mix-in. It has two outputs O1 and O2. Tx-b is
another transaction that has two inputs denoted by I1 and
I2. Each input again has one mix-in. Both I1 and I2 include
outputs of Tx-a. According to Heuristic II, the input keysO1

and O2 represented using the dashed line are the real keys
being spent in Tx-b.

Heuristic II functions under the assumption that while creating

a transaction, it is less likely to choose several mix-ins that are

outputs of a single previous transaction. Hence, if a transaction

includes keys (possibly across several inputs) that are outputs of

a single previous transaction, then they are likely to be the real

ones being spent. Due to the underlying assumption, the results

obtained from Heuristic II cannot always be conclusive and in fact

may admit false positives. In this sense, Heuristic II is weaker than

Heuristic I as the latter does not admit any false positive and hence

yields the ground truth.

5.2.1 A�ack routine. In order to simplify the further discussion

of Heuristic II, we refer to transactions of type Tx-a (as in Figure 9)

as a source transaction, while, those of type Tx-b as a destination
transaction. Hence, a destination transaction uses two or more

outputs of a source transaction across its inputs. The minimum

number of two or more outputs is needed so as to capture the

merging of outputs.

In Algorithm 2, we present the general attack routine. The algo-

rithm takes a parameterT for the maximum block height to analyze

and returns a set of candidate output keys. The set of candidate
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keys aggregates all output keys of all source transactions for which

we �nd at least one destination.

The core of the algorithm is the function analyzeOutput(·, ·) de-
�ned in Lines 9-24. It takes two parameters:heiдht1 andoutputKeys .
The second parameter is a set of output keys for a source transac-

tion that appears in block height heiдht1. The function determines

whether there exists a destination that uses at least two of the keys

in outputKeys across its inputs (Lines 18-23). If a destination exists,

the corresponding keys are added in the output set of candidate

keys (Lines 22-23).

Algorithm 2: Heuristic II
Data: T : the maximum block height to analyze.

Result: A list candidateSets of linked inputs/outputs.

1 candidateSets← ∅
2 foreach height ≤ T do
3 block ← getBlock(height)

// Retrieve non-coinbase transactions

4 transactions ← getTransactions(block)

5 foreach tx ∈ transactions do
// Retrieve outputs in the transaction

6 outputKeys← getOutputKeys(tx)
// Invoke analyzeOutput(·, ·) defined below

7 candidateSets← candidateSets ∪
analyzeOutput(height, outputKeys)

8 return candidateSets
9 de�ne analyzeOutput(heiдht1, outputKeys) as

10 candidateSets← ∅
11 foreach heiдht2 ∈ [heiдht1 + 1,T ] do
12 block ← getBlock(heiдht2)

// Retrieve non-coinbase transactions

13 transactions ← getTransactions(block)

14 foreach tx ∈ transactions do
15 nonEmptyIntersections← 0

16 candidateKeys← ∅
17 foreach input of tx do

// Retrieve input keys in this input

18 inKeys← getInputKeys(input)
19 if inKeys ∩ outputKeys , ∅ then

/* increment increases
nonEmptyIntersections by
inKeys ∩ outputKeys */

20 increment(nonEmptyIntersections)
21 candidateKeys←

candidateKeys ∪ (inKeys ∩ outputKeys)

22 if 2 ≤ nonEmptyIntersections and
2 ≤ |candidateKeys| then

23 candidateSets.add(candidateKeys)

24 return candidateSets

Due to the probabilistic nature of how mix-ins are chosen, Algo-

rithm 2 may encounter the following scenarios:

• S1: It may not �nd any destination for a given source.

• S2: It may �nd several destinations for a given source.

• S3: It may �nd one (or more) destination for a given source,

where the same source output appears in more than one

destination input.

• S4: It may �nd one (or more) destination for a given source,

where more than one source outputs appear in a single

destination input.

S1 essentially means that Heuristic II failed to yield any result on

the given source instance. While, S2 means that the heuristic has

false positives at the transaction level, hence it is hard to ascertain

the real destination for a given source. S3 presents the worst case

for the heuristic. It means that the heuristic has false positives even

at the input level. Hence, it is hard to even ascertain the input where

the source output was indeed spent. S4 essentially yields a set of

candidate keys being spent in the input.

In the following section, we conduct experiments to estimate how

well Heuristic II performs. To this end, we take a two dimensional

approach. We �rst measure how frequently the above scenarios

occur and then estimate the false positive rate by relying on the

ground truth data obtained from Heuristic I.

Remark 1. Heuristic II can also be used to break the unlinkability
guarantee of Monero. To see this, onemay observe through the example
of Figure 9 that since O1 and O2 are the real input keys being spent
in I1 and I2, they must belong to the same Monero user. This means
that with the help of Heuristic 2, it becomes possible to link two
outputs to the same user. As this unlinkability attack is based on
Heuristic II, it also entails false positives. Since, the focus of this work
is on traceability, we do not develop this any further and leave it as a
future work.

5.2.2 Impact. Heuristics II found results on 410,237 di�erent

source transactions, which is roughly 43% of all transactions in

our dataset. These source transactions also include 636 RingCTs,

which is 1% of all RingCTs in our dataset. The low fraction of

RingCTs is essentially due to the fact that the average number of

inputs and outputs per RingCT is only 3.7 and 1.2 respectively

(Cf. Figure 5). Recall that Heuristic II essentially exploits the use of

outputs of source transactions in a destination transaction. Hence,

a low number of inputs and outputs directly a�ects the applicability

of the heuristic.

In Figure 10a, we present the results obtained on 409,601 non

RingCT sources. Around 60% of all source transactions have only 1

matching destination. The maximum number of destinations found

for a source was 146. However, the percentage of source drops

exponentially as the number of destinations increases. Similarly,

Figure 10b presents the results obtained on 636 RingCT sources. We

observe that a source has at most 3 destinations and a majority of

the source transactions (95.1%) have only one destination. The small

number of destinations in case of RingCT sources is essentially due

to the fact that RingCTs inherently have a low number of inputs.

As we discussed earlier, Heuristic II can generate false positives.

In order to estimate the accuracy of the results of Heuristic II, we

compare its results with those obtained by Heuristic I that provides

the ground truth. Unfortunately, Heuristic I does not provide any

ground truth on RingCTs, hence, we cannot estimate the accuracy
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Figure 10: Plot (a): Result of employingHeuristic II on nonRingCTs. The x-axis presents all the observed number of destination
transactions for a given source transaction. In y-axis, we show the number of source transactions that admit a given number
of destination transactions. The number is given as a fraction of 409,601 non RingCT source transactions. Plot (b): Result of
employing Heuristic II on RingCTs. The x-axis presents all the observed number of destination transactions for a given source
transaction. In y-axis, we show the number of source transactions that admit a given number of destination transactions. The
number is given as a fraction of 636 RingCT source transactions. Plot(c): Overall observed percentage of TP, FP and UP.

of Heuristic II on RingCTs. However, if it performs well on non

RingCTs, then we may extrapolate this result over RingCTs and

expect similar accuracy.

In order to compare the two heuristics, we use the following

terms:

• True positive (TP): An input creates a true positive if: a)
Heuristic II identi�es a unique key as the one being spent

in the input and, b) the key is the same as the one identi�ed

by Heuristic I. In other words, the two heuristics agree on

the real key being spent in the input.

• False positive (FP): An input creates a false positive if

all the keys identi�ed as being spent by Heuristic II were

actually found to be spent in a di�erent input by Heuristic I.

In other words, none of the probable keys identi�ed by

Heuristic II was actually the real key being spent in the

input. Hence, the two heuristics disagree on the real key

being spent.

• Unknown positive (UP): An input creates an unknown
positive if at least one of the keys identi�ed by Heuristic

II could not be identi�ed as being spent in any input (of

any transaction) by Heuristic I. The ambiguity is due to

the fact that Heuristic I does not give ground truth for all

inputs.

Now that the terms TP, FP and UP are established, we are ready

to present the results on the accuracy of Heuristic II. The overall

accuracy of Heuristic II computed over all non RingCT inputs for

which it returns a result is given in Figure 10c. The result shows

that Heuristic II has an overall true positive rate of 87%, while

the false positive rate is as low as 0.78%, while is inconclusive for

around 12% of inputs. The high true positive rate on non-ring CTs

clearly demonstrates that it should do equally well even on RingCTs.

However, due to the lack of ground truth it is impossible to verify

this.

A breakdown of TP, FP and UP as a function of number of mix-ins

is given in Figure 11. The plot shows that as the number of mix-in

increases, the percentage of TP decreases, while the percentage of

UP increases. Moreover, irrespective of the number of mix-ins used,

the number of FP remains very close to 0. All of this is essentially

due to the fact that the output of Heuristic I deteriorates as the

number of mix-ins increases and hence it becomes hard to verify

the result of Heuristic II due to a lack of ground truth.
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Figure 11: Observed percentage of TP, FP and UP as a func-
tion of number of mix-ins. The result is for non RingCTs.

5.3 Heuristic III: Temporal Analysis
Our third heuristic leverages the fact that a TXO does not remain

unspent for an in�nite time. In general, its probability of being
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spent should increase with time. Indeed, a TXO that has been on the

blockchain for 100,000 blocks is much more likely to have already

been spent than an output that has been on the blockchain for only

100 blocks. In light of this, we de�ne Heuristic III in the following

manner: Given a set of input keys used to create a ring signature, the
real key being spent is the one with the highest block height, where it
appeared as a TXO.

5.3.1 Results. We tested Heuristic III and compared its results

with the ground truth data obtained from Heuristic I (η = 5). Glob-

ally, we observed that Heuristic III has a true positive rate of 98.1%.

This clearly shows that Heuristic III is very accurate and very often

the most recent TXO in an input is the real one being spent.

In theory, Heuristic III can be prevented by mixing with only

those TXOs that are yet to be redeemed. However, this is intractable

due to the underlying ring signature. In order to circumvent this

problem, Monero developers have decided since April 5
th

2015

to sample mix-ins from a triangular distribution.
4
A triangular

distribution essentially gives higher probability to newer TXOs

than to ones that are old and hence can potentially mitigate the

attack. Note that prior to April 5
th
2015, mix-ins were sampled from

a uniform distribution, i.e., each TXO had the same probability of

being a mix-in for any input at any given time. We evaluate how

well triangular distribution can be useful in mitigating our attack

based on Heuristic III. The results are shown in Table 5. While,

using triangular distribution does help in reducing the number

of true positives, the gain over uniform distribution is however

marginal, i.e., only 3.5%.

Table 5: Breakdown of traceable inputs obtained using
Heuristic I. In the �rst row, we show the total number of
traceable inputs that employ uniformdistribution and trian-
gular distribution. The second and third row show the true
and false positive rate observed using Heuristic III.

Uniform dist. Triangular dist.
(until April 4, 2015) (since April 5, 2015)

#Traceable inputs 9885810 6174801

True positive 99.5% 96%

False positive 0.5% 4%

Our results of Table 5 clearly show that sampling mix-ins from

a triangular distribution does not mitigate well the attack based on

Heuristic III. In fact, the choice of mix-ins must take into account

the real spending behavior of users. To this end, we use the results

of Heuristic I to extract information on when a TXO (in terms of

block height) is created and when it gets spent. We then compute

the di�erence of the two block heights. The resulting data is shown

in Figure 12, where we plot the frequency of TXOs that share

the same di�erence. We observe that users’ spending habits can be

grouped into four distinct categories characterized by the di�erence

in the block heights:

(1) [0, 10] blocks: Only 0.17% of TXOs fall into this category.

(2) ]10, 100] blocks: 9.16% of TXO fall into this category

4
https://github.com/monero-project/monero/commit/

f2e8348be0c91c903e68ef582cee687c52411722, Accessed on April 14
th
2017.

(3) ]100, 1000] blocks: 28.4%
(4) ]1000,∞] blocks: 62.27%

We propose that instead of choosing mix-ins from a triangular

distribution, mix-ins should in fact be chosen while considering

the probability density function of Figure 12. For instance, the

probability of choosing a TXO that is less than 10 blocks old should

be smaller than the probability of choosing a TXO that is at least

100 blocks old. In fact, if mix-ins are not chosen according to the

spending behavior of Monero users, then it becomes possible to

break traceability.
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Figure 12: Spending habit of Monero users. In x-axis, we
have the di�erence between the block heightwhere the TXO
was created and the block height where the TXO was spent.
It measures the duration for which the TXO remained un-
spent. In y-axis, we plot the fraction of TXOs that share
the same di�erence. Only 1 out of every 100 data points are
shown.

6 RELATEDWORK
Our work is motivated by two prior unpublished works on the

privacy analysis of Monero: MRL-001 [18] and MRL-004 [9]. Both

of these have been authored by Monero researchers and develop-

ers in the form of Monero Research Lab (MRL) report. Below, we

categorically position our paper wrt these two prior works.

1. MRL-001 [18]: This work studies our attack using Heuristic I

and claims that it may lead to a chain reaction — equivalent to

our term cascade e�ect. While the authors argue that it is plausible

to mount the attack on the blockchain, they however do not pro-

vide any data analysis to demonstrate its impact in practice. Our

work complements [18] by presenting a comprehensive empirical

analysis that shows 1) The risks of using no mix-in in practice, 2)

How often the risks may arise? 3) How far the chain reaction can

propagate? 4) How the impact has evolved over time?

Moreover, the authors conclude that:
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Any CryptoNote coin that allows for only 1 mix-
in is vulnerable to a slow chain reaction in which
the owner of very few private keys can violate the
untraceability of much larger number of other users.

The report further recommends enforcing a minimum mix-in of

two per input (whenever feasible). The recommendation was later

incorporated in the Monero protocol. Our work however shows

that even almost a year after implementing the recommendation,

the traceability risk still persists.

2. MRL-004 [9]: This is a more recent report that mainly studies

the need of denominations, Heuristic II and Heuristic III.

The work identi�es the problem with TXOs corresponding to

dust values for which it may be impossible to achieve a desired

anonymity-set size. In order to facilitate mixing and to guaran-

tee that su�cient liquidity is maintained, the authors propose the

idea of denominations. However, as we show, over 99.8% of output

values are not denomination compliant. Moreover, 93% of output

values appear only once. While the recommendation has indeed

been incorporated in Monero, our work clearly shows that denomi-

nations cannot be fully enforced in practice due to the underlying

system constraints.

Heuristic II has also been studied as a hypothetical situation

and a mitigation strategy has been suggested. More concretely, the

report suggests that the protocol must prevent output merging by

incorporating the idea of “pay-in-stream”. The idea is to create as

less outputs as possible per transaction by splitting the amount

and making the payment over several transactions. Our results on

Heuristic II suggest that the output merging is still prevalent among

non RingCTs, a bit less so for RingCTs.

As for Heuristic III, the report mentions that temporal analysis

is a potential threat and argue that in order to prevent the attack:

... the developers of Monero must estimate the prob-
ability distribution governing the age of transaction
outputs.

The report however does not provide any result how on to es-

timate the age of TXOs. It is argued that this would require per-

forming a blockchain analysis. In light of this, our work studies the

spending habit users and empirically provides the desired probabil-

ity distribution function. We hope that our results can be used to

improve the mix-in strategy.

Note that since Monero developers chose not to perform the

required blockchain analysis, they decided on employing a triangu-

lar distribution to sample the mix-ins from. Our work shows that

a triangular distribution does not mitigate well attacks based on

temporal analysis.

7 CONCLUSION
To summarize, this work presents several attacks on the traceability

guarantees of Monero. Our attacks are easy to mount and only

requires a passive blockchain analysis. Moreover, our attacks are

e�ective as over 87% of inputs are rendered traceable. We also found

some traceability results on RingCTs and �nally propose a better

method (than the one currently employed) to choose mix-ins that

mitigates temporal analysis.

Our results hereby rea�rm the weaknesses of anonymity-set size

as a privacy metric. As a future work, we aim to study traceability

under active attacks on Monero, where the adversary can take part

in the protocol as a malicious user.
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