Skip to main content

The Pathogenesis of Vascular Disease

  • Chapter
Textbook of Angiology

Abstract

The prevalence of vascular disease has increased in both the United States and Europe since the end of World War II. The pathogenesis of vascular disease has been directly linked to changes in dietary habits and lifestyle practices and the discovery of penicillin by Sir Alexander Fleming in 1928, which led to a reduction in deaths secondary to bacterial infections. Multiple theories have evolved regarding the various factors associated with an increased risk of vascular disease. It is important to realize, however, that the study of the pathogenesis and subsequent treatment of vascular disease requires a “bigger picture” approach rather than consideration of just one or two factors. In this chapter, we review the contributions made by many investigators who have looked at one or more of these issues. We discuss the relationship (Fleming’s Unified Theory of Vascular Disease1) between these factors (Figure 64.1) and their overall role in the pathogenesis of vascular disease, including coronary artery disease, carotid artery disease, and peripheral vascular disease. We also review the importance and benefit of looking at each of these contributing factors when evaluating and treating an individual with vascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fleming RM. Determining the outcome of risk factor modification using positron emission tomography (PET) imaging. Paper presented at: International College of Angiology 4th World Congress; June 29, 1998; Lisbon, Portugal.

    Google Scholar 

  2. Stary HC, et al. Evolution of atherosclerotic plaques in the coronary arteries of young adults [abstract]. Arteriosclerosis. 1983;2:471.

    Google Scholar 

  3. Hansson GK, et al. Ultrastructural studies on nonathero-sclerotic rabbits. Exp Mol Pathol. 1980;33:301.

    Article  Google Scholar 

  4. Fleming RM, Ketchum K, Fleming DM, Gaede R. Treating hyperlipidemia in the elderly. Angiology. 1995;46:1075–1083.

    Article  PubMed  CAS  Google Scholar 

  5. Fleming RM, Ketchum K, Fleming DM, Gaede R. Assessing the independent effect of dietary counseling and hypolipidemic medications on serum lipids. Angiology. 1996;47:831–840.

    Article  PubMed  CAS  Google Scholar 

  6. Fleming RM. How to Bypass Your Bypass: What Your Doctor Doesn’t Tell You About Cholesterol and Your Diet. Bethel, Conn: Rutledge Books; 1997.

    Google Scholar 

  7. McMurry MP, Cerqueira MT, Connor SL, Connor WE. Changes in lipid and lipoprotein levels and body weight in Tarahumara Indians after consumption of an affluent diet. N Engl J Med. 1991;325:1704–l708.

    Article  PubMed  CAS  Google Scholar 

  8. Staab ME, Simari RD, Srivatsa SS, et al. Enhanced angiogenesis and unfavorable remodeling in injured porcine coronary artery lesions: effects of local basic fibroblast growth factor delivery. Angiology. 1997;48:753–760.

    Article  PubMed  CAS  Google Scholar 

  9. Plotnick GD, Corretti MC, Vogel RA. Effect of antioxidant vitamins on the transient impairment of endothelium-dependent brachial artery vasoactivity following a single high-fat meal. JAMA. 1997;278:1682–1686.

    Article  PubMed  CAS  Google Scholar 

  10. Newman WP, Freedman DS, Voors AW, Freedman DS, Voors AW. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. The Bogalusa Heart Study. N Engl J Med. 1986;314:138–144.

    Article  PubMed  Google Scholar 

  11. Prasad K, Kalra J. Oxygen free radicals and hypercholesterolemic atherosclerosis: effect of vitamin E. Am Heart J. 1993;125:958–973.

    Article  PubMed  CAS  Google Scholar 

  12. McCully KS, Wilson RB. Homocysteine theory of arteriosclerosis. Atherosclerosis. 1975;22:215–227.

    Article  PubMed  CAS  Google Scholar 

  13. Verhoef P, Hennekens CH, Malinow MR, Willett WC, Stampfer MJ. A prospective study of plasma homocyst(e)ine and risk of ischemic stroke. Stroke. 1994;25:1924–1930.

    Article  PubMed  CAS  Google Scholar 

  14. Alfthan G, PekkanenJ, Jauhianen M, et al. Relation of serum homocysteine and lipoprotein (a) concentrations to atherosclerotic disease in a prospective Finnish population based study. Atherosclerosis. 1994;106:9–19.

    Article  PubMed  CAS  Google Scholar 

  15. Selhub J, Jacques PF, Bostom AG, et al. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med. 1995;332:286–291.

    Article  PubMed  CAS  Google Scholar 

  16. Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG. Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet. 1995;346:1395–1398.

    Article  PubMed  CAS  Google Scholar 

  17. Jacobsen DW, Savon SR, Stewart RW, et al. Limited capacity for homocysteine catabolism in vascular cells and tissues: a pathophysiologic mechanism for arterial damage in hyperhomocysteinemia [abstract]. Circulation 1995;92(suppl 1):104.

    Google Scholar 

  18. Tsai J-C, Perella MA, Yoshizumi M, et al. Promotion of vascular smooth muscle growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci U S A. 1994;91:6369–6373.

    Article  PubMed  CAS  Google Scholar 

  19. Lentz SR, Sobey CG, Piegors DJ, et al. Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J Clin Invest. 1996;98:24–29.

    Article  PubMed  CAS  Google Scholar 

  20. Parthasarathy S. Oxidation of low-density lipoproteins by thiol compounds leads to its recognition by the acetyl LDL receptor. Biochim Biophys Acta. 1987;917:337–340.

    Article  PubMed  CAS  Google Scholar 

  21. Olszewski AJ, McCully KS. Homocysteine metabolism and the oxidative modification of proteins and lipids. Free Radic Biol Med. 1993;14:683–693.

    Article  PubMed  CAS  Google Scholar 

  22. Pancharuniti N, Lewis CA, Sauberlich HE, et al. Plasma homocyst(e)ine, folate, and vitamin B-12 concentrations and risk for early-onset coronary artery disease. Am J Clin Nutr. 1994;59:940–948.

    PubMed  CAS  Google Scholar 

  23. Mayer EM, Jacobsen DW, Robinson K Homocysteine and coronary atherosclerosis. J Am Coll Cardiol. 1996;27:517–527.

    Article  PubMed  CAS  Google Scholar 

  24. Graham IM, Daly LE, Refsum HM, et al. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA. 1997;277:1775–1781.

    Article  PubMed  CAS  Google Scholar 

  25. Tawakol A, Omland T, Gerhard M, Wu JT, Creager MA. Hyperhomocysteinemia is associated with impaired en-dothelial-dependent vasodilation in humans. Circ J Am Heart Assoc. 1997;95:1191–1121.

    Google Scholar 

  26. Kottke Marchant K, Green R, Jacobsen DW, et al. High plasma homocysteine: a risk factor for arterial and venous thrombosis in patients with normal hypercoagulation profiles. Clin Appl Thromb Hemost. In press.

    Google Scholar 

  27. Fleming RM, Harrington GM, Gibbs HR, Swafford J. Quantitative coronary arteriography and its assessment of atherosclerosis. Part I. Examining the independent variables. Angiology. 1994;45:829–833.

    Article  PubMed  CAS  Google Scholar 

  28. Fleming RM, Harrington GM. Quantitative coronary arteriography and its assessment of atherosclerosis. Part II. Calculating stenosis flow reserve from percent diameter stenosis. Angiology. 1994;45:835–840.

    Article  PubMed  CAS  Google Scholar 

  29. Eaton DL, Fless GM, Kohr WJ, et al. Partial amino acid sequence of apolipoprotein(a) shows that it is homologous to plasminogen. Proc Natl Acad Sci U S A. 1987;84:3224–3228.

    Article  PubMed  CAS  Google Scholar 

  30. Elwood PC, Yarnell JW, Pickering J, Fehily AM, O’Brien JR. Exercise, fibrinogen, and other risk factors for is-chaemic heart disease. Caerphilly Prospective Heart Disease Study. Br Heart J. 1993;69:183–187.

    Article  PubMed  CAS  Google Scholar 

  31. Rauramaa R, Salonen JT, Kukkonen-Harjula K, et al. Effects of mild physical exercise on serum lipoproteins and metabolites of arachidonic acid: a controlled randomised trial in middle-aged men. BMJ (Clin Res Ed). 1984;288:603–606.

    Article  CAS  Google Scholar 

  32. Stephens NG, Parsons A, Schofield PM, Kelly F, Cheese-man K, Mitchinson MJ. Randomized controlled trial of vitamin E in patients with coronary disease. Cambridge Heart Antioxidant Study (CHAOS). Lancet. 1996;347:781–786.

    Article  PubMed  CAS  Google Scholar 

  33. Kushi LH, Folsom AR, Prineas RJ, Mink PJ, Wu Y, Bostick RM. Dietary antioxidant vitamins and death from coronary artery disease in postmenopausal women. N Engl J Med. 1996;334:1156–1162.

    Article  PubMed  CAS  Google Scholar 

  34. Kardinaal AF, Kok FJ, Ringstad J, et al. Antioxidants in adipose tissue and risk of myocardial infarction: the EURAMIC study. Lancet. 1993;342:1379–1384.

    Article  PubMed  CAS  Google Scholar 

  35. Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med. 1993;328:1450–1456.

    Article  PubMed  CAS  Google Scholar 

  36. Omenn GS, Goodman GE, Thornquist MD, et al. Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease. N Engl J Med. 1996;334:1150–1155.

    Article  PubMed  CAS  Google Scholar 

  37. Baker DE, Campbell RK. Vitamin and mineral supplementation in patients with diabetes mellitus. Diabetes Educ. 1992;18:420–427.

    Article  PubMed  CAS  Google Scholar 

  38. Prasad K, Gupta JB, Kalra J, Lee P, Mantha SV, Bharadwaj B. Oxidative stress as a mechanism of cardiac failure in chronic volume overload in canine model. J Mol Cell Cardiol. 1996;28:375–385.

    Article  PubMed  CAS  Google Scholar 

  39. Kushi LH, Folsom AR, Prineas RJ, et al. Dietary antioxidant vitamins and death from coronary heart disease in post-menopausal women. N Engl J Med. 1996;334:1156–1162.

    Article  PubMed  CAS  Google Scholar 

  40. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet. 1993;342:1007–1011.

    Article  PubMed  CAS  Google Scholar 

  41. Faggiotto A, Ross R, Harker L. Studies of hypercholes-terolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis. 1984;4:323.

    Article  PubMed  CAS  Google Scholar 

  42. Faggiotto A, Ross R. Studies of hypercholesterolemia in the nonhuman primate II: Fatty streak conversion to fibrous plaque. Arteriosclerosis. 1984;4:341.

    Article  PubMed  CAS  Google Scholar 

  43. Hughes SE, Crossman D, Hall PA. Expression of basic and acidic f ibroblast growth factors and their receptor in normal and atherosclerotic human arteries. Cardiovasc Res. 1993;27:1214–1219.

    Article  PubMed  CAS  Google Scholar 

  44. More RS, Brack MJ, Underwood MJ, Gershlick AH. Growth factor persistence after vessel wall injury in a rabbit angioplasty model. Am J Cardiol. 1994;73:1031–1032.

    Article  PubMed  CAS  Google Scholar 

  45. Fischell TA, Derby G, Tse TM, Stadius ML. Coronary artery vasoconstriction routinely occurs after percutaneous trans-luminal coronary angioplasty: a quantitative arteriographic analysis. Circ J Am Heart Assoc. 1988;78:1323–1334.

    CAS  Google Scholar 

  46. Altstidl R, Goth C, Lehmkuhl H, Bachmann K. Quantitative angiographic analysis of PTCA-induced coronary vasoconstriction in single-vessel coronary artery disease. Angiology. 1997;48:863–869.

    Article  PubMed  CAS  Google Scholar 

  47. Brogi E, Wu T, Namiki A, Isner JM. Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circ J Am Heart Assoc. 1994;90:649–652.

    CAS  Google Scholar 

  48. Stavri GT, Zachary IC, Baskerville PA, Martin JF, Erusalimsky JD. Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Circ J Am Heart Assoc. 1995;92:11–14.

    CAS  Google Scholar 

  49. Bombardini T, Picano E. The coronary angiogenetic effect of heparin: experimental basis and clinical evidence. Angiology. 1997;48:969–976.

    Article  PubMed  CAS  Google Scholar 

  50. Little TM, Butler BD. Dibutyryl cAMP effects on throm-boxane and leukotriene production in decompression-induced lung injury. Undersea Hyperb Med. 1997;24:185–191.

    PubMed  CAS  Google Scholar 

  51. Tan RA, Spector SL. Antileukotriene agents: finding their place in asthma therapy. Contemp Int Med. 1997;9:46–53.

    Google Scholar 

  52. O’Byrne PM, Israel E, Drazen JM. Antileukotrienes in the treatment of asthma. Ann Int Med. 1997;127:472–480.

    PubMed  Google Scholar 

  53. Muhlestein JB, Hammond EH, Carlquist JF, et al. Increased incidence of Chlamydia species within the coronary arteries of patients with symptomatic atherosclerotic versus other forms of cardiovascular disease. J Am Coll Cardiol. 1996;27:1555–1561.

    Article  PubMed  CAS  Google Scholar 

  54. Voie AL. Infections may cause secondary CVD events. Medical Tribune. Internist & Cardiologist Edition. August 14, 1997:1.

    Google Scholar 

  55. Jancin B. Antimicrobial prevention of MIs tested in trials. Internal Medicine News. October 1, 1997:8.

    Google Scholar 

  56. Boschert S. Severe periodontitis worsens diabetes, CAD. Internal Medicine News. November 15, 1997:10.

    Google Scholar 

  57. Maass M, Krause E, Engel PM, Kruger S. Endovascular presence of Chlamydia pneumoniae in patients with hemo-dynamically effective carotid artery stenosis. Angiology. 1997;48:699–706.

    Article  PubMed  CAS  Google Scholar 

  58. Fleming RM. The natural progression of atherosclerosis in an untreated patient with hyperlipidemia: assessment via cardiac PET. Int J Angiol. Submitted.

    Google Scholar 

  59. Fleming RM. The clinical importance of risk factor modification: looking at both myocardial viability (MV) and myocardial perfusion imaging (MPI). Int J Angiol. Submitted.

    Google Scholar 

  60. Fleming RM. The importance of physiologic information from cardiac PET in assessing coronary artery disease in people with “normal” coronary angiograms. Int J Angiol. Submitted.

    Google Scholar 

  61. Boschert S. Cholesterol often measured, but seldom treated. Internal Medicine News. September 1, 1997:40.

    Google Scholar 

  62. Modica P. Coffee drinking increases plasma homocysteine, possible CVD risk. Medical Tribune. Internist & Cardiologist Edition. February 6, 1997:2.

    Google Scholar 

  63. Allen S, Dashwood M, Morrison K, Yacoub M. Different leukotriene constrictor response in human atherosclerotic coronary arteries. Circulation. 1998:97:2406–2413.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fleming, R.M. (2000). The Pathogenesis of Vascular Disease. In: Chang, J.B. (eds) Textbook of Angiology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1190-7_64

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1190-7_64

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7039-3

  • Online ISBN: 978-1-4612-1190-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics