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Abstract—In this paper, based on certain variable trans-
formation, we apply the known (G’/G) method to seek exact
solutions for three fractional partial differential equations: the
space fractional (2+1)-dimensional breaking soliton equation-
s, the space-time fractional Fokas equation, and the space-
time fractional Kaup-Kupershmidt equation. The fractional
derivative is defined in the sense of modified Riemann-liouville
derivative. With the aid of mathematical software Maple, a
number of exact solutions including hyperbolic function solu-
tions, trigonometric function solutions, and rational function
solutions for them are obtained.

Index Terms—(G’/G) method, fractional partial differential
equation, exact solution, variable transformation.

I. INTRODUCTION

Fractional differential equations are generalizations of
classical differential equations of integer order, and can find
their applications in many fields of science and engineer-
ing. In the literature, research on the theory of differential
equations, integral equations and matrix equations include
various aspects, such as the existence and uniqueness of
solutions [1,2], seeking for exact solutions [3,4], numerical
method [5-7]. Among these investigations, research on the
theory and applications of fractional differential and integral
equations has been the focus of many studies due to their
frequent appearance in various applications in physics, biol-
ogy, engineering, signal processing, systems identification,
control theory, finance and fractional dynamics, and has
attracted much attention of more and more scholars. For
example, Bouhassoun [8] extended the telescoping decompo-
sition method to derive approximate analytical solutions of
fractional differential equations. Bijura [9] investigated the
solution of a singularly perturbed nonlinear system fractional
integral equations. Blackledge [10] investigated the applica-
tion of a certain fractional Diffusion equation, and applied
it for predicting market behavior. In [11-18], the existence,
uniqueness, stability of solutions, and numerical methods of
fractional differential equations were investigated.

In these investigations, we notice that very little attention is
paid to oscillation of fractional differential equations. Recent
results in this direction include Chen’s work [19,20] and
Zheng’s work [21]. In [19], Chen researched oscillation of
the following fractional differential equation:

[r(t)(Dαy(t))η]′− q(t)f(

∫ ∞

t

(v− t)−αy(v)dv) = 0, t > 0,
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where r, q are positive-valued functions, η is the quotient
of two odd positive numbers, α ∈ (0, 1), Dαy(t) denotes
the Liouville right-sided fractional derivative of order α

of x, and Dαy(t) = − 1
Γ(1− α)

d
dt

∫∞
t

(ξ − t)−αy(ξ)dξ.
Then in [20], under similar conditions to [19], some new
oscillation criteria are established for the following fractional
differential equation with damping term:

D1+αy(t)− p(t)Dαy(t)

+q(t)f(

∫ ∞

t

(v − t)−αy(v)dv) = 0, t > 0,

At the same time, in [21], Zheng researched oscillation of
the following nonlinear fractional differential equation with
damping term and more general form than the equations
mentioned above:

[a(t)(Dαx(t))γ ]′ + p(t)(Dαx(t))γ

−q(t)f(

∫ ∞

t

(ξ − t)−αx(ξ)dξ) = 0, t ∈ [t0,∞).

In this paper, we are concerned with oscillation for a class
of nonlinear fractional differential equations with nonlinear
damping term as follows:

Dα
t (r(t)k1(x(t), D

α
t x(t))) + p(t)k2(x(t), D

α
t x(t))D

α
t x(t)

+q(t)f(x(t)) = 0, t ≥ t0 ≥ 0, 0 < α < 1, (1)

where Dα
t (.) denotes the modified Riemann-liouville deriva-

tive [22] with respect to the variable t, the functions
r, q ∈ Cα([t0,∞), R+), p ∈ Cα([t0,∞), [0,∞), and Cα

denotes continuous derivative of order α, the function f
is continuous satisfying f(x)/x ≥ K for some positive
constant K and ∀x ̸= 0, k1 is continuously differentiable
satisfying k21(u, v) ≤ Avk1(u, v) for some positive constant
A, ∀v ∈ R\{0} and ∀u ∈ R.

The definition and some important properties for the
Jumarie’s modified Riemann-Liouville derivative of order α
are listed as follows (see also in [23-25]):

Dα
t f(t) =


1

Γ(1− α)
d
dt

∫ t

0
(t− ξ)−α(f(ξ)− f(0))dξ,

0 < α < 1,
(f (n)(t))(α−n), n ≤ α < n+ 1, n ≥ 1.

Dα
t t

r =
Γ(1 + r)

Γ(1 + r − α)
tr−α, (2)

Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t), (3)
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Dα
t f [g(t)] = f ′

g[g(t)]D
α
t g(t) = Dα

g f [g(t)](g
′(t))α. (4)

As usual, a nonconstant continuable solution x(t) of Eq.
(1) is called proper if sup

t≥t0

| x(t) |> 0. A proper solution

x(t) of Eq. (1) is called oscillatory if it has arbitrarily large
zeros, otherwise it is called non-oscillatory. Eq. (1) is called
oscillatory if all its solutions are oscillatory.

We organize the next of this paper as follows. In Section
2, we establish some new interval oscillation criteria for
Eq. (1) under the condition for f(x) without monotonicity,
while oscillation criteria are established for Eq. (1) under
the condition for f(x) with monotonicity in Section 3. We
present some examples for the results established in Section
4. Some conclusions are presented at the end of this paper.

For the sake of convenience, in the next of this paper, we
denote ξ0 =

tα0
Γ(1 + α)

, ξ = tα

Γ(1 + α)
, R+ = (0,∞), and

let h1, h2, H ∈ C([ξ0,∞), R) satisfying

H(ξ, ξ) = 0, H(ξ, s) > 0, ξ > s ≥ ξ0.

H has continuous partial derivatives ∂H(ξ, s)
∂ξ

and ∂H(ξ, s)
∂s

on [ξ0,∞) such that

∂H(ξ, s)

∂ξ
= −h1(ξ, s)

√
H(ξ, s),

∂H(ξ, s)

∂s
= −h2(ξ, s)

√
H(ξ, s), ξ > s ≥ ξ0.

II. INTERVAL OSCILLATION CRITERIA WITH f(x) NOT
BEING MONOTONE

Lemma 2.1. Suppose that k2(u, v) : R2 → R2 is continuous
and has the sign of v for all v ∈ R\{0} and all u ∈ R.
If x(t) is a non-oscillatory solution of Eq. (1), then
x(t)Dα

t x(t) < 0 for t ≥ t∗, where t∗ ≥ t0 is sufficiently
large.

Proof. Suppose x(t) be a proper non-oscillatory solution of
Eq. (1). Let r(t) = r̃(ξ), x(t) = x̃(ξ), p(t) = p̃(ξ), q(t) =

q̃(ξ), where ξ = tα

Γ(1 + α)
. Then by use of Eq. (2) we

obtain Dα
t ξ(t) = 1, and furthermore by use of the first

equality in Eq. (4), we have

Dα
t r(t) = Dα

t r̃(ξ) = r̃′(ξ)Dα
t ξ(t) = r̃′(ξ).

Similarly we have Dα
t x(t) = x̃′(ξ). So Eq. (1) can be

transformed into the following form:

(r̃(ξ)k1(x̃(ξ), x̃
′(ξ)))′ + p̃(ξ)k2(x̃(ξ), x̃

′(ξ))x̃′(ξ)

+q̃(ξ)f(x̃(ξ)) = 0, ξ ≥ ξ0 ≥ 0. (5)

Then x̃(ξ) be a proper non-oscillatory solution of Eq.
(5). By [26, Lemma 1], we have x̃(ξ)x̃′(ξ) < 0, ξ ≥ ξ∗,

where ξ∗ ≥ ξ0 is sufficiently large. Let ξ∗ =
tα∗

Γ(1 + α)
.

Then x(t)Dα
t x(t) < 0, t ≥ t∗, and the proof is complete.

Theorem 2.1. Under the conditions of Lemma 2.1,
furthermore, assume that there exists ρ ∈ Cα([t0,∞), R+)

such that for any sufficiently large T ≥ ξ0, there exist
a, b, c with T ≤ a < c < b satisfying

1

H(c, a)

∫ c

a

H(s, a)Kρ̃(s)q̃(s)ds

+
1

H(b, c)

∫ b

c

H(b, s)Kρ̃(s)q̃(s)ds

>
A

4H(c, a)

∫ c

a

r̃(s)ρ̃(s)Q2
1(s, a)ds

+
A

4H(b, c)

∫ b

c

r̃(s)ρ̃(s)Q2
2(b, s)ds, (6)

where ρ̃(ξ) = ρ(t), q̃(ξ) = q(t), r̃(ξ) = r(t),

Q1(s, ξ) = h1(s, ξ) − ρ̃′(s)
ρ̃(s)

√
H(s, ξ), Q2(ξ, s) =

h2(ξ, s)−
ρ̃′(s)
ρ̃(s)

√
H(ξ, s), then Eq. (1) is oscillatory.

Proof: Suppose to the contrary that x(t) be a non-
oscillatory solution of Eq. (1). Without loss of generality,
we may assume that x(t) > 0 on [T0,∞), where T0 ≥ t0 is
sufficiently large. Furthermore, by Lemma 2.1, there exists
t∗ ≥ T0 such that Dα

t x(t) < 0, t ≥ t∗. So by the assumption
on Eq. (1) we have k1(x(t), D

α
t x(t)) ≥ ADα

t x(t), t ≥ t∗.
Define

w(t) = ρ(t)
r(t)k1(x(t), D

α
t x(t))

x(t)
. (7)

Then for t ≥ t∗, we have

Dα
t w(t) =

Dα
t ρ(t)

ρ(t)
w(t)−ρ(t)p(t)

k2(x(t), D
α
t x(t))D

α
t x(t)

x(t)

−ρ(t)q(t)
f(x(t))

x(t)
− ρ(t)

r(t)k1(x(t), D
α
t x(t))D

α
t x(t)

x2(t)

=
Dα

t ρ(t)

ρ(t)
w(t)− ρ(t)p(t)

k2(x(t), D
α
t x(t))D

α
t x(t)

x(t)

−ρ(t)q(t)
f(x(t))

x(t)
− w2(t)Dα

t x(t)

ρ(t)r(t)k1(x(t), D
α
t x(t))

≤ Dα
t ρ(t)

ρ(t)
w(t)− ρ(t)p(t)

k2(x(t), D
α
t x(t))D

α
t x(t)

x(t)

−ρ(t)q(t)
f(x(t))

x(t)
− w2(t)

Aρ(t)r(t)
. (8)

Since k2(x(t), D
α
t x(t))D

α
t x(t) ≥ 0, furthermore we obtain

Dα
t w(t) ≤ −Kρ(t)q(t)+

Dα
t ρ(t)

ρ(t)
w(t)− w2(t)

Ar(t)ρ(t)
, t ≥ t∗.

(9)
Let w(t) = w̃(ξ). Then Dα

t w(t) = w̃′(ξ), Dα
t ρ(t) = ρ̃′(ξ),

and (9) is transformed into the following form

w̃′(ξ) ≤ −Kρ̃(ξ)q̃(ξ) +
ρ̃′(ξ)

ρ̃(ξ)
w̃(ξ)− w̃2(ξ)

Ar̃(ξ)ρ̃(ξ)
, ξ ≥ ξ∗,

(10)
where ξ∗ =

tα∗
Γ(1 + α)

.

Select a, b, c arbitrarily in [ξ∗,∞) with b > c > a.
Substituting ξ with s, multiplying both sides of (10) by
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H(ξ, s) and integrating it with respect to s from c to ξ for
ξ ∈ [c, b), we get that∫ ξ

c

H(ξ, s)Kρ̃(s)q̃(s)ds ≤ −
∫ ξ

c

H(ξ, s)w̃′(s)ds

+

∫ ξ

c

H(ξ, s)
ρ̃′(s)

ρ̃(s)
w̃(s)ds−

∫ ξ

c

H(ξ, s)
w̃2(s)

Aρ̃(s)r̃(s)
ds

= H(ξ, c)w̃(c)−
∫ ξ

c

[(
H(ξ, s)

Aρ̃(s)r̃(s)
)1/2w̃(s)

+
1

2
(Aρ̃(s)r̃(s))1/2Q2(ξ, s)]

2ds+

∫ ξ

c

Aρ̃(s)r̃(s)

4
Q2

2(ξ, s)ds

≤ H(ξ, c)w̃(c) +

∫ ξ

c

Aρ̃(s)r̃(s)

4
Q2

2(ξ, s)ds. (11)

Dividing both sides of the inequality (11) by H(ξ, c) and
let ξ → b−, we obtain

1

H(b, c)

∫ b

c

H(b, s)Kρ̃(s)q̃(s)ds ≤

w̃(c) +
1

H(b, c)

∫ b

c

Aρ̃(s)r̃(s)

4
Q2

2(b, s)ds. (12)

On the other hand, substituting ξ with s, multiplying both
sides of (10) by H(s, ξ) and integrating it with respect to s
from ξ to c for ξ ∈ (a, c], we get that∫ c

ξ

H(s, ξ)Kρ̃(s)q̃(s)ds ≤ −
∫ c

ξ

H(s, ξ)w̃′(s)ds

+

∫ c

ξ

H(s, ξ)
ρ̃′(s)

ρ̃(s)
w̃(s)ds−

∫ c

ξ

H(s, ξ)
w̃2(s)

Aρ̃(s)r̃(s)
ds

= −H(c, ξ)w̃(c)−
∫ c

ξ

[(
H(s, ξ)

Aρ̃(s)r̃(s)
)1/2w̃(s)

+
1

2
(Aρ̃(s)r̃(s))1/2Q1(s, ξ)]

2ds+

∫ c

ξ

Aρ̃(s)r̃(s)

4
Q2

1(s, ξ)ds

≤ −H(c, ξ)w̃(c) +

∫ c

ξ

Aρ̃(s)r̃(s)

4
Q2

1(s, ξ)ds. (13)

Dividing both sides of the inequality (13) by H(c, ξ) and
letting ξ → a+, we obtain

1

H(c, a)

∫ c

a

H(s, a)Kρ̃(s)q̃(s)ds ≤

−w̃(c) +
1

H(c, a)

∫ c

a

Aρ̃(s)r̃(s)

4
Q2

1(s, a)ds. (14)

A combination of (12) and (14) yields

1

H(c, a)

∫ c

a

H(s, a)Kρ̃(s)q̃(s)ds

+
1

H(b, c)

∫ b

c

H(b, s)Kρ̃(s)q̃(s)ds

≤ A

4H(c, a)

∫ c

a

r̃(s)ρ̃(s)Q2
1(s, a)ds

+
A

4H(b, c)

∫ b

c

r̃(s)ρ̃(s)Q2
2(b, s)ds,

which contradicts to (6). So the proof is complete.

Theorem 2.2. Under the conditions of Theorem 2.1,
furthermore, suppose (6) does not hold. If for any l ≥ ξ0,

lim
ξ→∞

sup

∫ ξ

l

[
H(s, l)Kρ̃(s)q̃(s)− Ar̃(s)ρ̃(s)

4
Q2

1(s, l)

]
ds > 0

(15)
and

lim
ξ→∞

sup

∫ ξ

l

[
H(ξ, s)Kρ̃(s)q̃(s)− Ar̃(s)ρ̃(s)

4
Q2

2(ξ, s)

]
ds > 0,

(16)
then Eq. (1) is oscillatory.

Proof: For any T ≥ ξ0, let a = T . In (15) we choose l = a.
Then there exists c > a such that∫ c

a

[
H(s, a)Kρ̃(s)q̃(s)− Ar̃(s)ρ̃(s)

4
Q2

1(s, a)

]
ds > 0.

(17)
In (16) we choose l = c. Then there exists b > c such that∫ b

c

[
H(b, s)Kρ̃(s)q̃(s)− Ar̃(s)ρ̃(s)

4
Q2

2(b, s)

]
ds > 0.

(18)
Combining (17) and (18) we obtain (6). The conclusion
thus comes from Theorem 2.1, and the proof is complete.

In Theorems 2.1-2.2, if we choose H(ξ, s) = (ξ−s)λ, ξ ≥
s ≥ ξ0, where λ > 1 is a constant, then we obtain the
following two corollaries.

Corollary 2.1. Under the conditions of Theorem 2.1,
if for any sufficiently large T ≥ ξ0, there exist a, b, c with
T ≤ a < c < b satisfying

1

(c− a)λ

∫ c

a

(s− a)λKρ̃(s)q̃(s)ds

+
1

(b− c)λ

∫ b

c

(b− s)λKρ(s)q̃(s)ds

>
A

4(c− a)λ

∫ c

a

r̃(s)ρ̃(s)(s− a)λ−2

(
λ+

ρ̃′(s)

ρ̃(s)
(s− a)

)2

ds

+
A

4(b− c)λ

∫ b

c

r̃(s)ρ̃(s)(b−s)λ−2

(
λ− ρ̃′(s)

ρ̃(s)
(b− s)

)2

ds,

(19)
then Eq. (1) is oscillatory.

Corollary 2.2. Under the conditions of Theorem 2.2,
if for any l ≥ ξ0,

lim
ξ→∞

sup

∫ ξ

l

[(s− l)λKρ̃(s)q̃(s)

−Ar̃(s)ρ̃(s)

4
(s− l)λ−2(λ+

ρ̃′(s)

ρ̃(s)
(s− l))2]ds > 0 (20)

and

lim
ξ→∞

sup

∫ ξ

l

[(ξ − s)λKρ̃(s)q̃(s)

−Ar̃(s)ρ̃(s)

4
(ξ − s)λ−2(λ− ρ̃′(s)

ρ̃(s)
(ξ − s))2]ds > 0, (21)
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then Eq. (1) is oscillatory.

Theorem 2.3. Under the conditions of Theorem 2.1,
furthermore, suppose (6) does not hold. If for any T ≥ ξ0,
there exist a, b with b > a ≥ T such that for any
u ∈ C[a, b], u′(t) ∈ L2[a, b], u(a) = u(b) = 0, the
following inequality holds:∫ b

a

[u2(s)Kq̃(s)ρ̃(s)

−Ar̃(s)ρ̃(s)(u′(s) +
1

2
u(s)

ρ̃′(s)

ρ̃(s)
)2]ds > 0, (22)

then Eq. (1) is oscillatory.

Proof: Suppose to the contrary that x(t) be a non-
oscillatory solution of Eq. (1). Without loss of generality,
we may assume that x(t) > 0 on [T0,∞), where T0 ≥ t0 is
sufficiently large. Similar to the proof of Theorem 2.1, we
obtain (10). Select a, b arbitrarily in [ξ∗,∞) with b > a.
Substituting ξ with s, multiplying both sides of (10) by
u2(s), integrating it with respect to s from a to b and using
u(a) = u(b) = 0, we get that∫ b

a

u2(s)Kq̃(s)ρ̃(s)ds ≤ −
∫ b

a

u2(s)w̃′(s)ds

−
∫ b

a

u2(s)
w̃2(s)

Ar̃(s)ρ̃(s)
ds+

∫ b

a

u2(s)w̃(s)
ρ̃′(s)

ρ̃(s)
ds

= 2

∫ b

a

u(s)u′(s)w̃(s)ds−
∫ b

a

u2(s)
w̃2(s)

Ar̃(s)ρ̃(s)
ds

+

∫ b

a

u2(s)w̃(s)
ρ̃′(s)

ρ̃(s)
ds

= −
∫ b

a

{[

√
1

Ar̃(s)ρ̃(s)
u(s)w̃(s)

−
√

Ar̃(s)ρ̃(s)(u′(s) +
1

2
u(s)

ρ̃′(s)

ρ̃(s)
)]2

+Ar̃(s)ρ̃(s)(u′(s) +
1

2
u(s)

ρ̃′(s)

ρ̃(s)
)2}ds.

Moreover,∫ b

a

[u2(s)Kq̃(s)ρ̃(s)−Ar̃(s)ρ̃(s)(u′(s) +
1

2
u(s)

ρ̃′(s)

ρ̃(s)
)2]ds ≤ 0,

(23)
which contradicts to the assumption (22). So every solution
of Eq. (1) is oscillatory, and the proof is complete.

III. INTERVAL OSCILLATION CRITERIA WITH f(x) BEING
MONOTONE

Theorem 3.1. Under the conditions of Lemma 2.1, further-
more, assume f ∈ C1[R,R] satisfying f ′(x) ≥ µ > 0 for
x ̸= 0, and for any sufficiently large T ≥ ξ0, there exist
a, b, c with T ≤ a < c < b such that

1

H(c, a)

∫ c

a

H(s, a)ρ̃(s)q̃(s)ds+
1

H(b, c)

∫ b

c

H(b, s)ρ̃(s)q̃(s)ds

>
A

4µH(c, a)

∫ c

a

r̃(s)ρ̃(s)Q2
1(s, a)ds

+
A

4µH(b, c)

∫ b

c

r̃(s)ρ̃(s)Q2
2(b, s)ds, (24)

where ρ̃, q̃, r̃, Q1, Q2 are defined as Theorem 2.1, then
Eq. (1) is oscillatory.

Proof. Suppose to the contrary that x(t) be a non-
oscillatory solution of Eq. (1). Without loss of generality,
we may assume that x(t) > 0 on [T0,∞), where T0 ≥ t0 is
sufficiently large. Furthermore, by Lemma 2.1, there exists
t∗ ≥ T0 such that Dα

t x(t) < 0, t ≥ t∗. So by the assumption
on Eq. (1) we have k1(x(t), D

α
t x(t)) ≥ ADα

t x(t), t ≥ t∗.
Define

w(t) = ρ(t)
r(t)k1(x(t), D

α
t x(t))

f(x(t))
. (25)

Then for t ≥ t∗, we have

Dα
t w(t) =

Dα
t ρ(t)

ρ(t)
w(t)−ρ(t)p(t)

k2(x(t), D
α
t x(t))D

α
t x(t)

f(x(t))

−ρ(t)q(t)− ρ(t)
r(t)k1(x(t), D

α
t x(t))f

′(x(t))Dα
t x(t)

f2(x(t))

=
Dα

t ρ(t)

ρ(t)
w(t)− ρ(t)p(t)

k2(x(t), D
α
t x(t))D

α
t x(t)

f(x(t))

−ρ(t)q(t)− w2(t)f ′(x(t))Dα
t x(t)

ρ(t)r(t)k1(x(t), D
α
t x(t))

≤ Dα
t ρ(t)

ρ(t)
w(t)− ρ(t)p(t)

k2(x(t), D
α
t x(t))D

α
t x(t)

f(x(t))

−ρ(t)q(t)− µw2(t)

Aρ(t)r(t)

≤ Dα
t ρ(t)

ρ(t)
w(t)− ρ(t)q(t)− µw2(t)

Aρ(t)r(t)
. (26)

We notice that (26) is similar to (9). So by similar process
from (9) to the end in Theorem 2.1, we can deduce the
desired result.

Theorem 3.2. Under the conditions of Theorem 3.1,
furthermore, suppose (24) does not hold. If for any l ≥ ξ0,

lim sup
ξ→∞

∫ ξ

l

[
H(s, l)ρ̃(s)q̃(s)− Ar̃(s)ρ̃(s)

4µ
Q2

1(s, l)

]
ds > 0

(27)
and

lim sup
ξ→∞

∫ ξ

l

[
H(ξ, s)ρ̃(s)q̃(s)− Ar̃(s)ρ̃(s)

4µ
Q2

2(ξ, s)

]
ds > 0,

(28)
then Eq. (1) is oscillatory.

The proof of Theorem 3.2 is similar to Theorem 2.2, and
we omit it here.

In Theorems 3.1-3.2, if we choose H(ξ, s) = (ξ−s)λ, ξ ≥
s ≥ ξ0, where λ > 1 is a constant, then we obtain the
following two corollaries, which are similar to Corollaries
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2.1-2.2.

Corollary 3.1. Under the conditions of Theorem 3.1,
if for any sufficiently large T ≥ ξ0, there exist a, b, c with
T ≤ a < c < b satisfying

1

(c− a)λ

∫ c

a

(s− a)λρ̃(s)q̃(s)ds

+
1

(b− c)λ

∫ b

c

(b− s)λρ(s)q̃(s)ds

>
A

4µ(c− a)λ

∫ c

a

r̃(s)ρ̃(s)(s− a)λ−2

(
λ+

ρ̃′(s)

ρ̃(s)
(s− a)

)2

ds

+
A

4µ(b− c)λ

∫ b

c

r̃(s)ρ̃(s)(b− s)λ−2

(
λ− ρ̃′(s)

ρ̃(s)
(b− s)

)2

ds,

(29)
then Eq. (1) is oscillatory.

Corollary 3.2. Under the conditions of Theorem 3.2,
if for any l ≥ ξ0,

lim
ξ→∞

sup

∫ ξ

l

[(s− l)λKρ̃(s)q̃(s)

−Ar̃(s)ρ̃(s)

4µ
(s− l)λ−2(λ+

ρ̃′(s)

ρ̃(s)
(s− l))2]ds > 0 (30)

and

lim
ξ→∞

sup

∫ ξ

l

[(ξ − s)λKρ̃(s)q̃(s)

−Ar̃(s)ρ̃(s)

4µ
(ξ − s)λ−2(λ− ρ̃′(s)

ρ̃(s)
(ξ − s))2]ds > 0, (31)

then Eq. (1) is oscillatory.

Theorem 3.3. Under the conditions of Theorem 3.1,
furthermore, suppose (24) does not hold. If for any T ≥ ξ0,
there exist a, b with b > a ≥ T such that for any
u ∈ C[a, b], u′(t) ∈ L2[a, b], u(a) = u(b) = 0, the
following inequality holds:∫ b

a

[u2(s)q̃(s)ρ̃(s)

−Ar̃(s)ρ̃(s)

µ
(u′(s) +

1

2
u(s)

ρ̃′(s)

ρ̃(s)
)2]ds > 0, (32)

then Eq. (1) is oscillatory.

IV. APPLICATIONS

Example 1. Consider the nonlinear fractional differential
equation with damping term

Dα
t (sin

2(
tα

Γ(1 + α)
)e−x2(t)Dα

t x(t)) + t2x4(t)(Dα
t x(t))

2+

x(t)(1 + x2(t)) = 0, t ≥ 2, 0 < α < 1. (33)

In fact, if we set in Eq. (1) t0 = 2, r(t) =

sin2( tα

Γ(1 + α)
), p(t) = t2, q(t) ≡ 1, k1(x(t), D

α
t x(t)) =

e−x2(t)Dα
t x(t), k2(x(t), D

α
t x(t)) = x4(t)Dα

t x(t), f(x) =
x+ x3, then we obtain (33).

So k21(x(t), D
α
t x(t)) = e−2x2(t)(Dα

t x(t))
2 ≤

e−x2(t)(Dα
t x(t))

2, which implies A = 1. Furthermore,
f ′(x) = 1 + 3x2 ≥ 1, t ≥ 0, and then µ = 1. Since ξ =

tα

Γ(1 + α)
, then r̃(ξ) = r(t) = sin2( tα

Γ(1 + α)
) = sin2 ξ.

In (32), letting ρ̃(s) ≡ 1, a = 2kπ, b = 2kπ+π, u(s) =
sin s, then u(a) = u(b) = 0. Considering q̃(s) ≡ 1, we
obtain∫ 2kπ+π

2kπ

(
sin2 s− sin2 s cos2 s

)
ds =

∫ 2kπ+π

2kπ

sin4 sds > 0.

Therefore, Eq. (33) is oscillatory by Theorem 3.3.

Example 2. Consider the nonlinear fractional differential
equation with damping term

Dα
t

(
(

tα

Γ(1 + α)
)

2
3

1

1 + x2(t)
Dα

t x(t)

)
+ ln(5 + t2) cos2 t

(Dα
t x(t))

2+
x(t)(2 + x2(t))

1 + x2(t)
= 0, t ≥ 5, 0 < α < 1. (34)

In fact, if we set in Eq. (1) t0 = 5, r(t) =

( tα

Γ(1 + α)
)

2
3 , p(t) = ln(5 + t2), q(t) ≡ 1,

k1(x(t), D
α
t x(t)) =

1
1 + x2(t)

Dα
t x(t), k2(x(t), D

α
t x(t)) =

cos2(t)(Dα
t x(t))

2, f(x) =
x(2 + x2)
1 + x2 , then we obtain (34).

So k21(x(t), D
α
t x(t)) = ( 1

1 + x2(t)
)2(Dα

t x(t))
2 ≤

1
1 + x2(t)

(Dα
t x(t))

2, which implies A = 1. Furthermore,

r̃(ξ) = r(t) = ( tα

Γ(1 + α)
)

2
3 = ξ

2
3 .

We notice that it is complicated in obtaining the lower-
bound of f ′(x), while one can easily see f(x)/x ≥ 1. So
K = 1, and in (20)-(21), after letting ρ̃(s) ≡ 1, λ = 2,
considering q̃(s) ≡ 1, we obtain

lim
ξ→∞

sup

∫ ξ

l

[(s− l)λKρ̃(s)q̃(s)

−Ar̃(s)ρ̃(s)

4
(s− l)λ−2(λ+

ρ̃′(s)

ρ̃(s)
(s− l))2]ds

= lim
ξ→∞

sup

∫ ξ

l

[
(s− l)2 − s

2
3

]
ds = ∞

and

lim
ξ→∞

sup

∫ ξ

l

[(ξ − s)λKρ̃(s)q̃(s)

−Ar̃(s)ρ̃(s)

4
(ξ − s)λ−2(λ− ρ̃′(s)

ρ̃(s)
(ξ − s))2]ds

= lim
ξ→∞

sup

∫ ξ

l

[
(ξ − s)2 − s

2
3

]
ds = ∞.

So according to Corollary 2.2 we deduce that Eq. (34) is
oscillatory.

Remark. We note that the oscillatory character of the
two examples above are not deducible from previously
known oscillation criteria in the literature.
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V. CONCLUSIONS

We have established some new interval oscillation criteria
for a class of nonlinear fractional differential equations
with nonlinear damping term. As one can see, the variable
transformation used in ξ is very important, which ensures that
certain fractional differential equations can be turned into an-
other ordinary differential equations of integer order, whose
oscillation criteria can be established by generalized Riccati
transformation, inequality and integration average technique.
Finally, we note that this approach can also be applied to
research oscillation for other fractional differential equations
involving the modified Riemann-liouville derivative.
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