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Abstract

This paper introduces a new generalization of tamsimuted additive Weibull
distribution by Elbatal and Aryal [10], based onew family of lifetime distribution.
We refer to the new distribution as a new transohwdditive Weibull (NTAW)
distribution. The new model contains some of lifedi distributions as special cases
such as the transmuted additive Weibull, exponwtiamodified Weibull,
exponentiated Weibull, exponentiated exponenti@ngmuted Weibull, Rayleigh,
linear failure rate and exponential distributioamong others. The properties of the
new model are discussed and the maximum likeliregignation is used to evaluate
the parameters. Explicit expressions are deriveédHe moments and examine the
order statistics. An application to real data sdinally presented for illustration.

Keywords. transmutation; survival function; exponentiatedp@nential; order
statistics; maximum likelihood estimation.

Introduction

For complex electronic and mechanical systemsfdtare rate often exhibits non-
monotonic (bathtub or upside-down bathtub unimodailure rates (Xie and Lai

[35]). Distributions with such failure rates have atteal a considerable attention of
researchers in reliability engineering. In softwagéability, bathtub shaped failure
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rate is encountered in firmware, and in embedddtvace in hardware devices.
Firmware plays an important role in functioning hadrd drives of large computers,
spacecraft and high performance aircraft contretesys, advanced weapon systems,
safety critical control systems used for monitorthg industrial process in chemical
and nuclear plants (Zhang et al. [36]). The upsioln bathtub shaped failure rate is
used in data of motor bus failures (Mudholkar et [db])), for optimal burn-in
decisions (Block and Savits[6]), for ageing projartin reliability (Gupta and
Gupta[13], Jiang et al.[16]) and the course of sedée whose mortality reaches a
peak after some finite period and then declinedugby.

The Weibull distribution is a widely used statsali model for studying fatigue
and endurance life in engineering devices and mageMany examples can be found
among the electronics, materials, and automotivhistries. Recent advances in
Weibull theory have also created numerous speeli&/eibull applications. Modern
computing technology has made many of these teabsicaccessible across the
engineering spectrum. Despite its popularity, andevapplicability the traditional 2-
parameters and 3-parameters Weibull distributiorunsble to capture the entire
lifetime phenomenon for instance the data set whaha non-monotonic failure rate
function. Recently several generalization of Wdildidtribution has been studied. An
approach to the construction of flexible parametniadels is to embed appropriate
competing models into a larger model by adding shpprameter. Some recent
generalizations of Weibull distribution includiniget exponentiated Weibull, extended
Weibull, modified Weibull are discussed in Phamakt[27] and references therein,
along with their reliability functions. The hazduhction of the Weibull distribution
can only be increasing, decreasing or constants,Thucannot be used to model
lifetime data with a bathtub shaped hazard func¢teuch as human mortality and
machine life cycles. For many years, researcheke H@een developing various
extensions and modified forms of the Weibull diattion, with different number of
parameters. A state of the art survey on the dissach distributions can be found in
Laiet al [19]. Xie and Lai [35] proposed a 4-pardene additive Weibull (AW)
distribution as a competitive model. A random JaleaX is said to have an AW
distribution if its cumulative distribution functo(cdf) is

Fx) =1—e 6x"+xF), x> ¢ 1)
where >0 and v > 0 are shape parameters, aAd>0 and y > 0 are scale
parameters.

Elbatal and Aryal [10] introduced the transmutedditve Weibull (TAW)
distribution with cumulative distribution functioticdf) and probability density
function (pdf) (fox > 0) given by

Fix)= 1+ 2)[1—e @] - 21— e-(e’””xﬁ)]z, @
and
F) = (6w + ypaP 1) (¥ 1) [1 4 2 — 2 (0x" 1) ©)

where >0 and v> 0 are shape parameters, aAid>0 and y > 0 are scale
parametersandiA| < 1 is a transmuted parameter.The TAW model showsbliex
properties as it contains a lot of well-known dizitions as special cases such as
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exponentiated Weibull, transmuted Weibull, Weibwhd linear failure rate
distributions.

Many distributions have been made using cumulatN&ribution function
(cdfG (x), probability density function (pdf)x), or survival functionG(x) that one
can rely on, as a baseline distribution, to intcelnew models. The Exponentiated
generalization is the first generalization allowify no monotone hazard rates,
including the bathtub shaped hazard rate. The fctifeonew distribution is defined by
F(x) = G*(x),wherex> 0. The exponentiated exponential distribution hagnbe
introduced by Ahuja and Nash [2] and further stddig Gupta and Kundu [14]. The
first generalization allowing for no monotone hakaates, including the bathtub
shaped hazard rate, is the exponentiated WeibW) (&istribution due to Mudholkar
and Srivastava [24], and Mudholkar et al. [25].

An interesting idea of generalizing a distributidtmown in the literature by
transmutation, is derived by using the QuadratiokRa&ransmutation Map (QRTM)
introduced by Shaw and Buckley [30].Merovci [21]nptroduced transmuted
exponentiated exponential distribution.

According to the transmutation generalization apph, the cdf satisfies the
relationship

F(x) = 1+ 1)G(x) — A[G)]% (4)

WhereG(x) the cdf of the baseline distribution.

This article presents a modification of the trantation generalization approach
given in (4). The proposed modification generalitesrank of the transmutation map
by replacing the constant power by additional patans. The following definition
gives the mechanism of generating a new familyifefitne distributions building on
a base model, that is, according to this modifozati
Definition 1.1 Let G(x) be the cumulative distribution function (cdf) of ren-
negative absolutely continuous random varialéiéy)be strictly increasing on its
support, and; (0) = 0 define a new cdf, F(x), out 6f(x)as

F(x) = (1 +D[GE]° = A[GE)]%x > 0 ()
wherea,§ > 0for0 > A > —1,anda > 0,(a + a/4) =6 = (%)foro <A<1.

This modification due to its flexibility in accommdating all forms of the hazard rate
function as seen from Figure (4) (by changing asameter values) seems to be an
important distribution that can be used. Anothepamance of the proposed model
that it is very flexible model that approaches fiffedent distributions when its
parameters are changed.
We present special cases of the new family dfitife distribution.

Exponentiation. for A = 0, the distribution function (5) becomes

F(x) = [6(0)]°, (6)
which is the distribution function of the exponeaiitbn
Transmutation. for § =1 and a = 2, the distribution function (5) becomes

F(x) = 1+ DG6x) — AG)]? (")
which is the distribution function of the transntidga.
Transmutation exponentiation. for § = a/2 , the distribution function (5) becomes

FOO) = (1+D[GEOTE - 60, (8)
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which is the distribution function of the transntiga exponentiation

The rest of the article is organized as follows. Section2, introduces the
proposed a new generalization of the transmutediaeldVeibull according to the
new class of distribution. In Section 3, we fine tieliability function, hazard rate and
cumulative hazard rate of the subject model. ThpaBgion for the pdf and the cdf
Functions is derived in Section 4. In section 5g Tiatistical properties include
guantile functions, median , moments and momenéigging function are given,. In
Section 6, order statistics are discussed. In &e@Gti we introduce the method of
likelihood estimation as point estimation, give tbguation used to estimate the
parameters, using the maximum product spacing atgsnand the least square
estimates techniques. Finally, we fit the distridnitto real data set to examine it and
to suitability it with nested models.

A New Transmuted Additive Weibull Distribution

In this section, we introduce a new distributioalled the new transmuted
Additive Weibull distribution denoted by (NTAW) digoution as a generalization of
the TAW distribution. The cumulative distributiouriction of (NTAW) model
(for x > 0) denoted byF(x,1,0,v,y,B,6,a) = F(x) becomes

Fxx)=AQ+2) [1 — e_(ng+yxﬁ)]5 -1 [1 —_ e—(exV+yxB)]“’ 9)
where as its pdf can be expressed,
£ = (Owx™ + v ) |1+ o [1 - e~(oxrsya) T
—a|1- e—<exv+yxﬁ>]“‘1], (10)

wheref3 > 0,v,6 > 0 anda > 0 are shape parameters, &htr 0 andy > 0 are
scale parametersandl| < 1 is a transmuted parameter. The random variablétx w
the density function (10) is said to have a newndmauted additive Weibull
distribution (NTAW) distribution.

The proposed NTAW model that it is very flexibleodel that approaches to
different distributions when its parameters arencfea. The flexibility of the NTAW
is explained in Table 1 when their parameters arefally chosen.

Table 1: The special cases of the NTAW distribution

Distribution | Parameters Author
AlB|lv|iy| B| § |«
TEMW 1 a/2 Ashour and Eltehiwy4]
TEAW a/2
TAW 1 2 | Elbatal and Aryal[10]
EAW 0
AW 0 1 Xie and Lai [35]
EW 0]0 Mudholkar and Srivastava[24]




A New Transmuted Additive Weibull Distribution 35

EE 0 1/0]- - | Gupta and Kundu[14]
EMW 0 1 - | Elbatal[9]

NTMW 1 New

NTW 0 New

NTR 0 2 New

NTLFR 1 2 New

NTE 1|0 New

TELFR 1 2 | a/2

TEW 0 a/2

TER 0 2 | a/2 Merovci[22]

TEE 1/0|- |a/2 Merovci[21]

TMW 1 1 2 | Khan and King[17]
TLFR 1 211 2

TW 0 1 2 | Aryal and Tsokos[3]
TR 0 2|1 2 | Kundu and Raqab[18]
TE 1/0]- |1 2 | Shaw and Buckley[30]
ELFR 1/0/- |1 2 | Sarhan and Kundg7]
ER 0|0 2 -

MW 0 1 1 - | Sarhan and Zaindin[29]
LFR 0 1 211 -

W 0|0 1 - | Weibull[34]

R 0|0 211 -

E 0 1/0]- |1 -

Figures 1 and 2 illustrates some of the possible shapes of theapdfcdf of the
NTAW distribution for selected values of the pardéeng A,0,v,y,B,6 and a
respectively

1.5
15

£(x.5.8.1,5.92.9)
f(x,—.5,1,2,1,05,1,3) —

oy £(x,- 8,2,.82,0,1,2,.8)
fx- 50223101200 | i
£(x,6,9,14,1,5,5.9 f(;é 9.8,1,5,5,D
£(x,.3,1,1.55,.4,01,3,5) & £(x,.3,1,.7,4,01.6.5

£(x,3,.52,16,2,09,4,49 03/
£(x,.3,1.3,136,.2,.09,6,10) ]
s

8 E = EP) 51592 3
£(x.6.9.7.3.1.2.3) .5 / \\ f(x,—.6,9,32,185,1.59,2,3)

]

:" 1
% 1

Figure 1: Probability Density Function of the NTAW distribati.
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Figure 2: Distribution Function of theNTAW distributidn.

Reliability Analysis
The characteristics in reliability analysis whicte ahe reliability function (RF), the
hazard rate function (HF) and the cumulative hazateé function (CHF) for the

NTAWD are introduces in this section.

Reliability Function
The reliability function (RF) also known as the survival function, which is the

probability of an item not failing prior to somemie t, is defined bR(x) =1 —
F(x).The reliability function of the NTAW distribution denoted by
Rytaw (4, 6,v,7, B, 8, ), can be a useful characterization of lifetime datalysis. It
can be defined as,
RNTAW(x' A, 91 v,Y, ﬁ' 6' 0() =1- l::NTAW(X' /L 91 v,Y, ﬁl 6' a)'

the survival function of is given by,

Ruraw(®,4,0,v,7,6,6,0) = 1= |+ D)1 - e-x )’ _3[1 - ] I RCEY

Figure 3 illustrates the pattern of the called tleev transmuted additive Weibull

distribution (NTAW) distribution reliability functin with different choices of
parameterd, 8,v,y,B,6 and «a .
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Figure 3: Reliability Function of theNTAW distribution.

Hazard Rate Function
The other characteristic of interest of a randomawde is the hazard rate function

(HF). the new transmuted additive Weibull distributideoaknown as instantaneous
failure rate denoted byntaw(X), IS an important quantity characterizing life
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phenomenon. It can be loosely interpreted as tmelitonal probability of failure,
given it has survived to the timer'heHF of the NTAWD is defined by
hNTAW(xJ A' 8' v, ]/J ﬁ' 5J a) = fNTAW(x' A) 9: v, V; ﬁr 5; a)/RNTAW(xI A) 9: v, V; ﬁr 5; a);

(ovx't + yﬁxﬁ'l)e'(e"v*”‘ﬁ) [(1 + 6 [1 - e'(e"v"w‘ﬁ)]&1 - Aa [1 - e'(g"v"""ﬂ)]WI]
1z)

hyraw(x,4,6,v,v, 8,8, @) =
1+ )[1 = e~(Oxrx0)]° _ g[1 — e~(oxy2)]"

Figure 4 illustrates some of the possible shajpéseohazard rate function of the
new transmuted additive Weibull distribution for ffdrent values of the
parametets 6,v,y, 5,6 and a.
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Figure 4: Hazard Rate of the NTAW distribution

Cumulative Hazard Rate Function
The Cumulative hazard functio(CHF) of the new transmuted additive Weibull

distribution, denoted b ytaw (%, 4, 8,v,7, 5,6, @), is defined as

HNTAW(X'/’{‘ Q,V,y,ﬁ, 5, a) = f hNTAW(X‘){‘ Q,V,y,ﬁ, 5, a)dX = —lnRNTAw(X,){, Q,V,y,ﬁ, 5, a),
0

Hytaw (%, 4,0,v,7,8,8,a) = —In [1 - [(1 + 1) [1 - e_(exv"’”‘ﬁ)]s -1 [1 - e_(exv”xﬁ)]a”. (13)

Expansion for the pdf and the cdf Functions
In this section, we introduced another expressamttie pdf and the cdf functions

using. The Maclaurin expansion to simplifying thef pnd the cdf forms

Expansion for the pdf Function
From equation (10) and using the expansion
w (DITk+)

(1 -9 = 32 e a9
Which holds for|z|] <1 andk > 0. Using (14) in Equation. (10), then the pdf
function of the new transmuted additive Weibulltdisition can be written as:

C (-1)T(8)

fvx’—1 B-1Y),—(6xV+yxF)(i+1)
_Oi!F(S—i)( VKT e

fx,1,6,v,y,8,6,a) =

(1+ 28

o (-DIT@, 1y (0x 4y PG
_Mj:zom(evx“ L ypaft)em(0x74ra)Grn (15)
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Expansion for the cdf Function
Using expansion (14) to Equation (9), then the fadiction of the new transmuted
additive Weibull distribution can be written as:

(DTG +1) e—(GxV+yxﬁ)(i+1)

F(X,A,H,V,)/,,B,&a) =

(1+2)

iIr(¢—i+1)
1=0
—|a D+ 1)6—(6xV+yxﬁ)(i+1> (16)
i jif(a—j+1)

Equation (16) can be written as:

© X (_1)i+k
F(x,A,0,v,v,B,6,a) =|(1 +)\)ZZM((6W + yxﬁ)(i + 1))kl

L L KT(E -1+ 1)
S o (1) (o + 1) m
_ v B\(; 17
7\. 0 Oj!m!F(a—j+1) ((Hx +yx )(]+1)) (17)
j=0 m=

Statistical properties
In this section, we discuss the most importantisieal properties of the NTAW
distribution.

Quantile function

The quantile function is obtained by inverting thenulative distribution1(7), where
the p-th quantilex, of the NTAW model is the real solution of the &alling
equation:

O (—1)PET(S + 1) S RN
(1 +>\);k=0 e (0% +7%?)i+ D)

o O (DI (a+ 1) . m
—AZ Z j'm! T(a —?+ 1) ((0x" +v")G+ D) =p =0, (18)
j=0 m=0

An expansion for the media follows by takingp = 0.5.

Moments
The r'*non-central momentg,. = E(X")or (moments about the origin) are given by
theorem 5.1 below:

Theorem 5.11f X is from a NTAW distribution, then the®non-central moments is
given by
© ; +kB+v r+kp+p
—D)RL@E) (y(i + 1D)k| OvI——) YBr(——)
u,r=(1+)\)822( )ET(®) (vy(+ 1)) Y y

iLkIT(8 — i rkB+ . r+kB+p
S tkré-b OG+1) v~ (BGE+1) v
oo r+l3+v r+IB+B

‘“"i COMME@GG D) | OIC ) v

i T (o — . r+By . T8+ |
calg T (a—)) OG+1) v (BG+1)
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Wherel'(.) denote the gamma function, i.e,

I'(a) =fta‘1e‘tdt.

0

Proof:
= B = [ X7 Gx,0,,,6, @),
0
=J{(1+)\)82('_F()81 ( )(9 r+v- 1+y,8xr+ﬁ 1)6—(9xv+yxﬁ)(1+1)]
0
S O s sy
_0 .
~ (—1)' r(&) o (-1 ()
=1 +)\)SZ iIT( = }\O(jzzomlz. (19)
Now, using
_ 2 (—1K( kyk, kB o 2 (—1DK(i + 1)kekxk
e~ (rxP)G+1) — Z( 1) (H];!l) X e—(0xV)(+1) kz:o( )G Z! )0 .
We have =

I, = f(QVXr+V_1 _l_yﬁxr+ﬁ—1)e—(9x"+yxﬁ)(i+1)dx

0

=f(QVXF+V—1)e—(exv)(i+1)e-(}’xﬁ)(i+1)dx+f(yﬁxﬁ+r—1)e—(t9x")(i+1)e—(yxﬁ)(i+1)dx

0
i (- 1)k(1 + 1)kyk VT () Z (- 1)k(1 + kRt B
(9(1 + 1))r+k B+v r _ | (9(1 + 1))r+k +B
= 1)k(1 Dy evF(”k‘”“) ypr(Et)
Z +v + r+kp+p (20)
=0 ed + 1)) 03+ 1))
Slmllarly forl,we get ]
“DUG+ DY o) yprEE
12=Z( )(1“ )Y! . et — 1)
1=0 OG+1) v OG+1) v
Substituting (20) and (21) in (19) we get
r+kB+v) Bl_,(r+kB+ B)

X (_1)i+k - k| vl
u’r=(1+7\)522( DEL(@) (y(i + 1)* | OVI(

. . —+
S RTE-D OG+1) v (8
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r+l[3+v r+l(3+[3

OVl (— — ) YBI(—,—

=t
(9(1+1)) v (CI¢)

)

_mi O (CDHT@ GG+ D)

T (a—]) (22)

j=0 1=0
This completes the proof.

In particular, when r = 1, Eq. (22) yields the me&the NTAW distributionu, as

0 o0 . kB+V+1 kB+B+1

—1D)ET@) (v + 1)*| OvI( ) YBr(——)
ﬂ:(l‘l'}\)SZZ( YT (v(i+ 1)) N "

=1=SEE N [ 1))—3“ OG+1) v

—;\aii(_l)j”l“(a)(v(H1))’ e |, YR

S MDD g s @G+ v

Thent™central moments or (moments about the mean) cabtaéned easily from
ther™ non-central moments throw the relation:
n

m, = EX = )" = ) (—)" "E(X).

Then thentcentral moments of the NTAW is given by:
. ®, (—1)*R(8) (y (i + 1)) GvF(”kB”) yBr(=Eh)
Z< ) (1”‘)82 iTkIT(8 — 1) KB
i=0 k=0 i+ 1))

‘“‘2 - (DM@ (G + D) evr(”””“) ysr(m)]

: - Tv + Vr+l +
jLUT (o0 —j) (9(j+'1)) f (B(j-i-l))___‘l?__B

j=0 1=0

The Moment Generating Function

Theorem 5.2 If X is from a NTAW distribution, then, its mgf is

yirkem(i 4 1)kykrcs) [ 6v F(m“‘ﬁw) ypr(==EE

k!'m!ilT(8 — i) (e(i+1)) B+v O+ 1)
o0 ( 1)]+ltz(] + 1)lyll"(0() ov 1_,(z+lB+v) el (Z+lB+B) ]

- A :E:

m+kB+B

)

M, (t) = (1 + )5 Z (-1

i,m,k=0

A l']' F(O( ]) z+1B+v z+IB+B |”

520 [(6G+1) v (8G+1D) v

Pr oof:

The moment generating functidf,(t) can be easily obtained from th& non-
central moment through the relation

M, (t) = f e¥f(x,0,y,B,6, a)dx,

M, (6) —f tX{

— z(r Fl(zr(a) (Bvx~1 + yBxP~1)e~(Ox"+rxP)G+D) { gy
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My (t) = (1+A>82(r_r(§r( : f (Bvx*" + ypaP et (O D
— A Z(l Fl(zr(a)f(‘? V=l 4y BBt etxe=(0x"+yxF )+ 1) gy
(-1 )F(S) o (- DT ()
My () = (1 +;\)sz TGoD xajzomlz. (23)
We have

h= f (Bvx¥t + yBxP1)etxe~(Bx"+raf)i+1) gy
= J(va”"‘l)etxe‘(exv)(i“)e—(Yxﬁ)(iH)dx

+ f (yﬁxﬁ‘H'—l)etXe—(va)(i+1)e—(yxﬁ)(“_l)dx

m+kB+B

® @ kemy K. K 0 F m+kB+V
= Z Z( D tk.(,lnT DS I — ) YBr (—,— ) 2
m=0 k=0 o (9(1+1))
imilarly , forI,we get
w -1 ltZ i+1 L1 GVF(ZHBH)) B (Z+l[3+[3)
k=), - z?u = + (25)
z=01=0

Substituting (24) and (25) in (23), Then, the mnm@enerating function of the
NTAW distribution is given by,

_1)ikem (i 4 1yRykr(s) | M(@) ypr(=Et) ‘

M, (0) = (1 + )5 z (-1

: : B+v + m+kB+

e k!'m!ilT(8 — i) (o6 + 1)) 6@ +1)) B+p

L 3 DG D & () L) (20 ]
i zV T (o —j) (e(] R 1))z+ f+v (9(] B 1))z+ \[}3+B

This completes the proof.

Order Statistics
The order statistics and their moments have gmeg@itance in many statistical
problems and they have many applications in rditglanalysis and life testing. The
order statistics arise in the study of reliabildfya system. The order statistics can
represent the lifetimes of units or components @liability system. Let;,Y,,..., Y,
be a random sample of sizefrom the NTAWA, 6,v,y, 3,6, a) with cumulative
distribution functioricdf), and the corresponding probability density funcfjmdf),
as in (9) and (10), respectively. L&), Y),...,Ym) be the corresponding order
statistics. Then thpdf of Y(;..,), 1 < r < n,denoted by;.,,(y).is given by,

frn ) = Crnfyraw(@ 6,v,7, 8,8, @) [Fyraw (4, 6,v,v, B, 8, @)1 [Ryraw (4, 6, v, v, B, 8, )" ™.
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Then
frn(X) = Cpn [(9\1){"‘1 + yﬁxﬁ_l)e_(e"\'”xﬁ) [(1 + )6 [1 - e_(e"”"xﬁ)]g_l —la [1 — e‘(e"v“’xﬁ)]a_l” *

@+n[1- e_(ngm,g)]a — 21— e-(ex“yxﬁ)]“
[i-{aenfi-eo s afi—ee TG

Therefore, the pdf of the largest order statis}jts given by:
Fryoe [(W_1 +ypb-1)e @) |14 05 [1 - @] a1 e—<exv+yxﬁ>]“*]]

n-1
* [(1 +)|1- e-(0xV+yxﬁ)]‘S -1 e-(ex”yxﬁ)]“] (27)
While, the pdf of the smallest order statisfies given by:
friGo=n [(GVX“‘I +yBaP e 1) [(1 4 )6 [1 = e~ (0" " = Aal1- e—(9xv+vxﬁ)]“_1” "

R (R o

Estimation of the Parameters

In this section, we introduce the method of likebd to estimate the parameters
involved, then give the equations used to estirttagarameters using the maximum
product spacing estimates and the least squameatss techniques.

Maximum Likelihood Estimation
The maximum likelihood estimators (MLEs) for thergraeters of the new
transmuted additive Weibull distribution NTAW, 6,v,y, 8,6, a)is discussed in this
section. Consider the random samplex,, ..., x, of sizen from new transmuted
exponentiated additive distribution NTAW, 8, v, v, B, §, ) with probability density
function in (11), then the likelihood function cha expressed as follows

n

L(x1,%2,..., %0, 4,0,v,7,B,6,a) = 1_[ fntaw (xi,4,0,v,v,B8, 6, ),

n
L(xy, %0, .., %0, 4,0,v,7, 8,6, @) = [1 (6?\}xl-"‘1 + yﬂxl-ﬁ‘l)e_(gxivﬂ’xiﬁ)*
i=1

[(1 + )51 - e-(QXi”+thﬁ)]6_1 —Aa[1- e-(f’xt”mﬁ)]a_l]
Hence the log-likelihood functlorr In L becomes

T = Z n(Ovx;" "t + yBx,P1) — z (0x¥ +yx?) +
“ 1
v v a—
Z In [(1 + )6 [1 — e (0xi +inﬁ)] - a [1 — e (0xi +7’xiﬁ)] ] (29)
i=1
Differentiating Equation (29) with respectid, v,y, B, 8 andxthen equating it to
zero, we obtain the MLEs df 6, v,y, 5,6 andx as follows,
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1 — e—(exivﬂmﬁ)]a_l —a [1 - e—(9xiv+yxi6)]a_1
(30)

al Z (1+A)5[1 e (axlvﬂ’xlﬁ)] )la[l—e—(axi"+yxiﬁ)]a_1] ’

60 Z(va" L+ yBxA-1) le

o [ve-xrsre) a5 — D6 [1 - e=Ex O] Z a(a - Da[1 — e~Ex )]
3 | | - o) | e
~ 1+ 1)6[1 _ e—(GxiV+yxi5)] _ /1(1[1 _ e—(GxiVﬂ/xil?)]

T - x""10(1 +vinx;) - v
p— — — - Z X Oln X
ov - (Bvx;V"1 +yBx;F1) L

n ,—(6xY+yx;f v _ _ o—(0xV+yxif o= _ _ _ x;¥ xlﬁ
N e=(6x+y )(xi Hlnxi)[l(d 1)6[1 e=(6x+y )] Aa 1)01[1 e~ (6x+y ) ](32)
= (1 -+ D[1 - e=@x4rxN]°™ _Ja[1 — g=(Oxrara)]
T Bx 1 -
i - B
oy ;(vaiv‘1+yﬁxiﬁ‘1) ;xl ¥
n B (0x +yx;F) _ _ o= (6x"+yx;F) 6_2_ _ _ o= (6x"+yx;F) a2
Z xiPe [/1(6 1)6 [1 e ] Aa 1)0([1 e ] ] (33)

=1 [+ ns[1- e~(0x+rx®)]" ™ _ aq[1 - e=(Oxerx)| "

dt = x P y(1+ Binx;) i .
B~ Lvar B LT

ne (exl"+yxlf*)(x ylnx; ) [/1(6 —-1)6 [1 —e (ele+yxll*)] —AUa - 1a [1 — e‘(exiv”"iﬁ)]a_z]

+z a1 (34)
= 1+ ’1)5[1 — e~(0x+yxi B)] - Aa[l - e—(Oxi"H/xilf)]
Z Shi /1) 1 e +]/XLB)] {6 n [1 B e_(exivwxiﬁ)] + 1} (35)
" T Y R I |
and
_T ~ n (—1)7\ [1 — e—(Gxi+yxiﬁ)]0-’—1 {a In [1 _ e—(gxivﬂ’xiﬁ)] + 1} (36)

"2 [(1+ o1 = e(osrersP T e[ — e-omrar ]

The maximum likelihood estimator 9(4,8,7,7,6,6,&) = of o=
(A4,8,v,y,B,6,a) is obtained by solving the nonlinear system of atigms (30)
through (36). It is usually more convenient to nsalinear optimization algorithms
such as quasi-Newton algorithm to numerically mazenthe log-likelihood function.

Maximum product spacing estimates

The maximum product spacing (MPS) method has besoped by Cheng and Amin
[5]. This method is based on an idea that the iffees (Spacing) of the consecutive
points should be identically distributed. The getinemean of the differences is
given as



44 Mahmoud M.Mansour et al

M = (37)
where, the differench; is defined as
*® (38)
f fl,A,0,v,y,B8,0,)dx; i=12,..,n+1,
X(i-1)

Where,F(x(O),/l,,v,H,y, B,d, a) =0 and F(x(nﬂ),l, 0,v,v,0,6, a) = 0. The MPS

estimatorsipg, Ops, Vps, Vps, Bps, Ops andaps of 4,0,v,y,B8,8 anda are obtained
by maximizing the geometric meaGNl) of the differences. Substituting pdf of
NTAW distribution in (38) and taking logarithm ofi¢ above expression, we will

have
n+1

logGM = z log[F(x(l)A 0,v,v,8,6,a) (39)

A F(x(l 1),At9vy,,[35a)]
The MPS estimatoréps, Ops, Vps, Vs, Bps, 0ps and@ps of 1,0,v,y, 8,8 andacan
be obtained as the simultaneous solution of tHevihg non-linear equations:

dlogGM 1 Ti [F,{(x(l-),ﬁ, 0,v,v,8,8,a) — F;(xi-1), 4 6,v,7,8,8,a) 3
04 n+1 F(x@, 4 0,v,v,8,6,a) — F(xi-1),4,0,v,v,8,8, a) B

0 log GM Z [Fe (x4, 0,v,7,8,8, @) — Fg(xi_1),1,0,v,v,B,8,a) 3
T n+1 F(x(l-),l, 0,v,v,B,6, a) — F(x(l-_l),l, 0,v,v,B,6, a) B

)

)

dlog GM Z [F{,’(x(l-),i, 0,v,v,8,6,a) — F,(xi-1),46,v,v,8,8,a)] _ 0
Jav n+1 F(x(l-),l, 0,v,v,B,6, a) - F(x(l-_l),l, 0,v,v,B,6, a) ] ’
dlogGM 1 ril le'(x(l-),A, 0,v,v,B,68,a) = Fy(xi-1,4,6,v,v,8,6,a)] _ 0
n+1 F(x(l),l, 0,v,y,B,6, a) — F(x(l-_l),l, 6,v,v,B,6, 0() | ’

dlogGM _ Z [Fﬁ (x4 0,v,7,8,8, @) = F(x(i-1), 4, 6,v,v,8,8,a)| _ .
B n+in+1 F(x@,4,0,v,7,8,6,a) — F(xi-1, A 0,v,v.8,8,a) |
dlogGM z |:F5(X(L'), 2,6,v,v,B,8,a)— F(g'(x(i_l),l, 0,v,v,B,68,a)] “o
8  n+lin+1 F(x@,4,0,v,7,8,6,a) — F(xi_1), AL 0,v,v.8,8,a) |

and

dlogGM z lF « (X, 4, 6,v,7,B,8,a) = Fy(x(-1), 4, 6,v,7,8,6,a)] _ 0
da  n+1 F(x(l-),A, 0,v,v,B,6, a) — F(x(i_l),ﬁ, 0,v,v,B,6, 0() ] ’
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Least square estimates
Let x(1), X2), -, Xn) D€ the ordered sample of sizedrawn the NTAW distribution.
Then, the expectation of the empirical cumulatiigrdbution function is defined as

i 40
E[F(X(i))] = ‘I’l—+1; i = 1,2, W, n ( )

The least square estimatgs, 0, V1s, V1.5, BLs, 0.5 and@,s of A,0,v,y, B, anda are
obtained by minimizing
n

Z(A4,6,v,v,B,6,a) = Z [F(x(l-),l,e,v,y,ﬁ,& 0() —
1=

Therefore A5, 0,5, V15, P15, Brs, O1.s andd,g of A,6,v,y, B, sanda can be obtained as
the solution of the following system of equations:

n
0Z(4,6,v,v,B,6,a) Z , i
= Fl(x(i)'l' g'v' y' ﬁ' 8’ a) (F(x(l)’l’ 9' V' V' ﬁla' a) - ) = 0'
azuealﬁs ) 2, "
) lvlyl ) Ia r l
ag = EFG('X(I)’A’ G'V'V'ﬁ' 6' a) (F(X(L),A, elvl}/lﬁl 6; a) _n + 1) = 0,
i=
n
0Z(4,0,v,v,p,6,a) , i
EN = Z FV(X(i),}L, 9,1/, V,ﬁ, 5, C() (F(X(i),ﬂ., 9,1/,]/,,8, 5, a’) — —y 1) = 0,
0Z(4,0,v,v,B,6, a) zn:F,( 2,0,0,7,8,6,a) (E (x4, 6,v,7,,6,) i 0
= y\X@)» 4 0,V,Y,p,0,x ( X 40,V,Y,b,0,a) — )= )
dy = n+1
0Z(1,0,v,y,B,6,a) Z : i
= F, .IAJGJ g J6I (F ',1,9, Y, ,6, — ):0,
p £, 5 () v,v,8.8,a)(F(xq v,v,8,8,a) ——
0Z(1,0,v,v,B,6,a) : i
35 = Z F5(x@,2,6,v,7,B,8,a) (F(x(i),/l, 6,v.v,B,6,a) — — 1) =0,
1=
and
aZ AleJVI ) J6Ia i
( a;/ B8, a) ZF (x4 0,1,7, 8,5, a)(F(x(l),A 6,v,7,,6,a) +1) ~o,

These non-linear can be routinely solved using Maist method or fixed point
iteration techniques. The subroutines to solve lmar optimization problem are
available in R [38 We used nim( ) package for optimizing (29).

Applications

In this section, we use two real data sets to ® ls®v the new model works in
practice.compare the fits of the NTAW distributiaith others models. In each case,
the parameters are estimated by maximum likeliredescribed in Section 7, using
the R code.
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Data Set 1

The first data set represents the ages for 15%rmatiof breast tumors taken from
(June-November 2014), whose entered in (Breast Taink@rly Detection Unit,
Benha Hospital University, Egypt).

Table2: The ages for 155 patients of breast tumors

46 32 50 46 44 42 69 31 25 29 40 42 24 17 35
48 49 50 60 26 36 56 65 48 66 44 45 30 28 40
40 50 41 39 36 63 40 42 45 31 48 36 18 24 35
30 40 48 50 60 52 47 50 49 38 30 52 52 12 48
50 45 50 50 50 53 55 38 40 42 42 32 40 50 58
48 32 45 42 36 30 28 38 54 90 80 60 45 40 50
50 40 50 50 50 60 39 34 28 18 60 50 20 40 50
38 38 42 50 40 36 38 38 50 50 31 59 40 42 38
40 38 50 50 50 40 65 38 40 38 58 35 60 90 48
58 45 35 38 32 35 38 34 43 40 35 54 60 33 35
36 43 40 45 56

In order to compare the two distribution modelg, @onsider criteria like-2L,
AIC (Akaike information criterion), AlC (corrected Akaike information criterion),
and BIC (Bayesian information criterion) for thetaleset. The better distribution
corresponds to smalle2 £, AIC and AlC values:

AIC = =2L + 2k,
AIC 2kn
c=-20+ (=)
and
BIC = —2L + klog(n),
where L denotes the log-likelihood function evaluated & taximum likelihood
estimatesk is the number of parameters, antg the sample size.

Table 3 shows the parameter estimation based eméximum likelihood and
gives the values of the criteria AIC, AdCand BIC test. The values in Table 2
indicate that the NTAW distribution leads to a betftt over all the other models.

Table 3. MLEs the measures AIC, AKZand BIC test to 155 patients of breast tumors
data for the models

Model Parameter —logL | AIC AlCc BIC
Estimates

NTAW A= 0.007700 |601.8007 |1217.601 |1218.363 | 1238.905
6 = 0.0005621
v = 2.1463001
y = 0.083400
B =0.011520
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6 =2.199999

a=2.845200

TAW

A=0.007699

0 =.00027438

v= 2.146299

Yy = 0.0833996

p =0.0115199

656.6481

1323.296

1323.699

1338.513

TEMW

A—0.036545

0
= 0.0022057

y = 0.0220319

B =0.073650

a= 0.2476071

628.6509

1267.302

1267.705

1282.519

EMW

0 =0.439622

y = 0.52237

B = 0.92627

a = 3.74042

613.903

1235.806

1236.073

1247.98

AW

6 =0.0002475

v =2.146300

14
= 0.08339602

p =0.4151989

688.4355

1384.871

1385.138

1397.045

MW

0
=0.00721750

y = 0.015028

p=1.011300

739.2161

1484.432

1484.591

1493.562

y = 3.6871004

B
= 0.02078562

610.2967

1224.593

1224.672

1230.68

Density
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Figure5: Estimated densities of the data set 1.
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Figure 6: Empirical, fitted NTAW, TAW, TEMW, EMW, MW, Weibu and AW of
the data set 1.
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Figuren7- Probability plots for NTAW, TAW, TEMW, EMW, MW, Weiull, and
Additive Weibull of the data set 1.
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The second data set represents failure time afeb@si reported in Aarset [1].
Some summary statistics for the failure time dataas follows:

Min. 1¥Qu. Median Mean  39Qu. Max.
0.10 13.50 48.50 45.67 81.25 86.00
Table 4. MLEs the measures AIC, AtCand BICS test to failure time data for the
models
Model | Parameter Estimates| —logL | AIC AlCc BIC
NTAW | 2=-0.08220037 | 213.138 | 440.2776 | 442.9443 | 453.6618
0=1.778+10">
v = 2.150033
Yy =8.922 %1075
p = 0.404211
6=0.317617
a=0.00510335
TAW A =0.0076999983 | 220.3821 | 468.7642 | 470.1278 | 478.3243
6 =0.00010750
v=2.1463000
Y = 0.083400002
p =0.4152000011
TEMW | 2=-0.1640672 | 236.6535 | 487.6286 | 488.992 | 497.1887
60=0.0176781
Y =0.00193298
B = 0.03926070
a= 0.949241462
EMW 0 =0.018673571 | 238.8143 | 481.307 | 482.1959 | 488.9551
Y =0.001822666
B =0.010505798
a=0.703411609
AW 6 =0.0002399 237.7583 | 483.5166 | 484.4055 | 491.1647
v =1.852800617
y = 0.016255755
£ =0.9475073247
MW 0= 1.827194 241.0289 | 488.0578 | 488.5795 | 493.7939
y = 1.80309
p =1.000288
W Y = 0.9489561 240.9796 | 485.959 | 486.2145 | 489.7832

p = 0.02227559
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These results indicate that the NTAW model hasleest AIC and Al and
BIC values among the fitted models. The valuesheté statistics indicate that the
NTAW model provides the best fit to this data.
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Figure 8. Estimated densities of the data set 2.
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Figure 9: Empirical, fitted NTAW, TAW, TEMW, EMW, MW, Weibu] and AW of
the data set 2.
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NTAW

04 06 08
Weibull

Figure 10: Probability plots for NTAW, TAW, TEMW, EMW, MW, Wéiull, and
AW of the data set 2.

Conclusions

There has been a great interest among statisticaals applied researchers in
constructing flexible lifetime models to facilitateetter modeling of survival data.
Consequently, a significant progress has been nmadards the generalization of
some well-known lifetime models and their succdssfplication to problems in
several areas. In this paper, we introduce a namstnuted additive Weibull
distribution obtained using a new family of lifeendistribution as generalization
technique. We refer to the new model as the NTA¥gWidbution and study some of its
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mathematical and statistical properties. We proviae pdf, the cdf and the hazard
rate function of the new model, explicit expressidar the moments. The model
parameters are estimated by maximum likelihood. A& model is compared with

some models and provides consistently better dih thther classical lifetime models.
We hope that the proposed family will serve asferemce and help to advance future
research in this area.
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