
Do Creative-Telescoping Algorithms Provide Complete
Proofs? A Formal Study of Apéry’s Theorem∗

Frédéric Chyzak
Inria (France)

frederic.chyzak@inria.fr

Assia Mahboubi
Inria (France)

assia.mahboubi@inria.fr

Thomas Sibut-Pinote
ENS Lyon (France)

thomas.sibutpinote@ens-lyon.fr

ABSTRACT
We report on the formal verification of an irrationality proof
of ζ(3), the evaluation of the Riemann zeta function. This
verification uses the Coq proof assistant in conjunction with
algorithmic calculations in Maple. This experience illus-
trates the limits of the common belief that creative-telescop-
ing algorithms can discover recurrences for holonomic se-
quences that are easy to check a posteriori. We discuss this
observation and describe the protocol we devised in order to
produce complete formal proofs of the recurrences.
Categories and Subject Descriptors:
G.2.1 [Mathematics of Computing]: Discrete Mathe-
matics — Recurrences and difference equations
General Terms: Theory, Verification.
Keywords: creative telescoping, formalization, irrational-
ity proof.

1. INTRODUCTION
Computer algebra is primarily about computing, whether

it be simplifying an expression, solving (like a linear or poly-
nomial system, an ODE or a recurrence), approximating
(e.g., a function by a series), or changing representations
(like changing the recursive representation of multivariate
polynomials or obtaining a better basis for a vector space,
an ideal, or another algebraic structure). But, always, com-
putations claim the status of proofs, as each one states some
kind of an identity. These identities are justified, in prin-
ciple, by theorems on paper, supposed to establish the cor-
rectness of the algorithms used, and, of course, by the act of
faith that the implementation matches the intention of the
algorithm.
Additionally, specifically when computer algebra is used

in applications to obtain a new proof of a mathematical fact,
or the first proof of a conjecture [14, 16, 21, 22, 23, 24, 26],
calculations are augmented with more paper proofs that in-
terpret the successive results and lead to the final mathemat-
∗Supported in part by the Microsoft Research – Inria Joint Centre.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’14, July 21–25, 2014, Kobe, Japan.
Copyright 2014 ACM ??? ...$15.00.

ical statement. This particular choice of examples illustrates
the success of algorithms computing properties (identities,
asymptotics, . . .) on a large class of sequences. The con-
fidence in the calculations performed by these algorithms
about sequences is increased by the common sense conveyed
by the literature that these proofs on sequences can be justi-
fied a posteriori, that is, after calling the computer-algebra
algorithms.
Formalizing mathematics consists in providing a precise

and unambiguous representation of mathematical objects,
of their properties, and of the proofs thereof, in the codified
language of logic. Candidate proofs of mathematical state-
ments become this way amenable to mechanical checking,
by a single program that can be trusted because it is small
and simple. Interactive proof assistants are pieces of math-
ematical software that aim at easing the tasks of human
formalization and machine checking. In addition, the activ-
ity of formalizing mathematics often requires polishing the
definitions of the mathematical objects at stake and scru-
tinizing the associated patterns of reasoning. Indeed, the
proof checker of a proof assistant is, on purpose, insensitive
to implicit proof steps or analogies without which it is not
possible to communicate mathematics in a way intelligible
to a human reader.
Turning a computer-algebra proof into a proof checked by

a proof assistant requires several ingredients. If part of the
proof consists in calculations that are easy to check a posteri-
ori, it is often relevant to take benefit of this situation and to
privilege a skeptical approach to formal certification [20]: a
computer-algebra program can be used as an external oracle
in order to produce conjectures that are verified a posteriori
by a calculation performed inside the logic. This verification
typically consists in computing and comparing normal forms
of algebraic objects (e.g., arithmetical expressions, rational
fractions). Moreover, the paper part of the proof is replaced
by a machine-checked formal proof, gradually elaborated by
its author through an interaction with the proof assistant.
Note that a proof assistant only knows about the syntax of
logical objects and does not assign any semantics to expres-
sions, as opposed for instance to the built-in notion of arith-
metic expressions typically featured by a computer-algebra
system. Hence a formalized proof starts by defining inside
the logic the various mathematical objects (e.g., sequences,
binomials, polynomials) the theorem is about. In particular,
if computer algebra calculates with some algebraic abstrac-
tion of a concrete, analytic object, the formalization should
make explicit a correct interpretation of the computational
results on the original object.

We have completed a formal proof of irrationality of ζ(3)
by using the Coq proof assistant [34] in cooperation with
the computer-algebra system Maple. In particular, this for-
malization includes a formal a posteriori verification of the
computer-algebra calculations. Prior to this experience, we
shared the common belief that such a formal a posteriori
verification, tedious and error-prone if performed by hand,
could be automated easily. However, the present work re-
vealed the limits of the common belief. Actually the al-
gorithms run by the computer-algebra session are specified
in the litterature for objects that do not match the nature
of concrete sequences involved in the irrationality proof. It
happens that the ease of a posteriori checking is compro-
mised by this discrepancy.
In the present article, we focus on the part of our formal-

ized irrationality proof of ζ(3) devoted to the validation of
computer-algebra calculations. (Other aspects not pertain-
ing to computer algebra will be described in the related ar-
ticle [10].) Our first contribution is taking a critical look at
symbolic-summation algorithms developed since the 1990s
by the approach of creative telescoping. Next, Lemma 1
precisely justifies how creative telescoping turns specific re-
currences for a given summand into a recurrence for its def-
inite sum. This turns into an explicit statement what is
found only as a method worked out on examples in the lit-
erature. Last, we devised a protocol to formally validate the
recurrences obtained by computer algebra when combining
∂-finite sequences by their closure operations. We identified
procedures for these closures, which all base on rewriting
modulo recurrences with provisos. Unfortunately, we could
not turn these procedures into complete algorithms yet.
The proof by Apéry on which we base our work is de-

scribed in Section 2, together with alternatives. Section 3
provides a critical view on the commonly accepted approach
of creative telescoping for proving combinatorial sums and
related identities. Creative telescoping is often described in
its simplest form in the literature. In the present paper, we
address the case of creative telescoping for sums with vary-
ing bounds in presence of singularities by Lemma 1 in Sec-
tion 4. Our proof of irrationality bases crucially on succes-
sively obtaining recurrences for each of the sequences in (6)
below. The formalization of how to obtain these recurrences
is described in Section 5. Finally, we give conclusions and
perspectives in Section 6.
Our twin paper [10] as well as our Maple and Coq scripts

will be found at http://specfun.inria.fr/zeta-of-3/.

Notation
In this work, we consider sequences of one or two integer
indices with values in a field K, that is, functions u from
either KZ or u ∈ KZ2

with values at n, resp. (n, k), denoted
by un, resp. un,k. If u is a bivariate sequence and j ∈ Z
is a fixed integer, uj,_, resp. u_,j , denotes the univariate
sequence obtained by specializing the first, resp. the second,
argument of u to j. In addition, an operator on sequences
is a (total) map from Ks to itself (s = 1 or s = 2).

2. MATHEMATICAL AND ALGORITHMI-
CAL CONTEXT

While the evaluations of the Riemann zeta function at
positive even integers are known to lie in Q(π) and those at
nonpositive integers in Q, not much is known about the ra-

tionality or irrationality of its evaluations at positive odd
integers. It was therefore a great breakthrough in 1978
when Apéry proved that ζ(3) is irrational [3, 4]. Twenty
years later, Rivoal proved the existence of infinitely many
irrational values at odd integers [27], without being able to
name any but ζ(3), and that one of the numbers ζ(5), ζ(7),
. . . , ζ(21) is irrational [28]; this interval was then narrowed
down to ζ(5), . . . , ζ(11) by Zudilin [45].

2.1 Apéry’s and Beukers’ Proofs
Beside Apéry’s rather terse original presentation, an ex-

planatory one was proposed in [35]. For his proof, Apéry
introduced two sequences of rational numbers (an)n∈N and
(bn)n∈N such that ζ(3) is the limit of the quotients bn/an.
The proof is completed by a classical number-theoretic argu-
ment that “too many” quotients are “too close” to ζ(3). To
obtain that bn/an is “close enough” for the proof to work,
the an and bn are obtained by Legendre transformation,
starting from the initial approximation

un,k =
n∑

m=1

1
m3 +

k∑
m=1

(−1)m+1

2m3
(
n
m

)(
n+m
m

) ,
which tends to ζ(3) when n goes to infinity. This leads to

an =
n∑
k=1

cn,k, bn =
n∑
k=1

cn,kun,k, for cn,k =
(
n
k

)2(n+k
k

)2
.

(1)
Introduce the lcm `n of the integers 1, . . . , n. Apéry’s proof
can be organized in four main parts: (i) using elementary
number theory in order to establish that 2`3nbn is an integer;
(ii) proving that (an)n∈N and (bn)n∈N both satisfy the same
second-order recurrence

(n+1)3yn+1−(34n3 +51n2 +27n+5)yn+n3yn−1 = 0; (2)

(iii) deriving useful consequences of this recurrence, namely
the positivity of δn = anζ(3) − bn and that the sequence
(δn)n∈N is asymptotically infinitesimally small; (iv) assum-
ing that ζ(3) is rational and combining the previous facts
with an estimation of the asymptotic of (`n)n∈N to conclude
a contradiction.
In the litterature, the asymptotic study to get the bound

`n = en (1+o(1)) bases on the distribution of the prime num-
bers. Other more elementary bounds that are tight enough
for our purpose exist. Notably, independent elementary
proofs of a bound 3n are given by Hanson [19] and Feng [15].
An alternative, shorter and more elegant proof was pro-

posed by Beukers [6], who interpreted Apéry’s approxima-
tions by integrals. From the definition of Legendre polyno-
mials Ln(x) as an nth derivative and the fact that∫ 1

0

∫ 1

0

∫ 1

0

Ln(x)Ln(y)
1− u (1− xy)dx dy du =

(
An +Bn ζ(3)

)
`3n

for integers An and Bn, Beukers derived by integration by
parts that the integral above is nonzero and asymptotically
small. The irrationality of ζ(3) follows by the same final
arguments as in Apéry’s proof.

2.2 Recurrences as a Data Structure
In the 1990s, combinatorialists and computer-algebraists

got interested in designing algorithms to “compute” expres-
sions like un,k, an, and bn above: with procedures like Zeil-
berger’s algorithm [43] and its extension [8] for single sums,

http://specfun.inria.fr/zeta-of-3/

or [37] for multiple sums, it became possible to determine re-
currences satisfied by those sequences algorithmically. Even
when no closed form can be obtained from these outputs,
much information can be extracted. This is so in Apéry’s
proof, which derives the asymptotic bound on and the pos-
itivity of δn from the second-order recurrence (2) satisfied
simultaneously by (an) and (bn).
In fact, this approach, largely initiated by Zeilberger [42],

promoted (linear) recurrences as the right representation of
a large class of sequences closed under many operations,
nowadays known as ∂-finite sequences [11]: a sequence is
described by a linear recurrence or set of linear recurrences
whose solution set is a finite-dimensional vector space, dec-
orated with a sufficient finite number of initial conditions.
Effective procedures for closures in the univariate case are
folklore and can be found implicitly in [33], and have been
extended to the multivariate case in the 1990s [42, 11]. For
simple operations (addition, product, shift, and similar com-
binations), algorithms reduce to linear algebra for obtain-
ing linear dependencies between shifts of the composite se-
quences to be described. Additionally, Zeilberger borrowed
from D-module theory the setup of holonomic systems to
guarantee the existence of linear recurrences for the definite
sum of a sequence given by its set of linear recurrences in
one more index. Zeilberger designed algorithms specific to
the case of hypergeometric sequences [41, 38], which were
later extended to larger classes of inputs [8, 9].
Zeilberger’s approach to summation bases on an opera-

tion named creative telescoping, a term coined by van der
Poorten [35]. Given recurrences for a hypergeometric sum-
mand un,k to be summed for k between integers α and β

(independent of n), thus considering Un =
∑β

k=α un,k, it
consists in first obtaining a relation of a specific shape:

pr(n)un+r,k + · · ·+ p0(n)un,k =
q(n, k + 1)un,k+1 − q(n, k)un,k, (3)

for some integer r, polynomials pi independent from k, and
a bivariate rational function q. The motivation is that sum-
ming over k (provided this makes sense) delivers

pr(n)Un+r+· · ·+p0(n)Un = q(n, β+1)un,β+1−q(n, α)un,α,
(4)

where the right-hand side has been obtained by a telescop-
ing sum, giving its name to the method. In nice cases, this
right-hand side evaluates to 0, which yields a linear homoge-
neous recurrence for U ; in other cases, the evaluations un,a
and un,b+1 satisfy recurrences themselves, which can be re-
combined to cancel the right-hand side, and also provide a
linear homogeneous recurrence for U by composition.
Beside algorithms, the computer-algebra community came

up with implementations to manipulate ∂-finite sequences
and recurrences they satisfy, notably, the Maple package
Gfun [30] for univariate sequences (among other things) and
its multivariate counterpart Mgfun by Chyzak, both dis-
tributed as parts of the Algolib library [1]. Based on them,
Salvy wrote a Maple worksheet [29] that completes a proof
of irrationality of ζ(3) by Apéry’s approach, letting Maple
perform all calculations needed, and interlacing them with
human-written logical steps as comments in the session.

2.3 The Crucial Recurrence in Apéry’s Proof
Salvy’s worksheet and our Coq formalization share the

structure described in Section 2.1. For the crucial step

of deriving the recurrence for (an)n∈N and (bn)n∈N, they
are guided by calculations performed by a Maple script,
appealing to the Algolib library. But they differ in that
the computer-algebra worksheet views Maple calculations
as proof steps, while our Coq proof follows the skeptical ap-
proach [20] already discussed in Section 1. Additionally, in
our Coq proof the hand-written parts of the Maple work-
sheet are replaced by machine-checked formal proofs.
The calculations leading to recurrence (2) can be viewed

as the program

BV
C

U
Z

SD
Σ

+
× Σ

AC
Σ

(5)

where each of the node labelsA, B, C,D, S, U , V , and Z has
to be understood as recurrences to be computed (together
with sufficiently many initial conditions) for the correspond-
ing sequence in the list:

cn,k =
(
n

k

)2(
n+ k

k

)2

, dn,m = (−1)m+1

2m3
(
n
m

)(
n+m
m

) ,
zn =

n∑
m=1

1
m3 , an =

n∑
k=1

cn,k, sn,k =
k∑

m=1

dn,m,

un,k = zn + sn,k, vn,k = cn,kun,k, bn =
n∑
k=1

vn,k.

(6)

The program (5) precisely follows the syntax trees defining
the sequences a and b, so that the edges in the program are
labelled with the closure operation performed by the pro-
gram. More explicitly, the sequences z, c, and d are defined
directly by recurrences that are easy to deduce from their
closed forms (see, e.g., (9) below), while other sequences
are derived through closure operations: summation for a,
s, and b; addition for u; product for v. In fact, the pro-
gram above is a minor reordering of Salvy’s presentation.
But with respect to proof, this is not quite innocent, as it
permitted a uniform procedural treatment of all sums.
As it turns out, the algorithms mentioned in Section 2.2

are precisely specified for the tasks in the program (5), ex-
cept that they generally do not maintain initial conditions.
Thus, the algorithm employed at a node returns recurrences
that hold in fact not just for the specific sequences satisfy-
ing the input systems in the program, but for any choice of
sequence solutions of the prescribed input systems.

3. “PROOFS” ON ∂-FINITE SEQUENCES
In the early 1990s, Zeilberger popularized the idea that a

large class of mathematical identities, whether combinato-
rial or about special functions, had become routinely verifi-
able on a computer, using computer-algebra algorithms. He
presented his views in sometimes disputable pamphlets [40,
37, 44] as well as in theoretical papers [41, 42, 38]. This was
accompanied by many articles proving sample identities by
the method and was followed by the book [25]. We suggest
the reader look up the many computer-aided proofs of iden-
tities “co-authored” by (the computer) Shalosh B. Ekhad
and Zeilberger, to be found at http://www.math.rutgers.
edu/~zeilberg/pj.html.
The treatment of additions and products of sequences, as

suggested in [42, Section 4.1 and 4.2] and continued in [11,

http://www.math.rutgers.edu/~zeilberg/pj.html
http://www.math.rutgers.edu/~zeilberg/pj.html

Lemmas 2.1 and 2.2], as well as the treatment of summation
in [43, 8], rely on the assertion that verifying an identity∑

(i,j)∈S

ci,j(n, k)fn+i,k+j = 0, (7)

on a sequence (fn,k)(n,k)∈Z2 for polynomials ci,j and a finite
set of shifts S ⊂ N2, reduces to simplifying according to
rules of the form

fn+I,k+J =
∑

(i,j)∈U

c′i,j(n, k)fn+i,k+j , (8)

for a common set U ⊂ N2, a finite set of pairs (I, J), and
rational functions c′i,j . As was developed in [11], the proper
set of rules can be described in terms of Gröbner bases: when
the family of the relations (8) is a Gröbner basis, any path
of reduction of the left-hand side of (7) modulo the (8) ter-
minates on the same element of the Q(n, k)-vector space of
normal-form elements, with basis the fn+i,k+j for (i, j) in U .
For example, when fn,k is the binomial coefficient

(
n
k

)
, the

rules (8) instantiate as the two relations(
n+ 1
k

)
= n+ 1
n+ 1− k

(
n

k

)
,

(
n

k + 1

)
= n− k
k + 1

(
n

k

)
. (9)

Rewriting with them in this case, (7) would reduce to an
identity between rational functions, after factoring out

(
n
k

)
,

which computer algebra should easily prove or disprove.
However, the nullity of rational functions relies on relations
like (n − k)/(n − k) = 1, which, if the rational functions
have to be interpreted as functions and not just algebraic
fractions, are only valid for n 6= k. When it comes to gen-
eral ∂-finite sequences f , the phenomenon is the same, with
the only difference that normal forms do not allow to fac-
tor out a single term like

(
n
k

)
above, but gather rational

functions in front of the fn+i,k+j for (i, j) in U .
Therefore, the best that this approach can do is prove

identity (7) outside of an algebraic locus. Yet, the existing
algorithms in computer algebra prove nothing more than
the algebraic interpretation of (7), and do not return any
constraint for validity.
Moreover, by focusing on a theory of Gröbner bases for

recurrence operators over a rational-function field, working
with ∂-finite sequences relies on the idea that a recurrence
can without loss be symbolically multiplied by a rational
function. But, are the two recurrences

n (un+1 − un) = 0 and un+1 − un = 0

really equivalent? In fact no, as the solutions to the second
are only the constant sequences, while the solutions to the
first also contain sequences that are nonzero at 0 and zero
for n ≥ 1. If one is to encode such a nonconstant sequence
by the second recurrence, then the recurrence has to be dec-
orated by the proviso n 6= 0, which goes out of the algebraic
theory of Gröbner bases. Of course, the phenomenon per-
sists for sequences in more indices.
In cases like deriving asymptotic properties of univari-

ate sequences, the algebraic treatment by computer alge-
bra, with no determination of a first integer at which the
“proved” identity holds, may be sufficient. But another
phenomenon occurs in summation by creative telescoping,
whether it be by Zeilberger’s fast algorithm [41] or Chyzak’s

algorithm [8]. Indeed, the common approach evaluates mul-
tivariate rational functions after normalizing them, poten-
tially disregarding functions like (n−k)/(n−1), whose value
at k = n = 1 depends on the ordering of taking limits.
A possible work-around known in the computer-algebra

literature [36] is to introduce a new variable ε and work
with k + ε instead of k, so as to avoid integer values. But
this generates equations of larger orders and total sizes that
will not permit the computations to scale, even before con-
sidering manipulating them in a proof assistant.
In the present work, we exhibit no cases where the ∂-finite

approach leads to false proofs of wrong identities. Rather,
we suggest that it can provide incomplete proofs of valid
identities. In fact, we doubt sufficiently to fear false proofs.

4. SOUND CREATIVE TELESCOPING
The main result of this section is Lemma 1 below, which

is the crux of the proof of recurrences obtained by closure
under (definite) summation, like for a, s, and b in (6): given
a bivariate sequence (un,k)(n,k)∈Z2 to be summed into a def-
inite sum (Un)n∈Z, it formalizes the general process of deriv-
ing a recurrence relation for U from a creative-telescoping
recurrence relation on the summand u, namely (10) below.
We state the lemma over any field K, for future work, but
for this work on ζ(3), only K = Q will be used.
One of the hypotheses often used in the literature to de-

rive the simple conclusion (4) is that the summation has
standard boundary conditions, that is, that the sum for Un
is over all values of k that make the summand un,k nonzero,
all other values being (defined and) zero. (More generality
is possible, but goes beyond the scope of this presentation.)
For example,

∑n

k=0

(
n
k

)
has standard boundary conditions,

while
∑n

k=0

(2n
k

)
and

∑n−1
k=0

(
n
k

)
/(n−k) do not. In Lemma 1

below, equation (11) is more involved, to accommodate po-
tentially nonstandard boundary conditions.
We stress that, in the next lemma, all evaluations are sup-

posed to be well-defined, and the sequences and operators
to be total. Other situations are discussed after the lemma.

Lemma 1 Let r ∈ N, and, for 0 ≤ i ≤ r, let pi ∈ KZ

be a function. Introduce P , the linear operator defined by
(Py)n =

∑r

i=0 pi(n) yn+i for any univariate sequence y and
n ∈ Z. Let Q be an operator on bivariate sequences. Con-
sider u ∈ KZ2

and integers α and β from Z, and let U be
the sequence with general term Un =

∑n+β
k=α un,k. Then, for

any set ∆ ⊂ Z2 for which

(n, k) /∈ ∆⇒ (Pu_,k)n = (Qu)n,k+1 − (Qu)n,k, (10)

the following identity holds for any n such that α ≤ n+ β:

(PU)n = (Qu)n,n+β+1 − (Qu)n,α

+
∑

α≤k≤n+β
(n,k)∈∆

(Pu_,k)n − (Qu)n,k+1 + (Qu)n,k

+
r∑
i=1

i∑
j=1

pi(n)un+i,n+β+j .

(11)

The proof of identity (11) is a straightforward reordering
of the terms of the left-hand side (PU)n =

∑r

i=0 p(n)Un+i
after unfolding the definition of U and applying relation (10)
everywhere allowed in the interval α ≤ k ≤ n+ β. In other

words, a starting point to derive (11) is to sum (10) over
this interval, then compensate for the cases (n, k) ∈ ∆. The
first part of the right-hand side is the usual difference of
border terms. The last part of the right-hand side is the
collection of terms that arise from the fact that the upper
bound of the sum defining Un depends linearly on n and that
we do not assume any nullity of the summand outside the
summation domain. The middle part of the right-hand side,
which we will call the singular part, witnesses the possible
partial domain of validity of relation (10).
Equations (10) and (11) above are formal, generalized

forms for (3) and (4) in our simplistic sketch in Section 2.2.
In the litterature, too, only the first part of the right-hand
side of (11) is given, both because of simplifying assump-
tions (that are however not satisfied on many examples)
or because of incomplete proofs. See, e.g., Theorem 5.1
as well as Section 6.3 in [42], the sentence including equa-
tion (2) in [43], the one-line proof of the Fundamental corol-
lary in [38], Theorem 1 and Corollary A in [39], equation
(7.1.5) in [25], and, for honesty sake, in the work of an au-
thor of the present article, the simplifying hypothesis (3.1)
leading to equation (3.4) in [11], and the similar treatment
in [8, Section 3]. Rare exceptions that treat nonstandard
boundary conditions with some level of generality, both in
the context of multiple sums, are the works [36, Sec. 3.4] and
[32, Chapter 3] (applied in [7]). The latter does not provide
a formula, but a procedure to write down analogues of (11)
in the case of complicated boundary conditions.
A variant of (11) allows a more direct comparison with

how it is usually stated: in

(PU)n = (Qu)n,n+b+r+1 − (Qu)n,a

+
∑

a≤k≤n+b+r
(n,k)∈∆

(Pu_,k)n − (Qu)n,k+1 + (Qu)n,k

−
r∑
i=0

r∑
j=i+1

pi(n)un+i,n+b+j

the third part vanishes in the context of a summand that is
zero outside the bounds of summation (natural boundaries)
and the singular part is also overlooked.
Note that we do not assume linearity of Q. This allows for

its use, for example, in the context of creative telescoping in
difference extensions [31].
Observe that the collection of singular terms crucially de-

pends on the definition of the set ∆ restricting the creative-
telescoping identity: the larger ∆ is, the more difficult it
will be in practice to simplify the complete expression. In
the extreme but unrealistic case where ∆ is Z2, Lemma (1)
becomes totally uninformative.
Nevertheless, this set ∆ can be put to good use to deal

with two kinds of singularities that appear in practice: “se-
quences” in applications need not be total functions (e.g.,(
n
k

)
/(n − k) mentioned above); expressions for “operators”

produced in practice by creative-telescoping algorithms of-
ten feature rational functions that prevent their direct in-
terpretation as total functions from sequences to sequences.
In both cases, salvation comes from prolonging the ratio-
nal functions in the expressions as piecewise-defined func-
tions with some arbitrary values at their singular loci. This
way, a partial sequence ũ defining a sum Un =

∑n+β
k=α ũn,k

in a well-defined manner, and partial operators P̃ and Q̃

that would not be amenable to Lemma 1 are replaced with
prolongations u, P , and Q, for which the lemma applies.
Barring unlikely coincidence, the loci of such prolongations
contribute to ∆ (repeated and shifted in the proper way).
Prolonging is implicit in the Coq library we used [2], as

it declares the inverse of the rational number 0 to be 0, a
simple way of ensuring that all functions are total. As a
counterpart, all formal lemmas involving rational inverse or
division take this redefinition into account in their premises,
e.g., by enforcing that all denominators are nonzero.
Because of the interpretation of the recurrences (8) that

define a ∂-finite sequence as a Gröbner basis, it has been
customary in the literature to favour homogeneous recur-
rences, and thus, variants of (11) with null right-hand side.
Such a variant always exists as a consequence of (11), as
computer algebra provides algorithms to look for an opera-
tor P ′ cancelling the right-hand side, thus leading by com-
position to (P ′PU)n = 0. We have enforced that our Maple
script directly return pairs (P,Q) with this nullity property.
A pair (P,Q) is called a creative-telescoping pair. A rela-

tion of the shape (10) is called a creative-telescoping identity.

5. FORMAL PROOFS OF RECURRENCES
Our formal proof that the sequences a and b in (1) satisfy

the same second-order recurrence (2) follows program (5):
we prove a collection of lemmas that formalize the results ob-
tained by algorithmic calculations and we apply these lem-
mas to the sequences defined in (6). This proves that a is a
solution of (2) and that b is a solution of some recurrence of
order four. We conclude that the recurrence (2) holds for b
as well by using evaluations of this sequence.
In all what follows we use the names introduced in (6) for

specific sequences. Variables with hats (ẑ, ĉ, . . .) denote ar-
bitrary sequences. Each capital letter in program (5) refers
both to a system of recurrences and to the characteristic
function of its set of solutions. For instance, C(c) should be
read “the system C holds for the sequence c”.

5.1 Recurrences with provisos
In our formal proof, a recurrence is defined as a condi-

tional equation. The proviso makes explicit the values of the
indices at which an instance of the equation is well defined
and holds. For instance the leaf system C of program (5)
is the conjunction of two bivariate, first-order, conditional
recurrences:

(n, k) /∈ ∆1 ⇒ ĉn+1,k =
(

n+ 1
n+ 1− k

)2
ĉn,k, (12)

(n, k) /∈ ∆2 ⇒ ĉn,k+1 =
(

(n− k)(n+ 1 + k)
k + 1

)4

ĉn,k, (13)

with ∆1 :=
{

(n, k) : n = −1 ∧ k = n + 1
}

and ∆2 :={
(n, k) : n = 0 ∧ k + 1 = 0

}
.

A skeptical use of computer–algebra calculations requires
executing program (5) two times to complete the formal
proof. The first run consists in executing a Maple script
which computes one system of—unconditional—recurrence
equations per inner node in (5). The script pretty-prints
its output in Coq syntax and generates empty placeholders
for the provisos. For example, in the case of system C,
the Maple script generates two formulae matching exactly
statements (12) and (13), including references to ∆1 and ∆2.

The values of these two provisos are then written down by
hand in the Coq script as described in Section 5.2.
In order to complete the formal proof, we run the program

a second time inside the proof assistant. This second run
consists in proving one lemma per inner node in (5). For
instance, at the inner node V we prove that:

∀ĉ ∈ QZ2
, ∀û ∈ QZ2

, C(ĉ) ∧ U(û)⇒ V (ĉ× û) (14)

where the sequence ĉ× û ∈ QZ2
is the pointwise product of

the sequences ĉ and û. Similarly, at node B we prove that:

∀v̂ ∈ QZ2
, V (v̂)⇒ B

(n∑
k=0

v̂n,k

)
. (15)

Note that those lemmas are not specific to the sequences
defined in (6). For instance formula (14) states that the
recurrences V hold not only for v but for any choice of a
sequence v̂ satisfying the premise systems C and U . How-
ever, we indeed prove that each sequence in (6) is a solution
of the eponymous conditional system in the program and in
particular that A, resp. B, holds for a, resp. b.

5.2 Sources of provisos
Provisos should at least exclude the possible poles of the

fractions involved in the equations. Yet in most cases they
are even more restrictive.
The concrete sequences in (6) may for instance not satisfy

the recurrence systems for all values of their indices. The
provisos annotating the leaf systems Z, C, and D are hence
designed so as both to exclude the poles of the coefficients
and to provide sufficient conditions under which Z(z), C(c),
and D(d) hold respectively.
But finding appropriate provisos at inner nodes of the

program is more intricate. We start with a complete and
definitive definition of the premise systems, like C and U in
the case of (14) and V in the case of (15). In particular, the
values of their provisos have been devised at earlier stages
of the formal proof. We also have a candidate, proviso-free
system of equations for the result of the closure, which has
been calculated by the Maple program. Validating the clo-
sure operation requires crafting an appropriate set of restric-
tions for this candidate system. These restrictions should at
least: exclude the poles of the coefficients, make the system
be satisfied by the eponymous sequence in (6), but also allow
for an a posteriori proof of the closure lemma.
Even more challengingly, the different lemmas of the pro-

gram cannot be considered independently. For instance,
oversizing the restrictions in system V cripples the proof
of statement (15). As a result, appropriate values for the
provisos can hardly be anticipated solely from the equations
calculated by Maple and definitions in (6). In fact it is dif-
ficult to guess these values without a first trial run of the
proof, in order to discover the correct obligations.

5.3 A complete proof of the program
We prove each lemma of the formal program by using the

method sketched in Section 3. However a notable difference
is that the analogues of relations (8), which we use to nor-
malize a candidate identity, now feature provisos. For each
node of the program, the Maple script generates a system
of recurrences that is a Gröbner basis. But their annota-
tion with conditions jeopardizes the normalization strategy
of the proviso-free case: provisos may indeed exclude some

of the reduction paths and even compromise the confluence
of the reduction.
For each addition and product of sequences, we prove a

statement analogous to (14). We proceed exactly as sug-
gested in Section 3: we normalize a candidate identity (7)
with respect to known—but now conditional—relations and
conclude by comparing to zero the rational-function coef-
ficients of the remaining terms. We verify that each step
in the simplification is a legal instance of one of the rules.
Values for which the identity cannot be proved under the
conditional rules are excluded by the hand-crafted proviso
annotating the conclusion.
For each definite summation, we prove a statement anal-

ogous to (15). We use Lemma 1 to validate the recur-
rences computed by creative-telescoping algorithms, from
the creative-telescoping pairs produced by the Maple script.
For each creative-telescoping pair, we use the set of rules
known on the summand to verify a creative-telescoping iden-
tity (10). This verification follows the same protocol as the
one we described for addition and product, including the
discovery of a correct proviso.
The rest of the proof consists in: applying Lemma 1 to

this creative-telescoping identity, then normalizing the right-
hand side of the instance of equation (11) obtained this way.
As mentioned at the end of Section 4, thanks to the cal-
culations performed by our Maple script, we expect that
this expression normalizes to zero. This expression has a
more general form than the ones that we have dealt with
so far to validate recurrences for addition and product, and
creative-telescoping identities. First, we should verify that
the prolongations we introduced to interpret ill-defined ra-
tional functions compensate, so that in the end the expres-
sion to be normalized does not depend on them. The result-
ing expression features several distinct collections of terms
that will normalize to zero by independent simplification
chains. The upper border term and the overhead terms be-
long to the same collection since they are all shifts from a
same origin term, with index (n, n + β). The lower bor-
der term and the singular terms contribute to other distinct
collections of terms, obtained by shifts from different ori-
gins. For instance in our running example (15), we observe
that after the cancelling of prolongations, the expression to
be normalized features two distinct collections: a finite set
of shifts from v̂n,n and a finite set of shifts from v̂n,0. We
observe that the latter does not only contain the border
term v̂n,0 but also several singular terms. The simplifica-
tion of the extra collections of terms may in principle re-
quire additional assumptions about some specializations of
the summand. Yet by design, our Maple script generates no
such extra assumption. It happens that we have been able
to verify completely all the recurrences obtained by creative
telescoping with this protocol. However we have no guar-
antee that on other examples we would be able to complete
such a posteriori proofs without strengthening the assump-
tions on the summand.

5.4 Formal proofs and automation
The provisos we use have been recorded by hand in the

Coq script. We have not tried to maintain tight conditions
but rather concise and readable ones. For instance, we some-
times anticipate on a sign constraint caused by the range of
a definite sum in the program, which may subsume some
large conjunction of equalities to negative values.

We however use a formal-proof-producing decision proce-
dure [5, Chapter 21] to justify that each reduction modulo
a conditional recurrence that we perform is legal. Each of
these proof obligations is a first-order formula in the theory
of integer arithmetics (with order). Although this theory is
undecidable, the formulae we deal with all fall in a fragment
that is amenable to automated decision. In practice, we
enforce these proof obligations to be stated as satisfiability
problems and the polynomials in the atoms to be products
of linear factors. This latter feature, crucial to efficiency,
is easily realized by having the Maple script enforce an ap-
propriate factorization discipline in the coefficients of the
recurrences pretty-printed in Coq files.
In the end, our formal proof does not depend on the Maple

script that has discovered the recurrences. Verifying the
conjectures produced by the script nonetheless requires per-
forming some calculations inside the logic underlying the
proof assistant, namely normalizations of rational functions.
The rational functions involved in this proof are rather small
with respect to the standards of computer algebra systems
but already challenging for proof assistants. The approach
to formal certification adopted in this work benefits from the
status of computation in the logic underlying the Coq proof
assistant [12, 13]. This meta-theoretical feature goes so far
as to allow optimizations of the system implementation that
make computations quite efficient [17]. We heavily use this
feature of Coq when calling the formal-proof-producing deci-
sion procedure [18][34, Chapter 24] that normalizes rational
functions automatically.

6. CONCLUSIONS AND PERSPECTIVES

Formalizing beyond the recurrences.
In the present article, we have focused on the part of our

formal development that addresses the proof of Apéry’s re-
currence (2). But we also formalized the other parts of
Apéry’s proof as sketched in Section 2.1, following a mix
of Salvy’s text [29] and van der Poorten’s report [35]. We
rely on existing broad libraries of formalized mathematics [2]
that accommodate the variety of arithmetic and analytic ob-
jects involved. Still, at some places, we have used more ele-
mentary variants of the proofs in [35, 29]. We avoid this way
the need for sophisticated general theories that are not avail-
able in state-of-the-art libraries of formalized mathematics.
More details will be found in our upcoming [10].
At the time of writing, our formal proof of irrationality is

strictly speaking not complete. Indeed, it uses the assertion
that `n = O(3n) without providing any machine-checked
formal proof of this (known) fact. Note that this result is
totally independent from the rest of the irrationality proof.
Hence, again strictly speaking, we provide a complete formal
proof of the statement:

`n = O(3n)⇒ ζ(3) /∈ Q

We plan to machine-check Apéry’s proof completely, by for-
malizing the proof proposed by Hanson [19].

Variant algorithmic proof paths.
Variants of the efficient algorithms we have used in the

present proof allow a similar algorithmic approach to the
proof of Apéry’s recurrence, possibly working with different
intermediate recurrences and therefore different sets of sin-

gularities. But we think that these alternative approaches
suffer from a similar incompleteness to ours’.
For instance one could use Wilf–Zeilberger pairs [38] to

compute closures by definite summation, as this produces
recurrences with polynomial coefficients instead of rational
functions. However this appealing feature is a lure since in
this case as well the validation of the creative-telescoping
pair relies on the normalization of rational functions.
Another interesting alternative proposed by Schneider al-

lows to verify directly that recurrence (2) holds for both a
and b, when the approach we follow uses an intermediate re-
currence of degree four for b. This would remove the part of
the proof devoted to reducing the order of the latter, using
initial conditions for b. But a counterpart is to deal with
nested sums and a priori more involved provisos.
Still, it would be interesting to apply our formal study to

these alternative proof paths.

Completeness of our approach.
It would be even more satisfying to better understand on

which class of problems the methods of the previous para-
graph are actually sound. This would make it possible to
revisit computer-algebra algorithms to re-develop them in a
“safe mode”.
This insight would open the way for an automation of the

formal proofs that validate recurrences, to the point that
both a formal statement and its formal proof are entirely
generated from a Maple script.

Acknowledgments
We wish to thank Enrico Tassi for helping us in the formal-
ization effort and Alin Bostan for clarifying some arithmetic
proofs and for pointing us to [19, 15].

7. REFERENCES
[1] Algolib. http://algo.inria.fr/libraries/, 2013.

Version 17.0. For Maple 17.
[2] Mathematical Components Libraries. http://www.

msr-inria.fr/projects/mathematical-components,
2013. Version 1.4. For Coq 8.4pl3.

[3] R. Apéry. Irrationalité de ζ(2) et ζ(3). Astérisque, 61,
1979. Société Mathématique de France.

[4] R. Apéry. Interpolation de fractions continues et
irrationalité de certaines constantes. In Mathematics,
CTHS: Bull. Sec. Sci., III, pages 37–53. Bib. Nat.,
Paris, 1981.

[5] F. Besson. Fast reflexive arithmetic tactics: the linear
case and beyond. In Types for proofs and programs,
volume 4502 of Lecture Notes in Comput. Sci., pages
48–62. Springer, Berlin, 2007.

[6] F. Beukers. A note on the irrationality of ζ(2) and
ζ(3). Bull. London Math. Soc., 11(3):268–272, 1979.

[7] J. Blümlein, S. Klein, C. Schneider, and F. Stan. A
symbolic summation approach to Feynman integral
calculus. J. Symbolic Comput., 47(10):1267–1289,
2012.

[8] F. Chyzak. An extension of Zeilberger’s fast algorithm
to general holonomic functions. Discrete Math.,
217(1-3):115–134, 2000.

[9] F. Chyzak, M. Kauers, and B. Salvy. A non-holonomic
systems approach to special function identities. In

http://algo.inria.fr/libraries/
http://www.msr-inria.fr/projects/mathematical-components
http://www.msr-inria.fr/projects/mathematical-components

ISSAC’09: Proceedings of the 2009 International
Symposium on Symbolic and Algebraic Computation,
pages 111–118. ACM, New York, 2009.

[10] F. Chyzak, A. Mahboubi, and E. Tassi. A
computer-algebra based formal proof of the
irrationality of ζ(3). In the process of being submitted
to ITP’2014, 2014.

[11] F. Chyzak and B. Salvy. Non-commutative
elimination in Ore algebras proves multivariate
identities. J. Symbolic Comput., 26(2):187–227, 1998.

[12] T. Coquand and G. P. Huet. The calculus of
constructions. Inf. Comput., 76(2/3):95–120, 1988.

[13] T. Coquand and C. Paulin-Mohring. Inductively
defined types. In P. Martin-Löf and G. Mints, editors,
Proceedings of Colog’88, volume 417 of Lecture Notes
in Computer Science. Springer-Verlag, 1990.

[14] J. A. De Loera, J. Lee, P. N. Malkin, and
S. Margulies. Hilbert’s Nullstellensatz and an
algorithm for proving combinatorial infeasibility. In
ISSAC 2008, pages 197–206. ACM, New York, 2008.

[15] B.-y. Feng. An simple elementary proof for the
inequality dn < 3n. Acta Math. Appl. Sin. Engl. Ser.,
21(3):455–458, 2005.

[16] S. Gerhold and M. Kauers. A procedure for proving
special function inequalities involving a discrete
parameter. In ISSAC’05, pages 156–162. ACM, New
York, 2005.

[17] B. Grégoire and X. Leroy. A compiled implementation
of strong reduction. In International Conference on
Functional Programming 2002, pages 235–246. ACM
Press, 2002.

[18] B. Grégoire and A. Mahboubi. Proving equalities in a
commutative ring done right in Coq. In Theorem
proving in higher order logics, volume 3603 of Lecture
Notes in Comput. Sci., pages 98–113. Springer, Berlin,
2005.

[19] D. Hanson. On the product of the primes. Canad.
Math. Bull., 15:33–37, 1972.

[20] J. Harrison and L. Théry. A skeptic’s approach to
combining HOL and Maple. J. Automat. Reason.,
21(3):279–294, 1998.

[21] M. Kauers. Computer proofs for polynomial identities
in arbitrary many variables. In ISSAC 2004, pages
199–204. ACM, New York, 2004.

[22] M. Kauers, C. Koutschan, and D. Zeilberger. Proof of
Ira Gessel’s lattice path conjecture. Proc. Natl. Acad.
Sci. USA, 106(28):11502–11505, 2009.

[23] C. Koutschan, M. Kauers, and D. Zeilberger. Proof of
George Andrews’s and David Robbins’s q-TSPP
conjecture. Proc. Natl. Acad. Sci. USA,
108(6):2196–2199, 2011.

[24] C. Koutschan and T. A. Thotsaporn. Advanced
computer algebra for determinants. Ann. Comb.,
17(3):509–523, 2013.

[25] M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B. A
K Peters Ltd., Wellesley, MA, 1996.

[26] V. Pillwein. Termination conditions for positivity
proving procedures. In ISSAC 2013, pages 315–321.
ACM, New York, 2013.

[27] T. Rivoal. La fonction zêta de Riemann prend une
infinité de valeurs irrationnelles aux entiers impairs.

C. R. Acad. Sci. Paris Sér. I Math., 331(4):267–270,
2000.

[28] T. Rivoal. Propriétés diophantiennes de la fonction
zêta de Riemann aux entiers impairs. PhD thesis,
Université de Caen, 2001.

[29] B. Salvy. An Algolib-aided version of Apéry’s proof of
the irrationality of ζ(3). http://algo.inria.fr/
libraries/autocomb/Apery2-html/apery.html, 2003.

[30] B. Salvy and P. Zimmermann. Gfun: a Maple package
for the manipulation of generating and holonomic
functions in one variable. ACM Trans. Math.
Software, 20(2):163–177, 1994.

[31] C. Schneider. A refined difference field theory for
symbolic summation. J. Symbolic Comput.,
43(9):611–644, 2008.

[32] F. Stan. Algorithms for special functions: computer
algebra and analytical aspects. PhD thesis, RISC, 2010.

[33] R. P. Stanley. Differentiably finite power series.
European J. Combin., 1(2):175–188, 1980.

[34] The Coq development team. The Coq proof assistant:
reference manual. http://coq.inria.fr/refman/,
2013. Version v8.4pl3.

[35] A. van der Poorten. A proof that Euler missed:
Apéry’s proof of the irrationality of ζ(3). Math.
Intelligencer, 1(4):195–203, 1979. An informal report.

[36] K. Wegschaider. Computer generated proofs of
binomial multi-sum identities. Diplomarbeit, RISC, J.
Kepler University, May 1997. 99 pp.

[37] H. S. Wilf and D. Zeilberger. Towards computerized
proofs of identities. Bull. Amer. Math. Soc. (N.S.),
23(1):77–83, 1990.

[38] H. S. Wilf and D. Zeilberger. An algorithmic proof
theory for hypergeometric (ordinary and “q”)
multisum/integral identities. Invent. Math.,
108(3):575–633, 1992.

[39] H. S. Wilf and D. Zeilberger. Rational function
certification of multisum/integral/“q” identities. Bull.
Amer. Math. Soc. (N.S.), 27(1):148–153, 1992.

[40] D. Zeilberger. Identities. In q-series and partitions
(Minneapolis, MN, 1988), volume 18 of IMA Vol.
Math. Appl., pages 35–44. Springer, New York, 1989.

[41] D. Zeilberger. A fast algorithm for proving
terminating hypergeometric identities. Discrete Math.,
80(2):207–211, 1990.

[42] D. Zeilberger. A holonomic systems approach to
special functions identities. J. Comput. Appl. Math.,
32(3):321–368, 1990.

[43] D. Zeilberger. The method of creative telescoping. J.
Symbolic Comput., 11(3):195–204, 1991.

[44] D. Zeilberger. Identities in search of identity. Theoret.
Comput. Sci., 117(1-2):23–38, 1993. Conference on
Formal Power Series and Algebraic Combinatorics
(Bordeaux, 1991).

[45] V. V. Zudilin. One of the numbers ζ(5), ζ(7), ζ(9),
ζ(11) is irrational. Uspekhi Mat. Nauk,
56(4(340)):149–150, 2001.

http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html
http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html
http://coq.inria.fr/refman/

	Introduction
	Mathematical and Algorithmical Context
	Apéry's and Beukers' Proofs
	Recurrences as a Data Structure
	The Crucial Recurrence in Apéry's Proof

	``Proofs'' on -Finite Sequences
	Sound Creative Telescoping
	Formal proofs of recurrences
	Recurrences with provisos
	Sources of provisos
	A complete proof of the program
	Formal proofs and automation

	Conclusions and Perspectives
	References

