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A previous report [R.R. Hake, Am. J. Phys. 66, 64-74 (1998)] of mechanics test data for 62
introductory physics courses with total enrollment of 6542 students strongly suggested that
classroom use of interactive engagement (IE) methods can increase mechanics-course effectiveness
in both conceptual understanding and problem-solving well beyond that achieved by traditional
methods.  This article is intended to assist (a) instructors in selecting and implementing IE methods,
and (b) physics-education researchers in assessing and utilizing the raw data of the survey.  Test
scores, instuctional methods, materials used, institutions, and instructors for each of the survey
courses are tabulated and referenced.  Suggestions for the mitigation of various implementation
problems are given, based on case studies of seven atypical courses which employed IE methods but
achieved low normalized gains characteristic of traditional methods.  Some research questions
raised by the present survey and amenable to experimental investigation are posed.

I. INTRODUCTION
In order to try to gauge the effectiveness of various current introductory-mechanics-course

educational methods, I initiated a survey of pre/post test results in 1992.  Use was made of the well-
known Halloun-Hestenes Mechanics Diagnostic1(MD) or more recent Force Concept Inventory2a,b

(FCI) tests of conceptual understanding, and the Hestenes-Wells Mechanics Baseline3 (MB) test of
problem-solving ability.  Preliminary results4a,b were followed by abbreviated summary reports5

which strongly suggested that classroom use of interactive engagement (IE) methods can increase
mechanics course effectiveness in both conceptual understanding and problem-solving well
beyond that  achieved with traditional (T) methods. As discussed in ref. 5a, this conclusion is not
abrogated by the fact that the method of data solicitation had a built-in bias towards relatively
effective IE courses. 

For survey classification and analysis purposes I defined5a:
(a) "Interactive Engagement" (IE) methods as those designed at least in part to promote 

conceptual understanding through interactive engagement of students in heads-on 
(always) and hands-on (usually) activities which yield  immediate feedback through 
discussion with peers and/or instructors, all as judged by their literature descriptions; 

(b) "Traditional" (T) courses as those reported by instructors to make little or no use of IE 
methods, relying primarily on passive-student lectures, recipe labs, and algorithmic-
problem exams; 

(c) "Interactive Engagement" (IE) courses as those reported by instructors to make 
substantial use of IE methods;

(d) average normalized gain <g> for a course as the ratio of the actual average gain <G> to 
the maximum possible average gain, i.e.,
                        <g> ≡               %<G>            /   %<G>max 
                                =   ( %<Sf>  –   %<Si>) /(100 –  %<Si>),  ...............................(1) 
             where <Sf> and <Si> are the final (post) and initial (pre) class averages; 

________________________________________________________
*Submitted on 6/19/98 to the potential new Journal of Physics Education Research.  Comments and criticisms will
be welcomed at: R.R. Hake; 24245 Hatteras St., Woodland Hills, CA 91367, USA, <hake@ix.netcom.com>.
A few very minor corrections and additions were made on 6/27/98.
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(e) "High-g" courses as those with (<g>) >  0.7;
(f) "Medium-g" courses as those with 0.7 > (<g>) >  0.3; 
(g) "Low-g" courses as those with (<g>) < 0.3. 

In ref. 5a, a consistent analysis over diverse student populations with widely varying initial
knowledge states, as gauged by <Si>, was obtained by taking the normalized average gain <g> as
a rough measure of the effectiveness of a course in promoting conceptual understanding: 

(a) All points for the 14 T courses (N = 2084) fell in the Low–g region, with
                                              <<g>>14T = 0.23 ± 0.04sd. ................................................... (2a)  

Here and below, double carets "<<X>>NP" indicate an average of averages, i.e., an 

average of <X> over N courses of type P, and sd ≡ standard deviation (not to be confused

with random or systematic experimental error 5a).

(b) Eighty-five percent (41 courses, N = 3741) of the 48 IE courses fell in the Medium-g 
region and 15% (7 courses, N =717) in the Low-g region.  Overall, 

                                      

                                        <<g>>48IE = 0.48 ± 0.14sd.  .................................................. (2b)

(c) No course points lay in the "High-g" region.

The interactive engagement courses were, on average, more than twice as effective as traditional
courses in promoting conceptual understanding since <<g>>IE = 2.1 <<g>>T.  The difference
<<g>>48IE – <<g>>14T = 0.25 is 1.8 standard deviations of <<g>>48IE and 6.2 standard
deviations of <<g>>14T, reminiscent of that  seen in comparing instruction delivered to students

in large groups with one-on-one instruction, as discussed in ref. 5a.  It is extremely unlikely5a

that systematic error played a significant role in the large difference observed in the average
normalized gains of the T and IE courses.

The present article is intended to assist (a) instructors in selecting and implementing proven
IE methods and (b) physics-education researchers in assessing and utilizing the raw data of the
survey.  I tabulate, discuss, and reference the particular methods and materials that were
employed in each of the 62 survey courses.  Suggestions for the avoidance of various
implementation problems are given, based on case studies of seven atypical courses which
employed IE methods but achieved low normalized gains characteristic of traditional methods.
The present information, largely omitted from the abbreviated summary reports,5 allows answers
to three questions of interest to physics instructors and physics-education researchers: 

Q1. What methods and materials are being used in IE courses; where are
descriptions and materials available; what are the types of institutions,
characteristics of the students, and educational contributions of the instructors?

Q2.  Are there any pedagogical difficulties in implementing IE methods, and if so,
how might  these be mitigated?

Q3.  Does the present study give rise to any research questions calling for further
experimental investigation?
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II. RAW DATA
The test data in Table I and the corresponding instructional methods in Table II were

obtained from published accounts or private communications (see references for Tables I, II).
[For presentation of these data in the form of gain (posttest – pretest) vs pretest graphs see ref.
5a.] The private communications usually included responses to a survey form4c which asked for
information on the pre/post testing method; statistical results; institution; type of students;
activities of the students; and the instructor’s educational experience, outlook, beliefs,
orientation, resources, and teaching methods. Aside from its survey purpose, the form’s list of
physics-education strategies and resources may be useful.

A.  Pre/post Test Data
Tables Ia,b,c contain pre/post test data for 62 introductory courses enrolling a total of 6542

students using the conceptual Mechanics Diagnostic1a (MD) or Force Concept Inventory2a,b

(FCI) exams, and (where available) the problem-solving Mechanics Baseline3 (MB) test, always
given as a posttest.  The bold-faced data indicate an average normalized gain (<g>) > 0.6 (only
12 of the survey courses - discussed in ref. 5a - achieved such gains).  The instructors’ names are
given in the references (column 10), and instructors’ initials are sometimes indicated in the
"Course Code" (column 1).  The courses listed are of two types (column 4): (1) "Traditional" (T)
courses and (2) "Interactive Engagement"  (IE) courses, both as defined in the Introduction. 

 To increase the statistical reliability5a of averages over courses, only those with enrollments 
N > 20  are listed in Tables I and II, although in some cases of fairly homogeneous instruction and
student population (AZ-AP, AZ-Reg, WP92-C, TO, TO-C) courses or sections with less than 20
students were included in a number-of-student weighted average.  In assessing the FCI, MD, and
MB scores it should be kept in mind that the random guessing score for each of these five-
alternative multiple-choice tests is 20%.  However, completely non-Newtonian thinkers (if they
can at the same time read and comprehend the questions) may tend to score below the random
guessing level because of the very powerful interview-generated distractors which include most of
the common mechanics misconceptions.1,2a  
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Table Ia. Pre/post test data for 14 introductory high-school physics courses enrolling a total of N = 1113
students. The bold-faced data indicate an average normalized gain (<g>) > 0.6.  Footnotes are placed
after Table Ic.

COURSE LEV-  N [c] TYPE [d]  PRE [e] POST [e] GAIN [f] NORM. MB [h] 

CODE [a] EL [b] [StdD] [StdD] G GAIN [g] [StdD] REF.

% % % g %

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

AZ-AP (3 cour.) HS 33 T 41 (16) 57 (18) 16 0.27 39 (15) 2a

AZ-Hon (2 cour.)** HS 62 T 27 45 18 0.25 — 2a

AZ-Reg (18 cour.) HS 612 T 27 (11) 48 (16) 21 0.29 32 (11) 2a

BC-Hon HS 22* IE 32 79 (14) 47 0.69 52 (13) 6a

BC-Reg HS 43* IE 24 50 (13) 26 0.34 — 6b

Chicago-Reg HS 56 T 27 42 15 0.21 — 2a

CL-Reg HS 20* IE 35 62 27 0.42 — 7a

ELM-Hon HS 20* IE 18 74 56 0.68 — 8

GS-Hon HS 63 IE 28 66 38 0.53 47 2a

GS-Hon95 HS 49 IE 28 72 44 0.61 56 2c

LT-Hon HS 27* IE 30 (12) 70 (18) 40 0.57 — 9a

MW-Hon HS 30 IE 42 (18) 78 (15) 36 0.62 62 (17) 2a

RM94-Reg HS 38* IE 33 (15) 65 (19) 32 0.48 — 10a

RM95-Reg HS 38* IE 32 (13) 67 (17) 35 0.51 — 10a
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Table Ib.  Pre/post test data for 16 introductory college physics courses enrolling a total of N = 597
students.  Please refer to the heading of Table Ia for important explanations. 

COURSE LEV-  N [c] TYPE [d]  PRE [e] POST [e] GAIN [f] NORM. MB [h] 

CODE [a] EL [b] [StdD] [StdD] G GAIN [g] [StdD] REF.

% % % g %

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

DB-C C4 27* IE 36 59 23 0.36 — 11

LF92 C2 25 T 36 49 13 0.20 — 12

M92-C C2 28* T 51 (18) 62 (16) 11 0.22 — 13a

M93 C2 20* T 33 (15) 48 (14) 15 0.22 37 (19) 13a

M94-C C2 41* IE(Low-g) 44 (11) 58 (16) 14 0.25 41 (15) ¤ 13a

M-PD94-C C2 21* IE 44 (13) 63 (13) 19 0.34 — 13b

M-PD92a C2 46* IE 33 (15) 70 (12) 37 0.55 — 13b

M-PD92b C2 57* IE 30 (13) 73 (9) 43 0.61 55 (12) 13b

M-PD93 C2 46* IE 33 (14) 72 (10) 39 0.58 58 (8) 13b

M-PD94 C2 34* IE 30 (10) 62 (13) 32 0.46 54 (15)£ 13b

M-PD95a-C C2 31* IE 45 (14) 71 (13) 26 0.47 56 (15)¶ 13b

M-PD95b-C C2 22* IE 50 (14) 82 (12) 32 0.64 64 (15)§ 13b

M-Co95c-C C2 61* IE 46 (7) 69 (7) 23 0.43 — 13b

PL92-C (2 sect.) C4 24* IE 48 76 28 0.54 — 14a

TO (8 cour.) C2 61* IE 35 (15) 62 (13) 27 0.42 — 15a

TO-C (5 cour.) C2 53* IE 43 (15) 77 (14) 34 0.60 70 (12) 15a
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Table Ic.  Pre/post test data for 32 introductory university physics courses enrolling a total of N = 4832
students.  Please refer to the heading of Table Ia for important explanations.  

COURSE LEV-  N [c] TYPE [d]  PRE [e] POST [e] GAIN [f] NORM. MB [h] 

CODE [a] EL [b] [StdD] [StdD] G GAIN [g] [StdD] REF.

% % % g %

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

ASU‡ U 82 T 37 (14) 53 (14) 16 0.25 — 1a

ASU1-C (4 cour.)‡ U 478 T 52 (15) 64 (15) 12 0.25 — 1a

ASU2-C U 139 T 52 (19) 63 (18) 11 0.23 48 (15) 2a

ASU-HH-C‡ U 20* IE 48 (17) 75 (13) 27 0.52 — 16

ASU-MW105-C U 44 IE 36 68 32 0.50 43 2a

ASU-VH105-C U 116 IE 34 (14) 63 (18) 29 0.44 61 (18) 2a,17a

CP-C U 105 T 44 (19) 58 (21) 14 0.25 44 (14) 18a

CP-RK-Hon-C U 60 IE 59 (19) 84 (14) 25 0.61 69 18b

CP-RK-Rega-C U 70 IE 46 72 26 0.48 60 18b

CP-RK-Regb-C U 69 IE 55 81 26 0.58 68 18b

EM90-C U 121* T 70?? 78 8 0.27 67 19a,d

EM91-C U 177* IE 71 85 14 0.48 72 19a,d

EM93-C U 158* IE 70 86 16 0.53 73 19a,d

EM94-C U 216* IE 71 88 17 0.59 76 19a,d

EM95-C†††† U 186* IE 67 88 21 0.64 76 19a,d

IUpre93 (5 cour.)‡ U 346* IE 44 (16) 74 (12) 30 0.54 — 20a,21,22a

IU93S† U 154* IE 37 (14) 73 (16) 36 0.57 55 (16) 22a

IU94S†† U 166* IE 40 (17) 79 (14) 39 0.65 61 (16) 22a

IU95S†† U 209* IE 42 (15) 77 (15) 35 0.60 — 23

IU95F††† U 388* IE 32 74 (18) 42 0.62 — 24

Mich(De)-C U 115* IE 42 67 25 0.43 — 25

Mich(Ft)1-C U 77 IE 47 67 20 0.38 — 26a

Mich(Ft)2-C U 58 IE 45 65 20 0.36 — 26a

Mich (Ft)3 U 41 IE(Low-g) 39 53 14 0.23 — 26a

Mich (Ft)4 U 104 IE(Low-g) 31 47 16 0.23 — 26a

OS92-C U 200# T 48## 55## 7 0.13 — 17b

OS95-C U 279* IE 48 70 (20) 22 0.42 — 17b

UL94F-C U 123* T 44 (18) 54 (19) 10 0.18 — 27

UL-RM95S-C U 119 IE(Low-g) 43 (18) 58 (21) 15 0.26 — 28a

UL-RM95Su-C U 47 IE(Low-g) 44 (19) 58 (19) 14 0.25 — 28c

UML93-C U 195* IE(Low-g) 40 54 14 0.23 38 29

UML94-C U 170* IE(Low-g) 38 51 13 0.21 47 29
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Table Ia,b,c Footnotes
a.  CODE 

AP:  Advanced Placement
   Hon:  Honors
   Reg:   Regular (College Prep)
   - C: Calculus-based

S: Spring Semester
F: Fall Semester
Su:  Summer Session
Initials as "BC" of instructors are sometimes indicated.  For full names and institutions see the 

references in column 10.
**According to ref. 2a (p. 147, top left) the two highest Arizona Honors FCI posttest scores (67% and

73%) are suspect and therefore those data are omitted from this tabulation.
‡ Mechanics Diagnostic test (36 questions) of ref. 1a was used (all others used FCI of ref. 2a or minor

revisions - see below).
† Near original FCI: changes were made in three questions (12, 28, 29) to clarify the physics, but 

judging from subsequent analysis (see below) of similar slight changes, it is very doubtful that 
they affected the average pre- or posttest scores. 

†† Very slightly revised FCI: changes were made in seven of the questions so as to remove possible 
ambiguities, but neither the scores nor the point biserial coefficients for those questions showed 
significant changes from the IUS93 test. Comparing the respective posttest results for IU93S 
(near-original FCI) and IU95S (very slightly revised FCI):  <Si> = 37, 42; g = 0.57, 0.60; average
point biserial coefficient = 0.38, 0.39; Kuder-Richardson reliability coefficient KR-20: 0.81, 0.81.

†††Slightly revised FCI (Form 072795 - 30 questions) almost identical to the 1995 revision (ref. 2b). 
Comparing the respective posttest results for IU93S (near original FCI) and IU95F 
(Form 072795):  <Si> = 37, 32; g = 0.57, 0.62; average point biserial coefficient = 0.38, 0.44;  
Kuder-Richardson reliability coefficient KR-20: 0.81, 0.86.  

      †††† Revised 1995 FCI (30 questions, ref. 2b) 

b.  LEVEL
HS: High School       

      C2:  2-year College       
      C4:  4-year College       
        U:  University

c.  N:  Number of students taking the posttest.  An asterisk * means that the pretest average was  
determined from the pretest scores of only those students who took the posttest.  When this is not 
done the error in the normalized gain g is probably less than 5% for courses with 50 > N > 20 , 
and probably less 2% for N > 50. 

     #:  N was given as between 200 and 300 on the bar graph of the pre- and post-test scores (see  "e" 
below - no other information was available).

d.  TYPE
T:  "Traditional" as defined in the Introduction. 
IE:  "Interactive Engagement" as defined in the Introduction.
Low-g means  (<g>) < 0.3, as indicated in the Introduction. 
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e.   PRE and POSTtest scores for the Force Concept Inventory (29 questions) of ref. 2a; except (where 
indicated by ‡ in column #1) the Mechanics Diagnostic test (36 question), or [where indicated by 
†’s (see footnote "a" above)] slightly revised versions of the FCI.

## indicates that the pre- and post test scores were read from a FAX- transmitted bar graph (no other 
data were available) with an estimated total uncertainty of less than 5%, less than the usual 
standard deviations for such averages. 

StdD:  Standard Deviation. Both the test score and the StdD are given as a % of the total number of 
questions in the exam.

The "??" for the EM90-C pretest indicates that no pretest was given and the assumed score of 
70% is based on pretest scores of similar later classes (EM91-C, 93-C). 

f.  %GAIN: %<Gain> ≡ %<Posttest> – %<Pretest> ≡ %<Sf> – %<Si>, where <...> denotes an average  
over the entire class.  Plots of <Gain> vs <Pretest> for high schools, colleges, and universities are 
shown in ref. 5a. 

g.  NORMalized GAIN  <g>, defined as the ratio of the actual average gain to the maximum possible 
average gain, i.e., <g> ≡ %<G>/%<Gmax> = (%<Sf> – %<Si>) / (100 - %<Si>),  where <...> denotes
an average over the entire class.  For the graphical interpretation of <g> and its justification as a 
gauge of course effectiveness see ref. 5a. 

h.  %MB:  average percentage score for the problem-solving Mechanics Baseline test (26 questions) of ref. 3.
For a plot of MB score vs FCI posttest score and evidence that IE methods enhance problem-solving 
ability see ref. 5. 
StdD:  Standard Deviation. Both the test score and the StdD are given as a % of the total number of 

questions in the exam.
      ¤ (NMB = 46),  [Table Ib, NMB >  NFCI (column 3) because some students at Monroe Community 

      College who took the MB did not take FCI pretest and therefore were not included in NFCI (see 
footnote "c" above) ].

£ (NMB = 38),  [Table Ib, see above.]    
¶ (NMB = 37), [Table Ib, see above.]      
§ (NMB = 24), [Table Ib, see above.]  

8



B.  Interactive-Engagement Methods
Table IIa,b,c shows the interactive engagement (IE) methods and materials that were most

frequently employed by the 48 IE  courses. 

Table IIa.  Interactive-engagement methods and materials used by the introductory high-school physics courses of Table
Ia.  The "•" indicates use, "?" indicates the presence of implementation problems as discussed in Sec. III.  The bold-faced
data indicate a normalized average gain (<g>) > 0.6.  Footnotes are placed after Table IIc.

COURSE LEV-  N [c] TYPE [d] NORM. METHODS

CODE [a] EL [b] GAIN [e] Coll.Peer MBL Concept OCS Mod- SDI Other PER [m] -based

g Inst. [f] [g] Tests [h] ALPS [j] eling [j] [k] Methods [l] Text or No Text

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

AZ-AP HS 33 T 0.27 •? •? — — •? — — —

AZ-Hon (2 cour.)** HS 62 T 0.25 •? •? — — •? — — —

AZ-Reg (18 cour.) HS 612 T 0.29 •? •? — — •? — — —

BC-Hon HS 22* IE 0.69 • • — — — — n,o,p,q —

BC-Reg HS 43* IE 0.34 • • — — — — o,p,q —

Chicago-Reg HS 56 T 0.21 — — — — — — — —

CL-Reg HS 20* IE 0.42 • • — • — • n,o,p,q,r,s,t —

ELM-Hon HS 20* IE 0.68 • • — — • — u Dekker (ref. 61)

GS-Hon HS 63 IE 0.53 • • — — • — — —

GS-Hon95 HS 49 IE 0.61 • • — — • — — —

LT-Hon HS 27* IE 0.57 • • — • • • p None

MW-Hon HS 30 IE 0.62 • • — — • — — —

RM94Reg HS 38* IE 0.48 • • — — — — o,p,q,v,w,x,y —

RM95Reg HS 38* IE 0.51 • • — — — — o,p,q,v,w,x,y —
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Table IIb.  Interactive-engagement methods and materials used by the introductory college physics courses of Table Ib. 
      Please refer to the heading of Table IIa for important explanations.

COURSE LEV-  N [c] TYPE [d] NORM. METHODS

CODE [a] EL [b] GAIN [e] Coll.Peer MBL Concept OCS Mod- SDI Other PER [m] -based

g Inst. [f] [g] Tests [h] ALPS [j] eling [j] [k] Methods [l] Text or No Text

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

DB-C C4 27* IE 0.36 • • • • — — n —

LF92 C2 25 T 0.20 — — — — — — — —

M92-C C2 28* T 0.22 — — — — — — — —

M93 C2 20* T 0.22 — — — — — — — —

M94-C C2 41 IE(Low-g) 0.25 •? •? — — — — — —

M-PD94-C C2 21* IE 0.34 • — • • • — n, t, w, x, z D’Ale. (ref.13e)

M-PD92a C2 46* IE 0.55 • — • • • — n, t, w, x, z D’Ale. (ref.13e)

M-PD92b C2 57* IE 0.61 • — • • • — n, t, w, x, z D’Ale. (ref.13e)

M-PD93 C2 46* IE 0.58 • — • • • — n, t, w, x, z D’Ale. (ref.13e)

M-PD94 C2 34* IE 0.46 • • • • • — n, t, w, x, z D’Ale. (ref.13e)

M-PD95a-C C2 31* IE 0.47 • • • • • — n, t, w, x, z D’Ale. (ref.13e)

M-PD95b-C C2 22* IE 0.64 • • • • • — n, t, w, x, z D’Ale. (ref.13e)

M-Co95c-C C2 61* IE 0.43 • • • • • — n, t, w, x, z D’Ale. (ref.13e)

PL92-C (2 sect.) C4 24* IE 0.54 • • — — — — — —

TO (8 cours.) C2 61* IE 0.42 • • — — — — t —

TO -C (5 cours.) C2 53* IE 0.60 • • — — — — t —
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Table IIc.  Interactive-engagement methods and materials used by the introductory university physics courses of Table Ib. 
Please refer to the heading of Table IIa for important explanations.  

COURSE LEV-  N [c] TYPE [d] NORM. METHODS

CODE [a] EL [b] GAIN [e] Coll.Peer MBL Concept OCS Mod- SDI Other PER [m] -based

g Inst. [f] [g] Tests [h] ALPS [j] eling [j] [k] Methods [l] Text or No Text

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

ASU [j] U 82 T 0.25 — — — — — — — —

ASU1-C (4cour.)‡ U 478 T 0.25 — — — — — — — —

ASU2-C U 139 T 0.23 — — — — — — — —

ASU-HH-C‡ U 20* IE 0.52 • — — — • — — —

ASU-MW105-C U 44 IE 0.50 • • — — • — — —

ASU-VH105C U 116 IE 0.44 • — — • — • — —

CP-C U 105 T 0.25 — — — — — — — —

CP-RK-Hon-C U 60 IE 0.61 • • — • • — — Knight (ref. 18c)

CP-RK-Rega-C U 70 IE 0.48 • • — • • — — —

CP-RK-Regb-C U 69* IE 0.58 • • — • • — — Knight (ref. 18c)

EM90-C U 121* T 0.27 — — — — — — — —

EM91-C U 177* IE 0.48 • — • — — — — —

EM93-C U 158* IE 0.53 • — • — — — a' —

EM94-C U 216* IE 0.59 • — • — — — a' —

EM95-C†††† U 186* IE 0.64 • — • — — — a' —

IUpre93 (5 cour.) ‡ U 346* IE 0.54 • — — — — • q,b',c' —

IU93S† U 154* IE 0.57 • • • — — • q,b',c',f' —

IU94S†† U 166* IE 0.65 • • • — — • q,b',c',f' Reif (ref. 62)

IU95S†† U 209* IE 0.60 • • • — — • b',c',d' —

IU95F††† U 388* IE 0.62 • • • — — • x,b',d',h' —

Mich(De)C U 115* IE 0.43 • • • • • — g' —

Mich(Ft)-1C U 77 IE 0.38 • • — — — — — —

Mich(Ft)-2C U 58 IE 0.36 • • — — — — — —

Mich (Ft)3 U 41 IE(Low-g) 0.23 •? •? — — — — — —

Mich (Ft)4 U 104 IE(Low-g) 0.23 •? •? — — — — — —

OS92-C U 200 T 0.13 — — — — — — — —

OS95-C U 279* IE 0.42 • • — • — • t,x,z,e',g',i' —

UL94F-C U 123* T 0.18 — — — — — — — —

UL-RM95S-C U 119 IE(Low-g) 0.26 •? •? — — — — — —

UL-RM95Su-C U 47 IE(Low-g) 0.25 •? •? — — — — x,h' —

UML93-C U 195* IE(Low-g) 0.23 •? — •? — — — — —

UML94-C U 170* IE(Low-g) 0.21 •? — •? — — — — —
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Table IIa,b,c Footnotes
a - d. Same as Table I.

e.  NORMalized GAIN <g>, defined as the ratio of the actual average gain to the maximum possible 
average gain, i.e., <g> ≡ %<G>/%<Gmax> =  (%<Sf> – %<Si>) / (100 - %<Si>),  where <...> 
denotes an average over the entire class. 

f.  Collaborative Peer Instruction (CPI):  see, e.g., ref. 30 - 32 and references therein.  CPI is an integral 
part of many IE methods, e.g., MBL [as employed in TST (ref. 33b), RTP (ref. 33c,e), Workshop 
Physics (ref. 14), and "Targeted MBL Tutorials" TMT (ref. 34)]; Concept Tests; OCS/ALPS; 
Modeling; SDI; and "McDermott Recitation Tutorials" (MRT - ref. 35). 

g.  Microcomputer-Based Laboratories (MBL):  Ref. 33.  MBL is an integral part of Workshop Physics 
(ref. 14c-e); Tools for Scientific Thinking (TST) (ref. 33b);  Real Time Physics (RTP) (ref. 33c,e);  
"Targeted MBL Tutorials" (TMT) (ref. 34); and is utilized in several SDI labs.  For commercially 
available MBL equipment see ref. 33d.  Most of the MBL use in the courses of Table II is done within
the context of one of the above methods or similar strategies devised by the instructors.

h.  Concept Tests: Ref. 19b-e, 36. 

i.  Overview Case Studies (OCS) and Active Learning Problem Sets (ALPS): Ref. 17c,d,f. 

j.  Modeling Instruction: Refs. 16, 37, 38.

k.  Socratic Dialogue Inducing Labs (SDI):  Refs. 20-22, 39-42. 

l.  Only methods and materials for mechanics instruction are listed.

m.  PER ≡ Physics Education Research (see, e.g., refs. 43-46); for a review of PER-based texts see ref. 43i.

n.  Hand-held graphing calculators.  Advanced models allow the graphing of data, see e.g., ref. 47.  Such 
systems as Calculator Based Laboratories (CBL) from Texas Instruments allow many MBL-type 
activities, see <http://www.ti.com/calc/>.  

o.  Physics Academic Software, see, e.g., ref. 48.

p.  Video disks, see, e.g., ref. 49.

q.  Mechanical Universe Video, see, e.g., ref. 50. 

r.  InfoMall, see, e.g., ref. 51 and <http://bluegiant.phys.ksu.edu>.  

s.  PRISMS (Physics Resources and Instructional Strategies for Motivating Students), see, e.g., ref. 52.  

t.  Ranking-task questions, ref. 53.  

u.  Interactive video, see, e.g., ref. 54. 

v. ALPS and OCS (see "i" above), Modeling (see "j" above), and SDI (see "k" above) influence design of 
activities but are not specifically used by the students.

w.  modest use of some parts of Physics by Inquiry, L. C. McDermott et al., ref. 55.

x.  Interactive Physics, a product of Knowledge Revolution, <http:www.krev.com/>, see also ref. 56.   

y.  Construction contests (e.g., egg-drop, catapult).

z.  Goal-less Problems, ref. 13c,e

a'.  Classtalk (ref. 57) provides hand-held computers for students, a master computer for the instructor, and a 
classroom network which allows immediate feedback from Concept Tests or a lecturer’s questions.   

b'.  Minute Papers, ref. 41e, 58.

c'.  DIagnostic Student COmputerized Evaluation (DISCOE), ref. 21, 59.
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d'.  First Class (ref. 60) allows electronic-bulletin-board discussions, file sharing, and collaboration
among students and instructors. It is available from SoftArc Inc., 100 Allstate Parkway, Markham,
Ontario, Canada, L3R6H3.  See <http://www.softarc.com>.

e'.  Context-Rich Problems (ref. 31and <http://www.physics.umn.edu/groups/physed/index.html>).

f'.  Out-of-Lab Problems (ref. 22d). 

g'.  Experiment Problems (ref. 17e,f). 

h'.  MBL lecture demonstrations in "lecture."

i'.  Interactive simulations in "lecture."  

Tables IIa,b,c show that the ranking of the more popular IE methods in terms of number of IE
courses using each method is: Collaborative Peer Instruction (CPI),63 48 (all courses);
Microcomputer-Based Labs (MBL), 35; Concept Tests, 20; Modeling, 19; Active Learning
Problem Sets (ALPS) or Overview Case Studies (OCS), 17; physics-education-research based
text or no text, 13; and Socratic Dialogue Inducing (SDI) Labs, 9.  [For simplicity, courses
combined into one "course" [TO (8 courses), TO-C (5 courses) and IUpre93 (5 courses) are
counted as one course each.]  The ranking in terms of number of students using each method is:
Collaborative Peer Instruction (CPI), 4458 (all students); MBL, 2704; Concept Tests, 2479;
SDI, 1705;  OCS/ALPS, 1101; Modeling, 885; research-based text or no text, 660.

It should be emphasized that the above rankings are by popularity within the present survey,
and have no necessary connection with the effectiveness of the methods relative to one another.  In
fact, it is quite possible that some of the "Other Methods" referenced in column 12 of Table II
could be more effective than any of the more popular strategies.  The tabulations and references in
Table II enable teachers and researchers ready access to the literature and materials relevant to all
the IE methods of the survey.  

Because details of IE-method implementation are important (Sec. III) and appear to account for
much of the spread in the <g> values of IE courses,5a it is worthwhile to consider not just the
methods themselves, but also other factors.  Tables I and II show that IE methods are being used
(a) in many different types of institutions (selective and non selective, small- and big-city high
schools, two-year and four-year colleges, research universities), (b) for diverse student groups (in-
need-of-remediation, regular, honors, science, non-science, engineering); and (c ) by instructors
who, for the most part, are active contributors to the physics-education literature.

Since the present survey suggests that use of the IE methods of Table II can increase mechanics
course effectiveness well beyond that achieved with T methods, the methods would appear to
deserve serious consideration by physics teachers who wish to improve their courses, by physics-
education researchers who may wish to test or formulate general ideas on instruction or learning,
by creators of instructional materials, and by designers of new introductory physics courses.64  

Several features of the IE methods are noteworthy: 

1.  Interdependence, Mutual Compatibility, Electronic Availability  

IE methods are usually interdependent (see Table II, footnotes f and g).  As demonstrated in
Table II and refs. 40 & 42b, they are mutually compatible and can be melded together to enhance one
another’s strengths and modified to suit local conditions and preferences (especially easy if materials
are available electronically13e,19d,22d so as to facilitate copying, pasting, and cutting).  In addition to
allowing easier modification and mixing of materials by instructors, electronic availability has the 
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added virtue of allowing continual and needed improvement of IE methods and materials, in accord
with a redesign process (described by Wilson and Daviss65) of continuous long-term classroom use,
feedback, assessment, research analysis, and revision. Adjustments and updating of educational 
materials in accord with electronic feedback from users can be made within days rather than years.
Of course, great care must be taken not to compromise teacher’s guides, answer sheets, and
standardized tests by making them generally available at non-protected sites.

2. Emphasis on Problem Solving 
Most of the IE courses of Tables I and II emphasize problem-solving in addition to conceptual

understanding.  In most IE courses some of the problem solving requires critical thinking and 
mathematical skill as well as the understanding of concepts.66  Thus it may not be surprising that an
analysis5a of the problem-solving Mechanics Baseline data of Table I suggests that IE methods
enhance problem-solving ability.

C.  "Effectiveness" Defined
In the introduction it was stated that the present survey strongly suggests that classroom use of IE

methods can increase mechanics course "effectiveness" in both conceptual understanding and
problem-solving well beyond that achieved with T methods. 

But are the IE methods of this study "effective" in some absolute sense?  First it should be
emphasized that (a) "the FCI was developed to assess the effectiveness of mechanics courses in
meeting a minimal performance standard : to teach students to reliably discriminate between the
applicability of scientific concepts and naive alternatives in common physical situations" 37c (our
italics); (b) the Mechanics Baseline test is "the next step above the inventory in mechanics
understanding ...(and).... emphasizes concepts that cannot be grasped without formal knowledge
about mechanics."3  Thus these tests do not pretend to measure advanced mechanics competence, but
rather only a minimal facility which might be hoped for at the end of an introductory course.  

Among desirable outcomes of the introductory course that the tests do not  measure directly are
e.g., students’ (a) satisfaction with and interest in physics; (b) understanding of the nature, methods,
and limitations of science; (c) understanding of the processes of scientific inquiry such as
experimental design, control of variables, dimensional analysis, order-of-magnitude estimation,
thought experiments, hypothetical reasoning, graphing, and error analysis; (d) ability to articulate
their knowledge and learning processes; (e) ability to collaborate and work in groups; 
(f) communication skills; (g) ability to solve real-world problems; (h) understanding of the history of
science and the relationship of science to society and other disciplines; (i) understanding of, or at
least appreciation for, "modern" physics; (j) ability to participate in authentic research.  It can be
argued that some outcomes "a" - "g" (e.g., "b"73a) are more likely to have been achieved by students
who do well on the FCI/MD and MB tests.  Nevertheless, because evidence for these outcomes 
cannot be directly offered by such testing, and because most instructors would regard at least some of
"a" - "j" to be important objectives of the introductory course, the FCI/MD and Mechanics Baseline
test scores should not, in my opinion, be uncritically taken to measure the general effectiveness or
success of a course.  They can, however, be taken to measure effectiveness in the narrow sense of the
attainment of minimal competence in mechanics.  Most instructors would probably agree that this
should be a prime objective of an introductory mechanics course. The 48 interactive-engagement
courses of this study appear, on average, to be much more effective in this minimal sense than 
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traditional courses.  But even in this minimal sense, none of the courses is in the High-g region and
some are even in the Low-g region characteristic of traditional courses.  Thus, in absolute terms, the
IE methods of this study could all stand improvement and more work seems to be required on both
their content and implementation.

Are some IE methods more effective than others?  Within the context of this study, such
comparison is somewhat uncertain because (a) most of the IE courses of the survey employed
various IE methods in combination (Table II) making intercomparison of individual methods
difficult,  and (b) there are uncontrolled variables such as the characteristics of the instructors,
students, institutions, and implementations which lead to large spreads in <g> for courses using
similar methods.  Although future more refined studies may be able to rank the effectiveness of
different methods with respect to one another and with respect to particular course objectives, the
crucial outcome of the present survey is that all the methods which are more effective than the
traditional in promoting minimal competence in mechanics were "designed at least in part to
promote conceptual understanding through interactive engagement of students in heads-on (always)
and hands-on (usually) activities which yield immediate feedback through discussion with peers
and/or instructors."  At this stage (a) the particular method used by an instructor may be less
important than the skill of that instructor in promoting effective interactive engagement of students,
(b) teachers might be well advised to try first those methods which best match their own inclinations,
course objectives, teaching styles, students’ characteristics, and resources.

D.  Are "Good" Teachers Sufficient For High Quality Physics Instruction?
In his Millikan award paper, David Griffiths67 wrote:  "But I believe .....(physics).... enrollments

would have held up in spite of all these influences....(poor job market, unsupportive environment for
students, lack of science-course distribution requirements)....were it not for the abysmal quality of
physics instruction, especially at our large research universities....In my opinion by far the most
effective thing we can do to improve the quality of physics instruction - much more important than
modifications in teaching technique - is to hire, honor, and promote good teachers."  Although few
would deny that good teachers are necessary for high quality instruction, that they are not sufficient
is suggested by the persistent placement of T courses in the Low-g range, even when conducted by
highly regarded teachers.1a,19  

A referee, taking a stance similar to that of Griffiths, implied that some or all of the IE instructors
who achieved <g>’s above the traditional range might also have achieved similar high <g>’s using T
methods.  Here are four counter examples, all drawn from Table I:

1.  David Hestenes 
Hestenes was one of the four professors in course ASU1-C of Table Ic.  That course used

traditional methods to attain <g> = 0.25.  Here <g> represents a number-of-student weighted average
for four courses which all achieved similar <g>’s in the low-g region.  Then in course ASU-HH-C of
Table Ic, Hestenes teamed with Halloun and employed the Modeling method to obtain <g> = 0.52.

2. Eric Mazur
In course EM90C,  Mazur employed traditional methods in a course that attained <g> = 0.27.

After he switched to Concept Tests19b his successive courses EM91C, EM93C, EM94C, and
EM95C achieved, respectively, <g> =  0.48, 0.53, 0.59, and 0.64.  
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3.  Malcolm Wells
As recounted in ref. 38, the late Malcolm Wells, inspired by PSSC and Harvard Project Physics

workshops in the 70’s, had abandoned the traditional lecture-demonstration method early in his career.
In the 80’s he regularly employed an inquiry approach based on the Karplus learning cycle.68

However, when he administered the MD he discovered that his course’s performance was about the
same as characterizes current T courses. When Wells shifted to the Modeling method his courses MW-
Hon of Table Ia, and ASU-MW105-C of Table Ic achieved, respectively, <g> = 0.61 and 0.50. 

4. Richard Hake 
In 1980 (prior to publication of the MD1a), I used T methods in a course for prospective

elementary teachers.20b  Because these students were extremely weak in mathematics, my first exam
consisted of conceptually oriented multiple-choice questions quite similar to those of the FCI/MD.
The test scores were abysmal and showed that my brilliant lectures and exciting demonstrations had
passed through the students’ minds leaving no measurable trace.  On the advice of Arons, I started
using a Socratic approach in the labs and test results improved considerably.  Later on, in pre-med-
type courses, I used Socratic Dialogue Inducing Labs plus more interactive lectures and recitations in
courses IUpre93 and IU93S of Table Ic, which achieved <g> = 0.54, 0.57.
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III. IMPLEMENTATION PROBLEMS
 Reif45a has discussed the nature and seriousness of implementation difficulties, drawing a

parallel between hypothetical situations in health care and physics education.  Suppose medical
science has produced pills which can reliably cure all diseases, but people do not take the pills
because they believe in folk medicine or natural healing, or else simply refuse to follow the
recommended pill-taking regimen.  Then practical medical implementation will have failed.
Likewise:

 "....practical educational implementations face similar difficulties (quite apart from
motivational factors).  For example, suppose that we understood perfectly the thought and
learning processes needed for physics.  All this understanding would still be insufficient to
ensure practical educational implementation if students have misleading beliefs about science
or do not actually engage in the recommended learning activities....

An introductory physics course needs....to discuss explicitly the goals of science and the
ways of thinking useful in science....They need to be constantly kept in students’ focus, and
be used as a framework within which more specific scientific knowledge and methods are
embedded.... 

Even the best instructional materials and methods are useless if students do not actually
engage in the recommended learning activities.  This is well recognized in efforts designed to
train good athletes or musical performers.  There coaches or teachers provide very frequent
supervision, with the guidance and feedback necessary to ensure that students acquire good
habits – and to prevent bad habits which may be difficult to break or even lead to injuries....
How then can one provide students with adequate guidance and feedback in practical
contexts dealing with many students?  In my judgment, this is a fundamentally important
problem which, if left unsolved, will remain a bottleneck hindering even the best designed
instruction." (Our italics.)

As many physics instructors have discovered, it is one thing to learn about apparently
successful pedagogical methods from talks, articles, or workshops, but quite another to
implement them successfully in the classroom.  The problems indicated above by Reif are 
(a) lack of student motivation71,72 (especially severe for students in IE courses who dislike any
departure from the traditional methods to which they have become accustomed and under which 
their grades, if not their understanding, may have flourished9,14c,19b,26,32,71); (b) naive student
beliefs about the nature of science and learning72,73; and (c) the difficulty of providing adequate
coaching74,75 and practice75 for students (and, I might add, instructors) in large-enrollment
classes.  In addition, there are (d) difficulties in integrating multi-component courses76; (e) poor
science77 and math preparation78 of students (reflecting in part the dismal failure of colleges and
universities to adequately assist in the preparation of precollege teachers79-81); and
(f) organizational problems82 such as:  inertia, bureaucracy, inadequate funding, lack of
enthusiasm for non-physics-major education, grade inflation, the administrative misuse of 
student evaluations to gauge the cognitive (rather than just the affective) impact of courses, and
the indifference or animosity of colleagues and administrators towards new instructional
methods.  

The use of interactive-engagement methods appears to be necessary but not sufficient for
marked improvement over traditional methods.  Seven of the IE courses of Tables I and II are in
the Low-g range of the traditional courses.  In order to benefit from past experience it seems 
worthwhile to discuss these IE(Low-g) cases in some detail in the constructive spirit of the 
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redesign process,65 especially because personal experience with the Indiana courses and 
communications with most of the IE instructors in this study suggest that similar though less
severe implementation problems were common.

     One does not get anywhere simply by going over the successes again and again, 
whereas by talking over the difficulties people can hope to make some progress.

                                                                                         Paul Adrien Maurice Dirac

A.  Case Studies
1.  Arizona High Schools [ AZ-AP, AZ-Hon, and AZ-Reg of Tables Ia and IIa]

In Tables I and II, the high-school courses2a AZ-AP, AZ-Hon, and AZ-Reg are listed as
traditional because pre/post test data for the pre-workshop courses (traditional) and for the post-
workshop courses (IE methods attempted) were not significantly different and were averaged
together to yield the one set of pre/post data reported in ref. 2a and quoted in Table 1.  The post-
workshop courses, by themselves, serve as examples of "IE(Low-g)" courses.  These courses
were evidently beset with an implementation problem: "From discussions with the teachers after
the....(post-workshop courses).... it has become clear that they were so involved with the
mechanics of the method - computers, lab activities, discussion technique - that they failed to
fully appreciate the crucial pedagogical core....(modeling as the method of science16,37,38)....
that makes it effective."2a  My experience20a,22c suggests that in addition to partaking in
workshops, instructors new to IE methods need to serve apprenticeships under experienced and
effective IE teachers. 

In Table IIa, the methods employed in the AZ-AP, AZ-Hon, and AZ-Reg courses are
indicated by "•?" to indicate the presence of an implementation problem.

2.  University of Massachusetts at Lowell [UML93-C,  UML94-C of Tables Ic and IIc]
 UML93-C and  UML94-C represent an attempt to carry over the Concept Test method used
successfully by Mazur at Harvard (average FCI pretest scores <Si> ≈ 70%), to less well-prepared

students at the University of Massachusetts at Lowell (<Si> ≈ 39%).  Approximate versions of
the Mazur method have been successfully transported to low <Si> classes as shown in Table II 

for thirteen courses: DB-C, M-PD94-C to M-Co95c-C, and IU93S to IU95F.36  However, at
UML, although the students greeted Concept Tests with great enthusiasm and interest,29 the 
implementations lacked certain crucial Harvard features.  At Harvard19a,c students take a quiz at
the start of each lecture on the reading assignment.  Grades on these quizzes reduce the final
exam weight.  Failure to participate in the Concept Tests voids such quiz points.  Thus at
Harvard there is a direct grade incentive for coming into the lecture prepared to consider the
physics of the Concept Tests and there is an indirect grade incentive to participate in them.   
However, at UML no direct or indirect grade incentives of the Harvard-type are given, and "the
Concept Tests end up taking time away from the lecture and this time is not made up by students
on their own time (as it is at Harvard)." 19a  

For Concept Tests to be successful at Indiana University, it has been necessary to provide a
direct grade incentive:  the group scores count between 12 and 15% of the final course grade.
Thus students are motivated to come to class prepared to consider the physics of the Concept 
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Tests and to take them seriously.  Had grade incentives been offered at UML, the pre-post test
results might have been more encouraging.  Of course, it is possible that the UML results
represent an improvement over conventional introductory courses at UML, as occurred at the
University of Louisville (Case 4 below), but unfortunately there is no UML baseline data.

3.  University of Michigan at Flint [Mich(Ft)3,4 of Tables Ic and IIc]
 Don Boys wrote: "The person giving the lectures also supervised the labs but did not always

have the agreement of the lab instructor as to the worth of that style....(Tools for Scientific
Thinking)....of teaching.  In the Fall of 1993 almost all ....Mich(Ft)4.... labs were taught by
someone who was writing his thesis and totally unfamiliar with the style of labs.  We encouraged
him to visit our labs to see how we did things but that did not occur."26

Here it would appear that the lab instructor failed to serve as a coach74,75 and to provide
students with adequate guidance and feedback.  My experience20a,22c has been that it is essential
to educate and carefully supervise lab instructors who are new to IE methods.  At Indiana we
have had reasonable success using an apprenticeship method (cf. the assistant coach in athletics)
in which new instructors serve as assistants to experienced and successful instructors for at least
a semester.

According to Don Boys "the students .... in the Mich(Ft)3,4 courses....are taking the course
because it is required for some health related profession.  They are poorly prepared, afraid of
math ....and regard physics as the enemy."

Poor preparation of incoming students seems to afflict most physics introductory courses
including those at Indiana University.77,78 Aside from raising admission standards, there seems
to be little that can be done about this in the short term, although incoming diagnostic tests83,84c

may be helpful in early recognition and positive intervention for potential low-gain students.  As
for fear of physics and anti-physics attitudes, the nature of science and learning needs to be
explained and emphasized throughout the course.19b,43d,45a,62,72,73 

4.  University of Louisville [UL-RM95S-C, Spring 1995)  of Tables Ic and IIc]  
With regard to UL-94F-C given in the Fall of 1994, Roger Mills wrote " I gave the Hestenes

FCI last semester in the old lab format.  The scores were....(see Table Ic, UL94F-C, g = 0.18).... I
hope the new labs will improve on that, but better use of the lecture-recitation is likely to be
important too."27

"You commented that the FCI results were unlikely to be seriously affected by the labs alone.
We are now using a variant of the Real Time Physics approach in the lab.  The....scores we have
from this semester are....(see Table Ic, UL-RM95S-C, g = 0.26)....I’ll give the test results to the
lecture instructors, but I doubt that the results will be given much attention......Most of the people
here are convinced that they are doing a great job of teaching, and if the FCI indicates otherwise, 
then there must be something wrong with the FCI.  They do not hear well when told of its wide
use and testing, and they are largely unaware of the considerable attention.... (that’s been 
given)....to improve student participation in the learning process.  A concentration on pedagogy 
is thought to be a lesser activity in comparison with the important research which they are
conducting.  In distributing rewards, good student reviews carry far more weight than do
innovations in the classroom."28a  
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Although at Louisville, <g> increased by 44%, possibly due to the Real Time Physics
(RTP)33c,e labs,  <g> (UL-RM95S-C) is still close to the 0.23 average of traditional courses. 

According to Mills,28a,c it would appear that the execution of the RTP labs at UL was
substantially in accord with the recommended guidelines.  In some respects, Mills went beyond
the guidelines to try to make the RTP labs more effective: 

"Each TA has done the experiments under my direct supervision, accompanied by questions
intended to emphasize important aspects and to cue them about points which they should attend 
to with their own students.  At the beginning of each semester, a separate period is set aside to 
familiarize the students with the equipment. This is very successful in bringing the students to a
point where their use of the equipment is easy and comfortable, regardless of gender or minority
group circumstances which may have resulted in lack of prior experience. The students usually
work in groups of two or three. .....................

We have found the use of RTP to be positive, and some of the students have gone to our
department chair to complain that the next (E&M) lab is not as progressive." 

According to Mills,28a there were, however, two possibly significant departures from the
RTP-recommended guidelines at UL:  

(1) The exercises intended as lab-followup homework assignments were used at UL as prelab
exercises.  This prelab preparation counted towards the lab grade and brought students into the lab
with objectives and pertinent physics more clearly in mind, thus allowing "timely completion of
most of the lab exercises" in two hours rather than the three hours informally recommended28b by
one of the designers of RTP.  But according to Laws,14b good RTP instructors (a) "require that
followup homework assignments...(that review the observations in the labs)... be completed in the
labs.  Each assignment takes students about 20-30 minutes to complete and is collected at the
beginning of the next lab period,....(and)....(b) "lead a discussion of the homework at the beginning
of the next lab period with the students.  In doing similar lab work in the Workshop Physics
course, I have found that these steps are absolutely essential.  UL’s change from the RTP-
recommended homework procedure could have been detrimental to student learning." 

(2) Due to space constraints, the valuable RTP Lab #10 (students apply taps to balls rolling
on a horizontal floor so as to simulate projectile motion) had to be omitted.   

5.  University of Louisville [UL-RM95Su-C, Summer 1995) of Tables Ic and IIc]
Roger Mills wrote:  "In the following summer session..... I taught both the lecture and the lab.

We used the Real Time Physics labs, and I used some MBL materials as part of the lecture.
There were about 55 people in the lecture, so we didn’t try to use discussion clusters in lecture.  I
also used Interactive Physics II as part of the demonstrations. (For what it’s worth, the class
grades were the highest that I have ever had for a class that size, and even the anonymous student
evaluations were warm and glowing for a change.)  I did use the FCI in the labs. With 47 people
being tested....(See Table Ic, UL-RM95Su-C, g = 0.25)." 

"I have thought further about the near-consistency of our Spring 1995 and Summer 1995
results.  Although in Summer 1995 I used demonstration aids which were not included in the 
Spring 1995 courses, I did not directly engage the students as you might have with SDI. That the 
improvement in conceptual development was either no better or even a little worse may reflect
the fact that implementation was equally impaired in both courses.  The gain was nearly the
same. This would underscore your point about the crucial importance of the active engagement 
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in the lecture-recitation part of the course.  About 80% of my tests related to problem solving,
and only 20% related to conceptual development, through T-F questions. Thus I did not really
motivate my students by that means to improvements in conceptual understanding.

You are correct that the lecture exams made no attempt to test for anything covered in the
labs in either Fall ’94, Spring ’95, or even in Summer ’95. Since the enrollment in the lecture
course does not actually require enrollment in the labs, not all of the students in the lectures were
enrolled in the labs.  There was a difference of 11 students, and I couldn’t expect those persons to
be responsible for instruction which they hadn’t encountered." 

6.  Monroe Community College13 [M94-C of Tables Ib and IIb]
Paul D’Alessandris writes:  "That MBL is not a sufficient condition for achieving high g is

shown by the fact the grafting of MBL onto the traditional lecture course M94-C resulted in 
g = 0.25.  I taught the lab for many of these students and we used RTP by the book.  In the Fall
of 1995 a course similar to M94-C was repeated, that is, it was a traditional calculus-based
course except for the fact that an RTP lab was substituted for the standard lab. Identical results
were obtained:  g was again 0.25.  In that  section only 8 students completed the class....(it is not
listed in Tables I, II because N < 20)."

" ’Using RTP by the book’ means using the RTP materials after attending a day-long
workshop in Orlando and two 3-day workshops organized by O’Kuma and Hieggelke,
.....(holding the 3-hour labs)....in a laboratory space completely redesigned for MBL, collecting,
grading and discussing all homework, collecting and commenting on all activity packets,and
using both the FCI and FCME as diagnostics instruments.  Since 1994, I have taught one or two
lab sections and two or three other professors have taught the remaining sections.  Although the
other professors have not attended workshops, they followed the protocol outlined above.  The
only negative aspect to the implementation, aside from the other instructors lack of officially
sanctioned workshop attendance, has been the lack of assistants to help run the lab.  The labs are
run with 24 students and one instructor.  However, two-year college instructors as a rule are used
to being overworked in the laboratory.  I do not believe that the results I have reported are the
result of an implementation problem.....(in so far as the conduct of the lab itself is concerned)...."

"While searching through FMCE ....(Force Motion Concept Evaluation of Thornton and
Sokoloff33e)...... records, I have yet to find a section whose postest FMCE average was below
65%, which is comparable to the FMCE posttest average informally reported14b for 18
Dickinson-Workshop-Physics students.  More commonly, the FMCE average is in the 70’s, 80’s,
and occasionally 90’s.  In a nutshell, MBL has been well implemented ....(within the labs 
themselves).... at MCC, as evidenced by relatively high FMCE scores.  In addition, student and
other faculty response has been very positive, even in the face of some initial trepidation."  

"My personal belief is that students learn the interrelationships between kinematic variables
much better through MBL than through most paper/pencil activities. They also are orders of
magnitude more fluent with graphs.  However, for the two semesters in which some students had 
MBL grafted onto a traditional course, their FCI gains were unaffected.  I had many of these
students in lab; I believe many were killing time.  They enjoyed doing the experiments, but the
experiments didn’t connect with the course as a whole.  Somehow this prevented these students
from fully assimilating the concepts basic to the lab work."  
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"The prominent influence of the non-lab part of a course can be shown in another way.  In the
1995-Spring-semester courses MPD95a-C (g = 0.47) and MPD95b-C (g = 0.64), I conducted all
the interactive lectures using my Spiral workbook and both courses utilized RTP labs.... (The g-
difference in these two courses is evidently due to the fact that the former is a day course while 
the latter is a night course drawing older and more motivated students- see PD’s quotes in ref.
5a)....  The two subsequent  calculus-based courses given in the 1995 Fall semester again both
utilized interactive SPIRAL-workbook lectures and RTP labs (all taught by instructors who had
taught RTP labs the previous year).  However, there were marked differences in the lecture parts
of those courses. In one course .... [MPD95c-C (not shown in Tables I and II because N =
15)]...... I gave  interactive  lectures and achieved g = 0.63.  In the other course .... (MCo95d-C of
Tables I and II)].... my colleagues gave the interactive lectures and achieved g= 0.43.  My
colleagues were new to the Spiral-workbook lecture method.  The two courses had nearly
identical MBL labs, but had lectures taught by instructors with different levels of proficiency. (I
do not mean to demean the job that my colleagues did.  In fact, their first year using the Spiral-
workbook was better than my first year using it with engineers (M-PD94-C, g = 0.34)."

"That MBL is not a necessary condition for achieving high-g is shown by the fact that  high
g’s were obtained at Monroe without MBL: M-PD92a (g = 0.55), M-PD92b (g = 0.61), 
M-PD93 (g = 0.58).  Although my gut feeling is that MBL with traditional lectures helps, my
data suggest that its effect is minimal.  I think MBL in conjunction with an attempt at IE lectures
(my first teaching engineers as well as my colleagues first try at IE) can get g ~  0.40.  MBL plus
’well-executed’ IE can get you 0.50 or more.  Of course, when I taught the non-calculus courses
(M-PD92a, M-PD92b, M-PD93) without MBL, I also got 0.50 or more, although I had the
opportunity to spend more time on building conceptual understanding in non-calculus physics
than with the engineers in calculus physics. I would like to see what I could do in non-calculus
physics now that we have MBL."

"It is, of course, very difficult to tease out the effects of MBL when so many other variables
are also being altered.  As I said above, I think that MBL helps, but if the students are being told
in lecture that all that really matters is solving Halliday/Resnick problems, I think they
sometimes just go through the motions with MBL."

B.  Comments on Case Studies #4, 5, 6
Consistent with the above case studies, my own experience22c,41b,76 in conducting field

studies of Saturday-morning Socratic Dialogue Inducing (SDI) labs for paid student volunteers
enrolled in fairly traditional courses, has been that rather mediocre conceptual development takes
place both for the test-group students who take the SDI labs and similar control-group students 
who do not take the SDI labs. This despite the fact that Table II shows that conceptual
development as gauged by FCI pre/post testing (and in some cases MB testing) is much better for
SDI-lab containing courses than for traditional courses.  The major difference between the field
studies and the SDI-containing courses of Table II is that in the former case, attempts are made to
graft SDI labs onto traditional courses, whereas in the latter case SDI labs are integrated with IE-
type "lectures," IE-type "recitations," and conceptually-oriented exams. The conclusion that, in
the field studies, mediocre conceptual development took place for both the test and control group
students is based on analyses of (a) videotaped interviews, (b) videotaped lab sessions, and (c) 
the results of pre/post testing with both FCI and MB exams.  Consistent with earlier work,76 I  
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conclude from the qualitative field-study research22c,41b,76; case studies #4-6 above; and the
present more quantitative pre/post testing survey (see also ref. 5), that prominent gain in
students’ conceptual understanding is much more likely to occur if ALL components of a course
are tightly integrated in an IE mode.  Such integration does in fact occur for most of the IE
courses of Tables I and II.

Nevertheless, the "better is the enemy of the good."  Here "better" would be a completely IE
integrated course and "good" might consist of the substitution of an IE component for a
traditionally-taught part of a multicomponent traditional course. Departments and schools would
be well advised to go for the "good" if organizational problems prohibit the "better," as is
frequently the case.  The "good" may (a) improve the overall affective and cognitive
advancement of students (even though such progress may not show up prominently in FCI
gains), (b) serve to educate instructors in IE methods, (c) provide an entry point for the gradual
infiltration of more effective pedagogy into mainstream physics education, and (d) initiate a
"redesign process"65 of gradual long-term improvement. 

Just before this manuscript was submitted we learned of the encouraging work of Redish et
al.34 at the University of Maryland (UM).  They have shown that (a) grafting one-hour per week
"McDermott Recitation Tutorials"(MRT) 35 onto a traditional calculus-based course for
engineering students at UM increased g by about 60% above the control UM traditional course,
(b) grafting a one-hour "Targeted MBL Tutorial" (TMT) concentrating on Newton’s Third Law
(N3) onto a (traditional + MRT) course yielded much higher g’s for a 4-question N3 subset of the
FCI than are achieved by control sections with traditional recitations - the MBL N3 experiments
were adapted from Real Time Physics33c,e; and (c) the course-averaged normalized gains for
interactive engagement and traditional courses at UM are consistent with the results of the
present study. 

Case #5, suggests that even despite some bolstering of the lectures with more IE-oriented
materials, if the course exams do not include a substantial number of questions or problems
which test for the effectiveness of the IE components of a course, then students may have little
motivation to take the IE components seriously or appreciate their relevance to scientific thinking
and conceptual understanding.  In my judgment, in addition to the integration of all components 
of the course, (a) all instructors in the course, as well as the course syllabus, should clearly
indicate to students the goals and methods of science and the importance of IE methods to the
students’ learning (see e.g., Chap. 1 of ref. 62 and "Objectives of the P201 Course" 22d), and (b)
a substantial fraction of the exam questions should probe the degree of conceptual understanding
induced by the IE methods.

Thornton and Sokoloff33e have discussed pre/post test data using their Force and Motion
Conceptual Evaluation (FMCE) for classes at Tufts University and the University of Oregon.
Their "Fig. 7" appears to  demonstrate the effectiveness of  "Real Time Physics" (RTP) labs
when used in otherwise traditional courses.  A possible reason for the apparent difference in the
FCI results for cases #4-6 and the FMCE results of ref. 33e is simply the difference in the two
tests.  As indicated above, Paul D’Alessandris has used both exams for three years.  He
speculates13a,b that "........the students view the FMCE as a ’physics’ exam; it has lots of graphs
and diagrams and is very similar to the homework in RTP.  FCI is often viewed as containing
questions about reality; balls dropped from buildings, golfballs flying, etc.  I have had students 
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(and not just a few) ask me if they are supposed to use formulas on the FCI or just give answers
that they think are correct....(cf, "Professor Mazur, how should I answer these (FCI) questions?
According to what you taught  us, or by the way I think about these things"19c)...... I believe the
FCI may be better than the FCME in indicating what the students really think.  The FMCE
assesses whether the students have correctly conceptualized Newtonian physics, the FCI tests
whether they realize that the world outside of the classroom is Newtonian.  In my experience,
students can ’understand’ Newtonian physics but not believe that the world is actually
Newtonian.  I think MBL is successful in helping students understand the relationships between
force, velocity, and acceleration, but its effect beyond that is unclear to me.  (Of course, I don’t
think the FCI really tests student beliefs as well as some would have us believe.)"

In Table II, the methods employed in case studies #2 - #6 above are indicated by "•?" to
indicate the presence of implementation problems.

The present survey shows, in agreement with the preliminary results,4a,b that relatively
effective methods need not be high tech and need not depend upon Microcomputer Based
Laboratories (despite seemingly widespread opinion to the contrary).  For example:
(a) three of Paul D’Alessandris’s early courses M-PD92a, M-PD92b, and M-PD93 (Table IIb)
attained, respectively g = 0.55, 0.61, and 0.58 without the use of MBL, as previously mentioned
above; (b) an early modeling course ASU-HH-C (Table IIc) achieved g = 0.52 without MBL; 
(c) my own early SDI courses (IUpre93 – Table IIc) attained a student-averaged g = 0.53 without
MBL;  (d) Eric Mazur’s courses EM91-C through EM95-C obtain g = 0.48, 0.53, 0.59, 0.64
without MBL.  And Concept Tests,19a,36  Collaborative Peer Instruction in lectures,17d,32,36

and interactive lectures17d,19;32 do not require high-tech systems such as Classtalk.19d,57 As
shown in Table II, Concept Tests have been given at Indiana for the past 5 years. These were
scored using optical scanning sheets.36 

IV.  SURVEY RATIONALE AND SUGGESTIONS FOR SURVEY IMPROVEMENT
According to Pride et al.85 "The results...(of ref. 85)...demonstrate that responses to multiple-

choice questions often do not give an accurate indication of the level of understanding and that
questions that require students to explain their reasoning are necessary.... Good performance on a
multiple choice test may be a necessary condition, but it is not a sufficient criterion for making this
judgment...(of functional understanding of the material)....broad assessment instruments are not
sensitive to fine structure and thus may not accurately reveal the extent of student learning.
Moreover, such information does not contribute to a research base that is useful for the design of
instructional materials. "   (Our italics.)

If it is true that broad assessment instruments such as the FCI/MD and MB are not useful for the
design of instructional material but only for increasing "faculty awareness of the failure of many
students to distinguish between Newtonian concepts and erroneous common sense beliefs, both before
and after instruction in physics,"85 then the value of surveys such as this one is rather limited.  I think
that most physics-education researchers would agree that Multiple Choice (MC) tests, even those as
carefully crafted as the MD/FCI and MB cannot probe students’ conceptual understanding as deeply as
can the searching (and labor intensive) analyses of (a) student interviews conducted by physics
experts, or, arguably, (b) well-designed, free-response problem exams.  In my opinion, MC tests, 
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interviews, problem exams, and case studies all have their advantages, disadvantages, and trade-offs
and should be used in combination so as to be mutually supportive whenever possible.  The FCI/MD
questions, answers, and distractors, were, in fact, developed from extensive interview data.1a,b;2 The
present survey, in addition to the MD/FCI and MB test results, gathers information from detailed
questionnaire4c responses of instructors, and invokes supplementary case studies (e-mail and
telephone interviews) in situations where questionable or unexpected test results were initially
obtained.  The advantage of carefully designed MC tests (especially if supplemented with other
research and testing procedures), is that they allow a standardized measurement with uniform grading
over a large population and thus may afford a more practical route to evaluating the effectiveness of
methods used in large-enrollment introductory courses at one or many institutions than, by themselves,
individual interviews, individually graded exams, or case studies.

The present survey (a) strongly suggests that classroom use of IE methods [i.e., those designed at
least in part to promote conceptual understanding through interactive engagement of students in heads-
on (always) and hands-on (usually) activities which yield  immediate feedback through discussion with
peers and/or instructors] can increase mechanics course effectiveness in both conceptual understanding
and problem-solving well beyond that  achieved with T methods; (b) shows that, for the survey
courses, current IE methods fail to produce normalized gains in the High-g region, suggesting the need
for improvement of IE strategies in content and/or implementation; (c) gives references to the
surveyed IE methods, materials, instructors, and institutions; (d) discusses the various implementation
problems that appear to have occurred; and (e) suggests ways to overcome those problems.  In my
opinion, the foregoing information and suggestions are of potential value in designing instructional
materials, e.g., current materials need to be improved, new materials should be designed to promote
interactive engagement while avoiding the survey-indicated implementation pitfalls.  Therefore, I
disagree with Pride et al. that broad assessment instruments do not "contribute to a research base that
is useful for the design of instructional materials."  

As discussed in ref. 5a, in my view, the present survey is a step in the right direction but
improvements in future assessments might be achieved through (in approximate order of ease of
implementation) (1) standardization of test-administration practices; (2) use of a survey
questionnaire4c refined and sharpened in light of the present experience; (3) more widespread use of
standardized tests by individual instructors so as to monitor the learning of their students; 
(4) use of questionnaires which assess student views on science and learning73; (5) observation and
analysis of classroom activities by independent evaluators; (5) solicitation of anonymous information
from a large random sample of physics teachers; (7) development and use of new and improved
versions of the FCI and MB tests, treated with the confidentiality of the MCAT, (8) use of E&M
concept tests; and (9) reduction of possible teaching-to-the-test influence by drawing test questions
from pools such that the specific questions are unknown to the instructor.45b
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V.  RESEARCH QUESTIONS
Seven research questions raised by the present study and calling for further experimental

investigation are listed below.

A.  Why Do Some IE Courses Achieve (<g>) < 0.3 , While Others Achieve (<g>) > 0.6?
In Sec. III, I argued that certain implementation problems may be responsible for the placement

of some IE courses in the low (<g>) < 0.3 range.  In Sec. II-C, I indicated that at the present stage of
pedagogical understanding, the particular method or materials used by an instructor may be less
important than his/her skill in promoting effective interactive engagement of students.  To shed
greater light in this area, more thorough case studies (e.g., site visits, videotape analysis of classroom
practice, interviews of instructors and students, examination of course material) for courses attaining
(<g>) < 0.3 and (<g>) > 0.6 would be of value. 

B.  Why Are Current IE Methods Relatively Effective For Some Students and Ineffective
for Others?

There is commonly a large spread in g’s for individual students in a course,83,86 with
g’s ranging from the maximum g = 1.0 to g = 0.0  (or even negative).  Why are current IE
methods relatively effective for some student and ineffective for others?  To help answer these
questions it would be useful to carry out, for any given course, in-depth studies of students in the
lower-g < 0.3 and higher-g > 0.6 ranges: e.g., (a) GPA’s and SAT’s, (b) educational
backgrounds, (c) evaluations by teachers, (d) interviews by physics-education researchers, 
(e) study habits,87 (f) views on science and learning,73 (g) attitudes towards the course,59 and
(h) math skills.1a,16,20a,21,78,84c

C. Why Do No Survey Courses Achieve (<g>) > 0.7 ?
Jerome Epstein84a has suggested that many students entering introductory physics courses may

be at cognitive levels too low to benefit from current IE methods, and that this might account for the
failure of survey courses to break through the "<g> = 0.7 barrier."  It is also possible that deficient
cognitive development of entering students contributed to the low-g’s of seven of the IE courses

(Sec. III).  Consistent with the observations of Arons,43d Epstein84b states: "In large numbers our
students... [at Bloomfield College (NJ) and Lehman College(CUNY)]... cannot order a set of
fractions and decimals and cannot place them on a number line.  Many do not comprehend division
by a fraction and have no concrete comprehension of the process of division itself.  Reading rulers
where there are other than 10 subdivisions, basic operational meaning of area and volume, are
pervasive difficulties.  Most cannot deal with proportional reasoning nor any sort of problem that has

to be translated from English.  Our diagnostic test 84c which has been given now at more than a
dozen institutions ...(including Wellesley!)...shows that there are such students everywhere." Epstein

and Kolidy have devised and conducted "Freshman Core Programs"84d (FCP’s) which have
substantially increased students’ cognitive levels as measured by pre/post testing with standardized
reasoning exams.  It would be useful to see if (a) individual student scores on Epstein’s Diagnostic
(ED) correlated with individual-student FCI normalized gains g in single IE courses, (b) average
scores on the ED correlated with average normalized FCI gains <g> for many IE courses, and (c)
whether or not pre-physics-course FCP’s (or similar courses) can raise <g>’s in IE courses. 
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D.  Are There T Courses With Normalized Gains Similar to Those of IE Courses?
A referee has pointed out that although the present study constitutes an "existence proof" that IE

courses can yield "Medium-g" normalized gains on the FCI, a similar proof for T courses might also
be found, thus negating to some extent the conclusion that IE methods are more effective than T
methods.  That a statistically significant set of n traditional passive-student courses could yield
<<g>>nT ≈ <<g>>48IE = 0.48 seems very unlikely for the following reasons: (a) traditional courses
taught by popular and well-regarded teachers have achieved low <g>T <  0.30 both at a large state

research university1a and an ivy-league college,19 (b) over the past few years results of FCI testing
have become fairly well known among physics teachers and even in some research universities, but
no normalized gains much above 0.30 have ever, to my knowledge, been reported for traditional
courses, (c) that large gains in the conceptual understanding of mechanics could be achieved, on
average, by students subjected to passive-student lectures, recipe labs, and algorithmic-problem

exams would run counter to two decades of physics-education research.43  Nevertheless, it may be
worthwhile to institute a systematic search for Medium-g (or High-g) traditional courses.

 Robert Ehrlich88 has, in fact, already taken the first steps in this direction.  He has pointed out
that  the "...the size of the sample...(14 courses).... Hake used for the traditional courses was fairly
small, so a statistical fluctuation was always a possibility."  Seeking to test his conjecture, he
promoted pre/post FCI testing in 12 more-or-less traditional courses taught by instructors with whom
he was acquainted.  These yielded <<g>>12T = 0.20 ± 0.06sd, consistent with the present results

<<g>>14T = 0.23 ± 0.04sd.  Ehrlich then sought to test the idea that <g> for T courses could be
raised simply by including conceptual questions of the type found on the FCI test, both as homework
and also test questions.  Although he did not obtain enough cooperation to carry out this potentially
valuable experiment, it would constitute a worthwhile future research project.

E. Can Courses Taught by Mainstream Teachers Achieve <g> >  0.3?
As indicated in Sec. IIB, the instructors of this survey were, for the most part, active

contributors to the physics-education literature.  It is encouraging that high-school courses taught
by the participants of Modeling workshops have achieved <g>’s equal to and even exceeding
those of this survey.89  It would be interesting to obtain more FCI and MB data for courses
conducted by mainstream teachers who use IE methods but do not normally attend teachers’
meetings or publish in the physics-education journals.  

F.  What is the Relationship of FCI and FMCE Test Results? 
Case study #6 discusses two courses at Monroe Community College which incorporated Real

Time Physics in the labs, but otherwise traditional pedagogy.  Both these courses achieved <g> = 
0.25 on the FCI but scores above 65% on the FMCE.   Paul D’Alessandris speculates on reasons for
the difference, but more systematic and extensive comparison of the results of these two tests should
be undertaken before legitimate conclusions can be drawn.
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G.  Can Grafting of IE Laboratories Onto Traditional Courses Markedly Increase Conceptual
Understanding?

Case studies #4-6  suggest that the grafting of Real Time Physics (RTP) labs onto traditional
courses at Monroe Community College (MCC) and the University of Louisville  (UL) did not
markedly increase conceptual understanding as measured by the FCI.  On the other hand, use of RTP
labs with traditional instruction at Oregon and Tufts drastically increased conceptual understanding
as measured by the FMCE.33e  The apparent discrepancy could be due to (a) difference in the
meaning of FCI and FMCE test results as discussed above, (b) more effective implementation of
RTP at Oregon/Tufts than at MCC/UL , (c) more effective "traditional" instruction at Oregon/Tufts
than at MCC/UL.  More research seems to be required before meaningful conclusions can be drawn.

VI. CONCLUSIONS
The present article yields the following answers to the three questions posed in the introduction:

A1.  For the present 6542-student survey the most widely used interactive engagement (IE) methods
are Collaborative Peer Instruction, 4458 (all IE-course students); Microcomputer Based
Laboratories, 2704; Concept Tests, 2479; Socratic Dialogue Inducing Labs, 1705; Overview Case
Study and Active Learning Problem Sets,1101; Modeling, 885; and research-based text or no text,
660.  In addition many other IE methods are being employed.  The IE methods are (a) well
documented in the literature, (b) can be melded together to enhance one another’s strengths, (c) can
be modified to suit local conditions, (d) are often available in electronic form,  (e) usually offer
materials for their implementation, (f) are used in many different types of institutions for diverse
student groups by instructors who are usually active contributors to the physics- education literature.

A2. The use of IE methods appears to be necessary but not sufficient for marked improvement over
traditional methods as demonstrated by seven courses (N = 717) which utilized IE strategies but
achieved <g>’s ranging from 0.21 to 0.26.  Case studies suggest that these relatively low average
normalized gains were due to difficulties in the implementation and that such problems might be
mitigated by (a) apprenticeship education of instructors new to IE methods (Cases 1, 3);
(b) emphasis on the nature of science and learning throughout the course (Case 3); (c) careful
attention to motivational factors and the provision of grade incentives for taking IE activities 
seriously(Case 2); (d) recognition of and positive intervention for potential low-gain students (Case
3); (e) administration of exams in which a substantial number of the questions probe the degree of
conceptual understanding induced by the IE methods (Cases 4 – 6); (f) use of IE methods in all
components of a course and tight integration of those components (Cases 4 – 6).  Other suggestions
for course improvement gleaned from this survey have been listed in ref. 5a. 

A3.  The present study gives rise to seven research questions (Sec. V) calling for further experimental
investigation.   
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Epilogue
I am deeply convinced that a statistically significant improvement would occur if more of us

learned to listen to our students....By listening to what they say in answer to to carefully phrased,
leading questions, we can begin to understand what does and does not happen in their minds,
anticipate the hurdles they encounter, and provide the kind of help needed to master a concept or
line of reasoning without simply "telling them the answer."....Nothing is more ineffectually
arrogant than the widely found teacher attitude that ’all you have to do is say it my way, and no
one within hearing can fail to understand it.’....Were more of us willing to relearn our physics by
the dialog and listening process I have described, we would see a discontinuous upward shift in the
quality of physics teaching.  I am satisfied that this is fully within the competence of our
colleagues; the question is one of humility and desire.
                                                                       Arnold Arons, Am. J. Phys. 42, 157 (1974)     
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