
Introduction to
Makeflow and Work Queue

Nate Kremer-Herman

Blue Waters Webinar

March 22nd, 2017

The Cooperative Computing Lab

• We collaborate with people who have large scale computing problems in
science, engineering, and other fields.

• We operate computer systems on the O(10,000) cores: clusters, clouds,
grids.

• We conduct computer science research in the context of real people and
problems.

• We develop open source software for large scale distributed computing.

Our Philosophy:

• Harness all the resources that are available: desktops, clusters,
clouds, and grids.

• Make it easy to scale up from one desktop to national scale
infrastructure.

• Provide familiar interfaces that make it easy to connect existing apps
together.

• Allow portability across operating systems, storage systems,
middleware…

• Make simple things easy, and complex things possible.

• No special privileges required.

A Quick Tour of the CCTools

• Open source, GNU General Public License.

• Compiles in 1-2 minutes, installs in $HOME.

• Runs on Linux, Solaris, MacOS, FreeBSD, …
• Interoperates with many distributed computing systems.

● Condor, SGE, SLURM, TORQUE, Globus, iRODS, Hadoop…
• Components:

● Makeflow – A portable workflow manager.
● Work Queue – A lightweight distributed execution system.
● All-Pairs / Wavefront / SAND – Specialized execution engines.
● Parrot – A personal user-level virtual filesystem.
● Chirp – A user-level distributed filesystem.

Lots of Documentation

Recap from Last Workflow Webinar

• What is a workflow?
• A collection of things to do (tasks) to reach a final result.

• What are the parts of a task?
• The thing we want to do (application to run), input to give that application,

output we expect to get from that application.

• How can a workflow management system help me do my research?
• Add automation, resource provisioning, task scheduling, data management, etc.

bluewaters.ncsa.illinois.edu/webinars/workflows/overview-of-scientific-workflows

Makeflow:
A Portable Workflow System

An Old Idea: Makefiles

part1 part2 part3: input.data split.py
 ./split.py input.data

out1: part1 mysim.exe
 ./mysim.exe part1 >out1

out2: part2 mysim.exe
 ./mysim.exe part2 >out2

out3: part3 mysim.exe
 ./mysim.exe part3 >out3

result: out1 out2 out3 join.py
 ./join.py out1 out2 out3 > result

Makeflow = Make + Workflow

• Provides portability across batch systems.

• Enable parallelism (but not too much!).

• Trickle out work to batch system.

• Fault tolerance at multiple scales.

• Data and resource management.

Makeflow

Local SLURM TORQUE Work
Queue

out.txt : in.dat

 sim.exe –p 50 in.data > out.txt

Not quite right!out.txt : in.dat calib.dat sim.exe

 sim.exe –p 50 in.data > out.txt

Makeflow Syntax

[output files] : [input files]

[command to run]

sim.exe

in.dat

calib.dat
out.txt

sim.exe in.dat –p 50 > out.txt

One rule

You must state all the files
needed by the command.

example.makeflow

out.10 : in.dat calib.dat sim.exe
sim.exe –p 10 in.data > out.10

out.20 : in.dat calib.dat sim.exe
sim.exe –p 20 in.data > out.20

out.30 : in.dat calib.dat sim.exe
sim.exe –p 30 in.data > out.30

Sync Point - Questions?

• Several additional features to Makeflow which we do not have time to
cover today (please take a look at our documentation).

• Categories and resource specification.

• Shared filesystems support.

• Container support (Docker and Singularity).

ccl.cse.nd.edu/software/manuals/makeflow.html

Let’s work through a brief tutorial:

ccl.cse.nd.edu/software/tutorials/ncsatut17/makeflow-tutorial.php

Makeflow + Work Queue

Makefile

Makeflow

XSEDE
Torque
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

Private
Cluster

Local Files and
Programs

Makeflow + Batch System

makeflow –T torque

makeflow –T condor

???

???

XSEDE
Torque
Cluster

Campus
Condor

Pool

Public
Cloud

Provider

Private
Cluster

Makefile

Makeflow

Local Files and
Programs

Makeflow + Work Queue

W

W

W

ss
h

WW

WW

torque_submit_workers

W

W

W

condor_submit_workers

W

W

W

Thousands of
Workers in a

Personal
Cloud

submit
tasks

Advantages of Work Queue

• Harness multiple resources simultaneously.

• Hold on to cluster nodes to execute multiple tasks rapidly. (ms/task
instead of min/task)

• Scale resources up and down as needed.

• Better management of data, with local caching for data intensive
tasks.

• Matching of tasks to nodes with data.

Project Names

Worker

work_queue_worker
–N myproject

Catalog

connect to
workflow.iu:9050

advertise

“myproject”
is at workflow.iu:9050

query

Makeflow
(port 9050)

makeflow …
–N myproject

query
work_queue_status

work_queue_status

Work Queue Visualization Dashboard

ccl.cse.nd.edu/software/workqueue/status

Resilience and Fault Tolerance

• MF +WQ is fault tolerant in many different ways:
● If Makeflow crashes (or is killed) at any point, it will recover by reading the

transaction log and continue where it left off.
● Makeflow keeps statistics on both network and task performance, so that

excessively bad workers are avoided.
● If a worker crashes, the master will detect the failure and restart the task

elsewhere.
● Workers can be added and removed at any time during the execution of the

workflow.
● Multiple masters with the same project name can be added and removed while

the workers remain.
● If the worker sits idle for too long (default 15m) it will exit, so it does not hold

resources while idle.

Let’s return to the tutorial:

ccl.cse.nd.edu/software/tutorials/ncsatut17/makeflow-tutorial.php

Visit our website: ccl.cse.nd.edu

Follow us on Twitter: @ProfThain

Check out our blog: cclnd.blogspot.com

Makeflow examples:
github.com/cooperative-computing-lab

/makeflow-examples

