

## Crystallagraphy

 $\&$ MineralagyA book by Career Avenues As per IIT-JAM Syllabus
GEOLOGY I EARTH SCIENCE

# Crystallography And <br> Mineralogy 

## Introduction

Mineralogy is the study of minerals. It is a subject of geology that deals with the crystal structure and chemical, physical and optical properties of minerals. It also includes the description of properties of minerals, that branch is called descriptive mineralogy.
Crystallography is a subset of mineralogy that need special attention. The minerals are made up of atoms and molecules in an orderly fashion. This ordered manner will reflect in the appearance and other properties of minerals. Crystallography mainly deals with the symmetry, classification and forms of crystals. The symmetry elements can be represented by stereographic projections.
The remaining portions of mineralogy are divided as crystal chemistry and physical and optical properties, structure and description of silicates and non-silicates. Silicate minerals are the important rock-forming minerals. While non-silicate forms economically important deposits.
X-ray diffraction (XRD) is used for the identification of mineral phases by determining the crystal structure.

## Chapter 1

Crystallography- symmetry and crystal systems

| JAM year | Weightage (Marks) |
| :---: | :---: |
| 2020 |  |
| 20177 |  |
| 2016 |  |
| 2015 | AMPL |
| Average |  |

### 1.1. Crystallography - Introduction

- Crystall cryst
- Min
sym
cry
- Syn
- Tho
- Tho
- A 1 cry
1.2.
- Pla
- Rep
- The


## SAMPLE

- The fiv dimensi plane la unit me
- Diamon


## SAMPLE

1.3. $\quad \mathrm{Sp}$

- A regul the inte
- If the $t$

- The crystal axes have positive and negative ends

| Positive/negative | a | B | c |
| :--- | :--- | :--- | :--- |
| Positive | To the <br> front | To the <br> right | Upward |
| Negative | To the <br> back | To the left | downward |

- The angle between b and $\mathrm{c} \rightarrow \alpha$

The angle between a and $\mathrm{c} \rightarrow \beta$
The angle between a and $\mathrm{b} \rightarrow \gamma$


Face centred ( F ) unit cells contain lattice nodes at the corners and the centre of each face.


- Crystal systems
- The primary method of classification of crystals.
- 14 Bravais lattices are grouped into six groups based on the shape of the unit cell. These are called crystal systems.
- Six crystal systems are
- Isometric system
- Tetragonal system
- Hexagonal
- Orthorl
- Mono
- Tricli
- 14 Ty
- Out
space
the d
angle Isom
- In Br


## SAMPLE

$\mathrm{a}=\mathrm{b}$

- The 3


## (s):

- These three possible cubic Bravais lattices are,
- Primitive (or Simple) Cubic Cell (P)
- Body-Centred Cubic Cell (I)
- Face-Centred Cubic Cell (F)
- Examples: Polonium has a simple cubic structure, Iron has a body-centred cubic structure, and copper has a face-centred cubic structure.

Tetragonal Systems

- In tetragonal Bravais lattices, the following relations are observed:
$\mathrm{a}=\mathrm{b} \neq \mathrm{c}$
$\boldsymbol{\alpha}=\boldsymbol{\beta}=\boldsymbol{\gamma}=90^{\circ}$
- The two types of tetragonal systems are simple tetragonal cells and body-centred tetragonal cells,


Monoclinic Systems

- Bravais lattices having monoclinic systems obey the following relations:
$\mathrm{a} \neq \mathrm{b} \neq \mathrm{c}$
$\boldsymbol{\beta}=\boldsymbol{\gamma}=90^{\circ}$ and $\boldsymbol{\alpha} \neq 90^{\circ}$
- The two possible types of monoclinic systems are primitive and base centred monoclinic cells,


Centered


Simple

## Triclinic System

- There exists only one type of triclinic Bravais lattice, which is a primitive cell. It obeys the following

- Thus, it can be noted that all 14 possible Bravais lattices differ in their cell length and angle relationships. It is important to keep in mind that the Bravais lattice is not always the same as the crystal lattice.


### 1.6. Point symmetry

- Point
- Mot of a
- Poi
- Ref
- Rot
- Inv
- Rot
- Rot
- Not
- $\mathrm{A}_{1}$
- Rot
- Syn


SAMPLE

- Refle
- A refl patter
- Refle
- Mono


## SAMPLE

none.


- Inversion
- If a crystal has inversion or centre of symmetry, any line drawn through the origin will find identical features equidistant from the origin on opposite sides of the crystal.
- Inversion symmetry is indicated by the letter ' i '.

Compound symmetry operations

- Rotoinversion
- Rotoinversif
- There
- 1 -fold r inversio
So, $\bar{A}_{1}=$
- 2-fold r
through
SAMPLE
So, $\bar{A}_{2}=$
- 3-fold r
the cent
- 4-fold r centre.
 centre.
$\bar{A}_{6}$ is same as a 3-fold rotation axis at right angle to a mirror.
$\bar{A}_{6}=A_{3}+m$


### 1.7. S

- Symm
- Centre
- Mirror
- Axis o


## SAMPLE

 axes of
## 1.8. $\quad P$

- There
- Each p
- Each p forms)




1, 2, 3, 4, 6 - rotoinversion axes (1-fold, 2 -fold, etc.)
i - Inversion

- Determination of Hermann-Mauguin notation: example
- Hermann-Mauguin notation of an orthorhombic crystal


## SAMPLE


$2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m}$


- Measurement or crystal angles
- Crystal angles can be measured with an instrument called a goniometer.
- Simple contact goniometer
1.9. $S_{1}$
- The sp

- Combi of glid space
- A glid follow
- A silico
- Glide plañ


## SAMPLE

 group symmetry.- A screw is produced by a combination of translation a specific distance and direction followed by a rotation. The axis about which rotation occurs is called the screw axis.


### 1.10. Crystal faces

- A pla
- Crys resul
ratio
- Law
- Law
node SAMPLE
1.11.
- Axia
norm ratio
is de
Axia
Or
Axial
- For example,

- Step IV: If a nlane has necative intercent the necative number is denoted hv a har ( $\left(^{-}\right.$) above the num
- $\begin{gathered}\text { Step } \\ \\ \text { indic } \\ \text { - } \\ \text { Mille } \\ - \\ \text { For t } \\ \\ \\ \text { in th } \\ \\ \text { Cons } \\ \\ \\ \\ \\ \\ \\ \\ \end{gathered}$ SAMPLE
1.13.
- A zo
led a

- The zoy $\longrightarrow$ [uvw].


## SAMPLE

## Practice questions

1. The total number of Bravais lattices.
a.
b.
c.
d.
2.4
SAMPLE

- 

d.
3. Whro
a. (100)
b.
c.
d.
4.
a.
b.
c.
d.
SAMPLE
5.
a.
b.
c.
d.
6.
a.
b. $\overline{2}$
c. 3
d. $\overline{3}$

10. Hermann_Mawowin cumbal_of the followino cructal

## SAMPLE

a. 4
b. $4 / \mathrm{m}$
c. $4 / \mathrm{m} 4 / \mathrm{m} 4 / \mathrm{m}$
d. $4 / \mathrm{m} 2 \mathrm{~m} 2 / \mathrm{m}$


Mul
12.
a.
b.
c.
d.
13.
a.
b.
c.
d.
14.
a. $2-$
b. 3-fo

## SAMPLE

c. 4-fold rotoinversion axis
d. 6-fold rotoinversion axis
15. Which of the following symbol(s) does NOT represents a point group(s) in the hexagonal system?
a. $\overline{3} 2 / m$
b. $2 / m \overline{3}$
c.

a. Tetragomar-apyrammaar
b. Gyroidal
c. Dihey
d. Di
19.
a.
b.
c.
d.

## SAMPLE






