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Abstract

Computer programming was once thought of as a skill required only by professional

software developers. But today, given the ubiquitous nature of computation and data sci-

ence it is quickly becoming necessary for all scientists and engineers to have at least a basic

knowledge of how to program. Teaching how to program, particularly to those students

with little or no computing background, is well-known to be a difficult task. However,

there is also a wealth of evidence-based teaching practices for teaching programming skills

which can be applied to greatly improve learning outcomes and the student experience.

Adopting these practices naturally gives rise to greater learning efficiency - this is critical

if programming is to be integrated into an already busy geoscience curriculum. This paper

considers an undergraduate computer programming course, run during the last 5 years in

the Department of Earth Science and Engineering at Imperial College London. The teach-

ing methodologies that were used each year are discussed alongside the challenges that

were encountered, and how the methodologies affected student performance. Anonymised
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student marks and feedback are used to highlight this, and also how the adjustments made

to the course eventually resulted in a highly effective learning environment.

Introduction

Computer programming is increasingly becoming an essential skill for geoscientists as the

world becomes more digitalised. We might commonly think of computer programming as an

activity carried out by a relatively small number of domain specialists developing complex

application software, perhaps in collaboration with computer scientists. However, geoscientists

and engineers are faced with numerous day-to-day tasks such as manipulating datasets (e.g.

standardising, reformatting or filtering), statistical analysis, plotting, or automating repetitive

tasks such as rerunning the same program with many different data inputs and gathering the

results for analysis. Even in the case of a software user, where no active programming is

required, a basic knowledge of computer programming and experience in debugging can be

critical when troubleshooting third party software. This is because programming skills provide

the user with a conceptual model for understanding what might be going wrong, systematically

characterise the problem, and then either modify their workflow or constructively engage the

software developers to resolve the problem. Enhanced computing power is enabling simulation

and data inversion to play a greater role in discovery and prediction in geoscience. Arguably

we are rapidly approaching a point where innovations will predominately come from those

who are able to translate an idea into an algorithm, and then into computer code.

It has long been recognised that teaching basic programming skills to novices is difficult

(Robins et al., 2003). Winslow (1996) suggests that it takes about 10 years of experience to

turn a novice into an expert programmer. Worryingly, these conclusions were mostly drawn

from teaching computer science students where computing dominates the curriculum. There-

fore, it follows that careful consideration needs to be given to the design of an introductory

programming course when it only forms a small part of a non-computing curriculum. There

are also motivational issues due in part to the subject being largely associated with the field

of computer science, and geoscientists are therefore often surprised to see it as part of their

curriculum. This can lead to the opinion that the subject is not worth pursuing, or the worry

that they do not have the background or potential to do well in the subject. Even in the case
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where the student does have a strong computing background, learning how to program, much

like learning to swim or how to ride a bike, requires a great deal of practice. The learning

experience is likely going to be completely different to what the student is used to. Not only is

there a large amount of unfamiliar material/knowledge to understand, the student must also

adapt to different methods of content delivery and a highly practical learning methodology.

Furthermore, the mind has to be trained to think ‘like a computer’ (i.e. to follow a series of

steps in a logical way/as a ‘process’).

In light of these challenges, a considerable amount of research has gone into developing effective

strategies for teaching a course in introductory programming; an excellent review is given by

Pears et al. (2007). A key consideration in a geoscience context (or indeed any course outside

a dedicated computer science degree) is that introductory programming is not being taught

as part of a wider computer science curriculum, but instead has to fit in within an already

full geoscience curriculum. One specific concern is that a single introductory programming

course is unlikely to enable the students to take these skills and reapply them to a different

problem-solving context from where they were presented (Palumbo, 1990). Therefore, we

also need to consider where else in the curriculum there are opportunities to use and extend

students’ programming skills and experience.

The choice of a first programming language also has a significant impact on learning. While

the top 3 popular programming languages have been consistently C, Java and C++ for many

years (TIOBE Software, 2015), they are generally not thought to be good choices as a first

programming language (Mody, 1991; Churcher and Tempero, 1998; Biddle and Tempero,

1998; Clark et al., 1998; Close et al., 2000). A big part of the problem with starting with such

programming languages is that they are too low level, and the high cognitive load associated

with the syntax (Stefik and Siebert, 2013) has little to do with learning to think algorithmically

and writing structured programs (Pears et al., 2007). Interestingly Pears et al. (2007) also

point out that similar learning issues related to excessive cognitive load arise when using

professional Integrated Development Environments (IDEs) in introductory programming due

to the effort that must be invested to become a proficient user. For this reason high level

languages such as Python are a popular choice because of their much simpler, higher-level

syntax (Donaldson, 2003; Fangohr, 2004; Lin, 2012).
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Böszörményi (1998) points out that a first programming language should not be decided

in isolation but in the context of the entire curriculum. There are many opportunities to

reinforce learning if the same language can be used as a tool in other lecture courses and

project work. However, this relies upon a common denominator being agreed among the

teaching staff. While many computer languages (e.g. C/C++, FORTRAN, Java) are used by

research and academic staff, Python has become very popular as it is both simple and powerful.

A lot of international effort has gone into providing Python interfaces to popular geoscience

packages to the extent that Python can be used seamlessly across laptops, supercomputers and

Cloud platforms. Examples include: GRASS GIS (GRASS Development Team, 2015), ArcGIS

(Environmental Systems Research Institute, 2015), and QGIS for GIS and geomorphology

(QGIS Development Team, 2009); PyLith for modelling crustal deformation (Aagaard et al.,

2007); ObsPy for processing seismology data (Beyreuther et al., 2010); and Firedrake for

geophysical fluid dynamics (Rathgeber et al., 2015; Jacobs and Piggott, 2015). This provides

an environment where students feel motivated from day one that they are learning a language

that can be directly applied professionally, while still benefiting from a simple syntax with

relatively low cognitive overhead so that they can focus on learning to think algorithmically.

In 2010 we began to develop an 8-week introductory programming course with 24 contact

hours for undergraduate students, majoring in geoscience, in the Department of Earth Sci-

ence and Engineering at Imperial College London1. The objective of the course was to teach

fundamental principles of programming and basic constructs such as variables, loops, condi-

tional statements, array manipulation, plotting, classes and objects. Each year the class size

was usually between 70 and 90 students (the exact number of students can be found in Table

1).

The students embarking on undergraduate study at Imperial College London have a broad

range of backgrounds, but these are mostly STEM-based2 as a result of Imperial College

London’s focus on STEM subjects. However, no prior knowledge of higher mathematics, pro-

gramming or computing was assumed. Each year comprised only new students; there were

no course ‘re-takers/re-sitters’ from previous years. Of course, the individual student back-
1Originally this was a second year course. In 2012 we had to transition the course from being a ‘second

year only’ course to being a ‘first year only’ course; this was accomplished by teaching both first year (i.e. the
2012 intake) and second year (i.e. the 2011 intake) students in the same course that year.

2STEM stands for Science, Technology, Engineering and Mathematics.
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grounds and experiences vary from year to year. In general only a few (∼1–6) students had

some prior programming experience, sometimes obtained by doing an A-Level3 computing

course at a Further Education institution prior to embarking on undergraduate study; in the

2010 class there were two students with an A-Level in Computing, in 2012 there was one, and

in 2013 there were two, with no students having an A-Level in Computing in other years (see

Table 2 for a full list of student A-Level qualifications by subject). This is typically very differ-

ent to classes majoring in computer science where a much larger proportion of the intake have

some past programming experience, or at least a strong background in logical/algorithmic

thinking which will aid them considerably when learning to program. With respect to de-

mographics, UK ‘home’ students (i.e. students who are ordinarily resident in the UK) made

up the majority of each intake, and all years featured a larger number of male students, as

detailed in Table 3.

Whilst Imperial College London is a research intensive university with a worldwide reputation

for research excellence, it has made a clear commitment to delivering a world class education

for its students; in light of this, teachers across the institution are encouraged to adopt an

iterative approach to course design and are offered the freedom to innovate with a view

to making teaching as effective as possible. As a starting point for developing the course

we adopted the text book A Primer on Scientific Programming with Python (Langtangen,

2009) (and later editions in subsequent years) which is targeted at science and engineering

students with no previous programming experience. The author of the text book, Hans Petter

Langtangen, also provided us with his collection of slides based on the book which he had

developed for his own introduction to programming course at the University of Oslo. While

the core topics and structure remained largely the same throughout the years that the course

was run, both the teaching medium and methodology was changed radically in response to

student performance and experience.

Put briefly, our initial approach was to teach in a traditional way: a 3 hour lecture block to

cover material, with students being given exercises at the end of the lecture as coursework.

It quickly became apparent that this approach would require a full additional 3 hour block

timetabled in the computer lab with tutors to support them doing the exercises. Not only
3An A-Level, more formally known as General Certificate of Education (GCE) Advanced Level, is a quali-

fication offered by Further Education institutions in the United Kingdom.
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did this put additional pressure on the timetable, it also resulted in the poorest student

performance and experience of the five years of teaching the course.

In subsequent years many changes were made to the course in response to the student expe-

rience which were guided by the experience of the teaching community and pedagogy litera-

ture. Our current approach delivers satisfactory learning outcomes, and focuses on using the

IPython Notebook software (Pérez and Granger, 2007) with a blended learning approach; this

is largely inspired by the teaching practices promoted by the Software Carpentry organisation

(www.software-carpentry.org) which teaches basic computing skills to scientists (Wilson, 2006,

2014). Currently the 3 hour block is broken down into a series of 10–15 minutes of lecturing to

establish the context and motivation of the current topic. These include live examples which

are worked out and discussed. Between these mini-lectures are practical exercises where the

students are allocated approximately 30 minutes to work on a few exercises related to the

mini-lectures, with teaching assistants and peers providing support. The IPython Notebook

software neatly integrates core course content written in the Markdown language (Gruber,

2004) with Python code that can be run interactively within the same document.

In this paper, we report on our experience and the impacts of changing our teaching methodol-

ogy on the performance of the undergraduate geoscience students. Of course, it can be rather

difficult to directly attribute improvements in student learning outcomes to any one specific

change in teaching methodology. Each year’s student cohort is different and there could be

other factors involved, such as variations in the backgrounds of the teaching assistants each

year. However, in our study we rely on the fact that we kept the exam format and difficulty

level consistent throughout the years. Furthermore, our experiences suggest that if we do not

apply any particular methodology then some students perform poorly whilst some do very

well, because of the broad range of backgrounds. On the other hand, if we do apply particular

pedagogical techniques, a consistent positive learning outcome is achieved.

The “Data Collection” section gives details of the data collected for evaluating student learn-

ing and effectiveness of the course. The “Current Curriculum and Instruction Methodology”

section presents the various design aspects of the current (2014) state of the course, and the

teaching practices employed. For each aspect of the course we also contrast with previous

years by detailing what we changed each year, why we did this, and the justification for
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why we believe such changes have helped form an efficient teaching and learning methodol-

ogy4. Finally, some closing remarks and recommendations for adopting the current course

methodology elsewhere are given in the Conclusion.

Data Collection

This section describes the types of data that we have collected with respect to student per-

formance and feedback, and the techniques used to obtain this data.

SOLE: Student OnLine Evaluation

SOLE5 is the central Student OnLine Evaluation tool developed and maintained by Imperial

College London and the Students’ Union. The tool enables students to give their view on

their lecturers and modules each year, and also facilitates the assessment of the quality of

their degree programme. All surveys are anonymous and are run at the end of each term. It

surveys all undergraduate students on their modules and the lecturers who have taught those

modules during the term that is finishing. The SOLE module/lecturer evaluation consists of

two sets of questions asked per module and per lecturer.

As part of the annual review of the department for Quality Assurance and Enhancement

purposes, a report is written summarising key issues from SOLE. Individual staff give feedback

to the students, often in the same academic year, and at the start of the next time the course

is taught — in particular highlighting issues raised by the students and adjustments made to

resolve the issue. For example, “students commented that not enough examples were discussed

in-depth so now we have significantly increased the number of examples walked through in

lectures”. A summary of the main outcomes is then sent to each individual student to complete

the feedback loop.

It should be noted that this feedback only represents the students’ perceptions of the course

and the lecturer, and is not a measure of actual learning.
4Here we define an ‘efficient methodology’ as an approach to teaching that (1) not only delivers the course

material within the time and resource constraints, but also (2) improves the students’ programming knowledge
and skillset, and (3) effectively achieves all the desired learning outcomes and course objectives.

5http://www3.imperial.ac.uk/registry/proceduresandregulations/surveys/sole
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Response rate

In the Department of Earth Science and Engineering, since 2009, the response rate for SOLE

is between 99 to 100% thus reducing the risk of sample bias. This gives a complete picture

when all students take the time to complete the survey and give their views. The survey

for the ‘Introduction to Programming for Geoscientists’ course is completed during week 7

out of 8 classes. There is a strong culture of communication and partnership within the

department. Students welcome the opportunity to provide feedback on their modules. They

see the outcomes of each SOLE survey and know that their comments make a difference to

the future. Students are given an induction in their first year about how SOLE works and

reminded of this annually.

Changes to survey questions/scoring criteria

An inconsistency in the survey criteria occurred in 2012; the number of criteria was reduced

in the hope it would boost response rates across the university as a whole. The survey was

reinvented for subsequent years when it was clear that the reduction in criteria did not impact

response rates. In addition, two new criteria (“I have received helpful feedback on my work”

and “The content of the module is intellectually stimulating”) were added, while two criteria

(“The organisation of the module” and “The support materials available for this module”)

were removed.

As with the above, reflecting up-to-date pedagogic thinking, other minor changes of wording

appeared. For example in 2010–2012 students were asked to rate the structure of the lectures

or teaching sessions, whereas in 2013 and 2014 they were asked to rate the structure of the

module. This word replacement reflected the wider nature of the survey from traditional ‘talk

and chalk’ lectures.

One other change was the wording of the response, again to reflect up-to-date learning termi-

nology in the UK: “Very Good (A), Good (B), Satisfactory (C), Poor (D), Very Poor (E), No

Response (F)” were replaced by “Definitely Agree (A), Mostly Agree (B), Neither Agree or

Disagree (C), Mostly Disagree (D), Definitely Disagree (E), Not applicable (F)”. The scoring

system used to interpret student feedback in a quantitative fashion in the Current Curriculum

and Instruction Methodology section is given by
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S =
∑E

i=A wini∑E
i=A ni

(1)

where S is the score for a given criterion, wi is the numerical value assigned to response i

(responses A to E are given scores that scale linearly such that wA = 2, wB = 1, wC = 0, wD

= -1 and wE = -2), and ni is the total response count for response i.

The same scoring system is used throughout the 5 years the course was run, despite changes

in the wording of the responses. An average score of -2 to -1.5 indicates “Very Poor”, -1.5 to

-0.5 indicates “Poor”, -0.5 to 0.5 indicates “Satisfactory”, 0.5 to 1.5 indicates “Good” and 1.5

to 2 indicates “Very Good”.

Examination results

The programming course had no marked term-time coursework component, and was instead

graded based on a two-hour end-of-term examination. In 2010 this involved answering a series

of programming-related questions by hand-written word (in the computer lab), while in the

later years it involved completing a series of practical exercises and submitting the Python

source code files at the end of the exam. Anonymised mark distributions are presented along

with the SOLE feedback in the Current Curriculum and Instruction Methodology section.

Current Curriculum and Instruction Methodology

In this section we will describe the current state of the course’s instruction methodology, and

explain the advantages of our approach. We then compare and contrast this with the previous

years that the course was run, describing the changes that were made, and give evidence for

why these changes were successful. This evidence comprises trends seen in the SOLE data,

student comments, and the exam marks. We also explain what changed between the years to

cause an improvement in the marks and comments, and how it affected the learning outcomes.
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Blended learning approach

The current state of the course adopts a blended learning approach, following many of the ped-

agogical methods used by the Software Carpentry organisation (Wilson, 2006, 2014). Blended

learning essentially brings together different modes and techniques of content delivery (Bonk

and Graham, 2006; Friesen, 2012). Concepts and ideas are introduced via face-to-face inter-

action to build a solid theoretical knowledge base. A computer-mediated environment is then

used to help apply this knowledge in a practical sense, enhance the students’ learning, and de-

velop the necessary skills. Our experience has found that this is an example of a highly efficient

methodology since, much like learning to swim or learning a new spoken language, the stu-

dents’ time is most effectively applied to developing their programming skills through practice

whilst still having the face-to-face component to acquire the necessary theoretical/background

knowledge. Indeed, it has already seen success in other computer programming classes (see

e.g. Boyle et al. (2003)).

In the case of our programming class, the students are expected to read the lecture notes

beforehand. The 3-hour-long workshops are divided up into intervals; since empirical evidence

has shown that the average adult student can only maintain focus for approximately 15-20

minutes (Middendorf and Kalish, 1996), each interval comprises approximately 10 minutes of

lecturing to establish the context of a particular section of the lecture notes, followed by a

period of time for the students to complete the exercises individually with the lecturer and

teaching assistants on-hand to offer help. Empirical evidence has also shown that students

who see worked examples before attempting exercises by themselves are better able to tackle

future problems (Guzdial, 2015). With this in mind, worked examples are presented during

the short lecture before the actual workshop session begins where students can attempt new

problems on their own with support on hand if they need it.

At the pre-university level, many students are used to a learning environment in which tra-

ditional passive learning and ‘note-taking’ classes are the norm. The student spends the day

in a passive state, recording the knowledge being delivered to them by the teacher, often

by taking notes directly from the teacher’s blackboard. The student is expected to absorb

this knowledge and regurgitate it for examination purposes, but they have little responsibility

over their own learning. We found that this expectation of a passive, teacher-led environment
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can therefore be very difficult to change as the student starts university for the first time,

particularly as this is still the dominant method of lecturing in most universities. This is a

particular issue here as this course is taught in the first term of their first year. Reassurance,

explicit justification and a brief explanation of the blended learning approach are therefore

given in the very first lecture of the course.

The blended learning methodology can potentially be applied to many other fields of study,

not just to programming classes. Indeed, blended learning has seen success in the teaching

of biology (Yapici and Akbayin, 2012), finance/accounting (Dowling et al., 2003), and human

anatomy (Pereira et al., 2007), for example. However, while the face-to-face delivery will be

similar (i.e. lecturing with slides or a blackboard), the exact form of the technology-based

media may be different in the case of non-programming classes. In the case of an electronics

class, for instance, the practical exercises may involve designing a circuit rather than writing

a program.

Comparison with previous years

In contrast to the initial years that the course was run (2010–2013, in which students were

taught through two-hour-long lectures with the use of slides), blended learning was extremely

successful and significantly boosted student performance.

The initial passive lecturing approach was more in line with student expectations. This is

illustrated by the 2010 SOLE feedback, with 94% of students giving a rating of “Satisfactory”

or higher for the category “The structure and delivery of the lectures”. Furthermore, the

lecturer/lecturing style was not the main trending issue in that year’s student survey (see

Figure 1c), and the “Structure/delivery” of course material scored a relatively high (‘Good’)

mark of 1.11 based on the SOLE feedback (see Table 5), as did the course in general (as shown

by the ‘Good’ mean combined score, i.e. the mean of the module and lecturer scores, of 1.24

in Figure 1b). Similarly, a high mean combined score was achieved in 2011 (see Figure 2b),

with a ‘Good’ score of 0.65 for “Structure/delivery” (see Table 6). This standard approach of

lecturing for 3 hours may be seen as an efficient methodology from a material dissemination

point-of-view (Beard and Hartley, 1984) (i.e. delivering a large amount of material to a high

number of students all at once), but is not necessarily effective at achieving learning outcomes
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(Ramsden, 1992; Isaacs, 1994). Indeed, this proved to be the case, with the 2010 mean exam

mark of 50.5% reflecting this (see Figure 1). In 2011 it was felt that the addition of an extra

3 hour practical session (whilst still covering the same amount of course material) helped to

push mean grades to 68.9%. However, this was not sustainable for future years. In addition,

students who could not keep up with the pace of the lectures during 2010 and 2011 quickly

lost track (e.g. one student commented “the lecture powerpoints are sometimes delivered too

quickly and then cannot understand the lecture from then on.” (2011)); this was the biggest

trending issue based on the student feedback.

In 2012, a set of lectures were recorded and uploaded to YouTube (www.youtube.com). The

YouTube videos were approximately 10–15 minutes long, in an approach largely inspired by

online teaching resources such as the Khan Academy (www.khanacademy.org) and Massive

Open Online Courses (MOOCs) (Yuan and Powell, 2013). The students could watch these

videos in class at their own pace and complete the exercises within the three-hour timeslot.

However, we found that the students then felt unsupported by this approach as they were

simply not used to such a flipped classroom approach in which they have much greater respon-

sibility over their own learning: “I think that it would help if the course was actually taught

- at the moment the way its structured there is no need for a teacher to be in the room as he

does not cover any content within the lessons.” (2012), “I found the teaching to be very im-

personal but maybe that is because programming is something you have to learn for yourself.”

(2012), “He doesn’t lecture” (2012), “People end up being able to do things but not having

a clue why as nothing is explained.” (2012). This was also reflected in the SOLE feedback

and course scores; a much higher proportion (28%) of first year students feeling that the “The

structure and delivery of the lectures” was less than satisfactory, a relatively low score of 0.38

for “Structure/delivery” (see Table 7), and a fairly broad distribution of marks with the mean

being 60.3%. One of the reasons for the lack of engagement in this approach may in part be

related to the place in the curriculum. As the course is in the first term of their first year

in University, not all students had developed their independent learning skills. Furthermore,

evidence provided by effect sizes (Hattie, 2008) has shown that web-based learning only has a

small positive influence on learning relative to the traditional classroom environment. Despite

this negative feedback from the students the learning outcomes were much better than the

first year the course was run.
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Because of the lack of constructive impact, we decided to no longer use online videos and

instead opted for traditional lecture notes in 2013. A short lecture of 20–30 minutes was

delivered at the beginning of the class, but students were expected to have read the notes

before the class began in order to maximise the amount of time that could be spent on the

practical exercises that followed. However, while a few students understood the need for this

self-preparation (“He gives you the responsibility to succeed and the tools to do so, I do

not see that he can do any more unless he were to baby feed us which isn’t why we are at

university.” (2013)), the majority of the student feedback regarding expectations from the

lecturer still amounted to ‘the lecturer is not lecturing us’: “Being shown a lecture and then

expected to complete an exercise with little teaching is difficult.” (2013), “The lecturer should

teach us the content of the course, instead of us having to read it off notebook with limited

explanation to go with those examples.” (2013), “More lecture based learning. Not enough

explanation of lecture notes and poor quality lecture notes” (2013), despite reassuring them

that it was more effective for them to read the lecture notes themselves at their own pace and

spend the majority of the time doing the exercises, rather than the lecturer spending most

of the available time reading the lecture notes out to the students. This was also reflected

in the lecturer scores, with a negative score of -0.06 for the “Explained material” category

(see Table 8) contributing to a relatively low mean combined score of 0.58 for the whole

course, as illustrated in Figure 4b. Despite this, our data suggested the change to a flipped

classroom environment was beneficial to the students’ performance; this is reflected in the

mark distribution which is skewed towards the higher end of the spectrum, and the mean

course mark of 74.5% was considerably higher than previous years, as shown in Figure 4.

Finally, in 2014 when the blended learning approach was adopted (and, crucially, justified

to the students), it was clear that students understood the need for such an approach when

learning to program. This was clear from the SOLE feedback: “I agree with [the lecturer]

that we gain much more from practicals than from being lectured” (2014), “[I] understand

the need for self teaching” (2014). The score for course structure and delivery increased to an

all time high of 1.26, yet the score for explanation of the material also remained high at 1.11

(see Table 9) through breaking the 3-hour workshop down into individual small lectures and

reassuring the students that the teaching approach taken was beneficial, albeit unlike what

they were used to. The mean combined score of 1.4 for the whole course was also relatively
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high compared to other courses run by the department that year (see Figure 5b). At the same

time, the mean exam mark did not change considerably. The overall mark distribution looked

much like the one of 2011, but required just 3 hours of teaching time per week compared to

the (unsustainable) 6 hours allocated in 2011.

Tailoring of material, exercises, and pace

Students majoring in computer science will immediately see a need for, and typically have

a strong interest in, learning to write computer programs. In contrast, our experience with

teaching geoscience students has shown that it is crucial to motivate the need for programming

from the very first lecture, since many often feel that they are being forced to do something

that was not relevant or worthwhile in their undergraduate syllabus. To that end, the course

includes several exercises that are tailored towards geophysical scenarios. For example, stu-

dents are asked to create a program which reads in seismic data from a file and locates the

earthquake of the largest magnitude. Another exercise involves reading a tidal gauge data file

supplied by the British Oceanographic Data Centre, plotting the tide level against time, and

then using that to spot the tidal constituents. In addition, we use our own computational-

based research to further justify why students would want to develop programming skills by

showing them simulations of volcanic eruptions and seismic wave propagation produced by

computer programs.

It is also important to make the learning experience as interactive as possible. We therefore

encourage the students to discuss problems with one another to aid peer-learning. One exercise

is particularly successful at engaging the students; the exercise tasks them with creating a

‘Battleship’ game in Python, which they later play against their neighbour. Not only is this

an enjoyable exercise, but it is also challenging enough to bring together many of the topics

the students learn in the course. Furthermore, we observed that this can promote several

instances of ‘rubber duck debugging’ (Hunt and Thomas, 1999); students manage to spot

inconsistencies between what their program is actually doing and what they expect it to do,

simply by walking through their program with one of their peers without that peer necessarily

saying anything at all. This form of peer assessment proved to be an efficient way of testing

the application of knowledge while allowing a degree of peer instruction as students could
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correct each other if necessary. The informal nature of the game-based scenario promoted

independence, control, active engagement and enjoyment which have been held up as key

principles in effective teaching and learning in higher education (Ramsden, 1992).

Finally, in order to facilitate effective learning we needed to manage the pace and cognitive

load being placed on students without diluting the quality or academic rigour of the course.

The course material was therefore refined each year following reviews of the course whilst still

keeping the core learning outcomes in place.

Comparison with previous years

Throughout the years that the course was run, there was always initial resentment from a

minority of students who, as geoscientists, felt that they were being forced to do something

that was not useful (e.g. “I don’t understand how it is related to the other stuff we study

in geology.” (2012)). It was therefore crucial to underline the importance of programming

skills from the first lecture with the hope this would have a knock on effect on the students’

motivation to learn. This was partially accomplished by citing real geophysical applications

that involve software development. This was reflected in the lecturer-specific feedback given

towards the end of the term; in 2010 and 2011 respectively, 97% and 92% of students thought

that “The interest and enthusiasm generated by the lecturer” was at least satisfactory. In 2013

and 2014 respectively (when the SOLE rating options changed), 89% and 99% of students

either had no opinion, mostly agreed, or strongly agreed that “The lecturer generated interest

and enthusiasm”. The student comments also show how the resentment was overcome once

the student’s own resistance to programming was mitigated through motivation: “I feel that

although at first I despised programming this was due to my own block against the subject.”

(2013).

When the course commenced for the first time in 2010, the exercises in the book by Langtangen

(2009) were considered. These were largely subject-independent and some students therefore

found it hard to relate these exercises to problems that they would deal with as geoscientists in

the real world; for example, in 2013 one student “felt that it took some time to get the general

picture, the lecturer would better help the students if he applied the idea of programming to

real life”. The tailoring of the exercises towards geophysical scenarios was therefore a change
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that was well-received by the students.

Many of these exercises required the implementation of equations and mathematical functions

(e.g. implementing the Heaviside function). The students were tasked with translating these

formulae into code. Although a very high proportion of the students had strong backgrounds

in mathematics at A-Level (see Table 2), it is not a prerequisite and the students were not

required to understand the mathematics behind the formulae. Nevertheless, the presence of

mathematics concerned some students and demotivated them; anonymous student comments

that highlight this include “Some of the exercises assumed A level Maths as a prerequisite

which was not appropriate for all students and very distressing for some.” (2013), “you

have to figure out the Maths before you can even start to programme” (2013), “a lot of

the exercises assume a previous understanding of some complicated maths which adds to the

confusion of the programming itself.” (2013). It was therefore necessary to provide reassurance

and demonstrate that an in-depth knowledge of the derivation and use of the mathematical

formulae is not required for them to be able to complete the exercise; for example, showing

that a finite sum of sine functions can be implemented using a for-loop.

Particularly during the first few years that the course was run, students largely felt over-

whelmed with the amount of material covered (“At the start there was too much to do.”

(2012)) and that many lectures had to be rushed at the end due to lack of time (“Far too

much content to fit into 8 lectures!!!!!! Not once did we finish a lecture.” (2010), “The amount

of material is covered in a - sometimes - too short amount of time.” (2011)). This is clearly vis-

ible in Figures 1 and 2 where the largest (negative) trending topic in 2010 and 2011 concerned

the pace of the lectures. The students responded positively to the refinement of the course in

2012, with one student commenting that “The content of the programming for geoscientists

was perfect when cut down to only 6 parts.” (2012).

Practice

We found that the short live lecture in a flipped classroom environment followed by the

‘bite-size’ chunks of practical exercises, was a highly effective and efficient way of developing

programming skills. The context, background material and example code are all covered just

before the students attempted the associated exercises. The material is therefore fresh in their
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minds and gives students a firmer foundation on which to practice their skills in the particular

topic under consideration. Furthermore, any questions that students have can be asked at

the classwide-level during the live lecture, thereby addressing queries that may be shared by

many students in one go.

Comparison with previous years

In comparison with the 2010 run of the course, the students initially spent two-hours being

lectured new material, and then given one hour to complete a range of practical exercises.

However, students were struggling to complete these exercises in the time allocated. The

course greatly improved a few weeks into the term after extending the practical sessions by

3 hours (on the same day), as reflected in the students’ feedback: “This course definitely

improved after the reading week6 when they introduced workshops in the afternoon with the

demonstrators.” (2010), “I believe the new structure of having 3 hours of GTA help and

worked through solutions help.” (2010), “The introduction of a separate practical session

was good.” (2010). However, at least one student believed that this was “too little too late”

(2010). Furthermore, it was likely that students became exhausted since the majority of that

day involved a constant focus on programming.

When the course commenced in 2011, a stand-alone 3-hour practical workshop was held

each week so that the students could focus entirely on the exercises; the students responded

positively to this: “The workshops are absolutely essential. Well run and incredibly helpful.”

(2011) and it appears that this resulted in a more positive skewness in the mark distribution

for 2011 as shown in Figure 2. However, the extra 3 hours of allocated practical time was

unsustainable for future years, and a more efficient means of content delivery and practice

was therefore required.

The use of YouTube videos in 2012 permitted the students to review the course material

before or during the practical session, thereby leaving more time for practice in the computer

lab with the support of the Graduate Teaching Assistants (GTAs) and lecturer. However,

if a student did not understand a concept in the videos then more support time was taken

up explaining concepts at an individual level, instead of practising and obtaining help with
6During ‘Reading Week’, students have no lectures and are expected to concentrate solely on coursework.
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the exercises. In comparison, the change to a flipped classroom environment followed by the

longer practical session in 2013, and the ‘bite-size’ chunks of practical exercises in 2014, was

a far more effective method of programming skill development as shown by the improved

examination marks and learning outcomes in Figure 5.

Technical Considerations

All lecture and examination material is currently written in the Interactive Python (IPython)

Notebook format which has proven to be an extremely effective learning environment as it

dispensed with the cognitive load of learning an editor, Integrated Development Environment

(IDE) or the command-line interface. It allows students to write and execute their programs

in amongst the lecture notes themselves so that everything ‘flows’ and they have all the course

material in one place. It also facilitates the running of live examples with the lecturer since

the students can more easily follow along.

In order to open the IPython Notebooks, we use Python distributions which run locally on the

Microsoft Windows-based lab computers. Students can choose between Anaconda (Continuum

Analytics, 2015) and Enthought Canopy (Enthought Scientific Computing Solutions, 2015).

The students are comfortable with this simple browser-based environment, and it also removes

a considerable amount of complexity and setup time. In addition, the ease of installation and

the cross-platform nature of the environment (running on Microsoft Windows, Mac OS and

Linux) means that it is simple for the students to install these distributions on their own

computers for use outside of the computer lab.

Note that, since the students’ Python code is combined within these ‘notebooks’, this approach

comes with the caveat that it is not possible to easily apply updates or corrections to the course

material after the lecture. However, once the course material was revised throughout the years

and became stable/mature enough, this was no longer a significant issue.

Comparison with previous years

Different learning environments were considered throughout the 5 years that the program-

ming course was run. Integrated Development Environments (IDEs) were discounted from

the outset because of their potential for causing high cognitive load on novices in introduc-
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tory programming courses (Pears et al., 2007). For the first four years, students accessed a

central server running the Ubuntu Linux operating system in order to write and execute their

programs. During the first week of term before any programming was taught, the students

were given a primer on basic Linux command-line tools by the local system administrator.

While knowledge of Linux commands was not being examined, students had to focus not only

on learning to program but also deal with the challenge of getting used to a new learning

environment. The additional level of complexity, which could be interpreted as placing ex-

traneous load on the learners, sometimes led to frustration and demotivation, particularly

when some technical difficulties could not be readily resolved by the teaching assistants: “Not

enough work on linux” (2010), “Started quite badly. Most students had never touched linux

or python.” (2010). Most students were accustomed to graphical interfaces in their day-to-day

computer use as opposed to command line interfaces. The other complication was that they

could not (or found it difficult to) install Linux or Python on their own computers, thereby

preventing self-study outside of the computer lab.

In 2010, students wrote their programs in a console-based text editor such as Nano (Nano

Development Team, 2009) and executed the program with the Python interpreter directly at

the command line. Students had to continually switch between the editor and the command

line, and it was clear that writing and running stand-alone program files in this way required

a considerable amount of additional expertise which placed an extraneous cognitive load on

the students. To help remedy this in 2011 and 2012, students adopted the Interactive Python

(IPython) tool which simplified the process of seeing a program’s results and lowered the

turn-around time for debugging considerably. Additionally, in 2013, the IPython Notebook

format was adopted (see above). The Git version control system was used in an attempt to

apply any updates/corrections to the lecture notes as gracefully as possible, and also gave the

students an insight into using version control to manage their work. However, this turned out

to be somewhat counter-productive as merge conflicts frequently had to be resolved manually

by the teaching assistants which lowered the confidence the students had in the system they

were using, and added to the number of commands the students had to remember to download

the latest revision of the lecture material. The majority of students in the class struggled to

cope with both Linux and Git which were completely new to them.
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Formative feedback / the ‘sticky note’ system

The ‘sticky-pad’ system, promoted by the Software Carpentry organisation, was used in every

workshop since 2014. This almost counterculture low-tech system proved both to be incredibly

powerful and popular with students for obtaining support and providing feedback that was

acted on promptly. Essentially, each student is given a red and a green sticky note at the

start of every lecture, and they are used in two ways.

In the first case, the sticky notes act as a status indicator when completing practical exercises;

the student sticks up the red note to indicate that they need assistance, which eliminates the

need to wait passively with their hand raised or similarly trying to get the attention of the

lecturer or GTAs (the need to hold up their hand whilst waiting for a GTA to become available

had been a frequent point of frustration). This in turn increases class productivity. When

the student has finished a set of practical exercises, they stick up the green note to let the

lecturer know the overall progress of the class.

In the second use case, the sticky notes act as ‘exit tickets’; students must leave one piece

of positive and negative feedback on the green and red notes, respectively, before exiting the

computer lab at the end of the class. This helped to identify immediately if there were issues

arising in the course so they could be resolved before the next lecture, and how the class was

finding particular aspects of the course. When students struggle on exercises they tend to

complain a great deal via the anonymous sticky notes, so changes in class progress in response

to feedback were more easily identifiable with this technique.

Comparison with previous years

A great deal of positive SOLE feedback resulted from the use of these sticky notes, as shown

by the large positive proportion (51.4%) of ‘support’-related comments in Figure 5 and the

individual SOLE comments such as “Sticky notes work well”, “WE LOVE RED AND GREEN

POST IT NOTES!!!!” and “Love the post it notes.”. Its effectiveness is also demonstrated

through the increase from a score of 0.47 in 2013 to 1.32 in 2014 for the “Feedback” criterion

(see Tables 8 and 9).
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Teaching and learning support

It is an important, albeit often challenging task, to bring all the students up to a similar

standard within a fixed period of time. The learning pace of students varies significantly

for many reasons. This is particularly true for a first year course where the students come

from a diverse range of educational backgrounds. Graduate Teaching Assistants (GTAs) play

a critical intervention role here7. They help to clarify concepts, support progress through

exercises (identifying key difficulties), provide instant feedback on the students’ work, and

resolve practical computing issues. We therefore ensure that a high number of GTAs are

present in each workshop. The total number of GTAs who assisted each year is given in Table

4. Typically there are between 8 and 10 GTAs per workshop in the current version of the

course, yielding a student to GTA ratio of at least ∼10:1.

Comparison with previous years

While the class could be large (typically 70–90 students each year in this case) it proved

critical to have a low ratio of students to GTAs so that the students did not experience long

and unproductive/demoralising waiting times for one-to-one support. This issue consistently

featured strongly in student feedback; highly negative when there was a shortage of teaching

assistants (typically 4 or fewer), high degree of satisfaction and praise for the teaching assis-

tants when there were enough (typically 8 – 10 from 2013 onwards). This was an issue in 2012

when, exceptionally, the course was run for both first and second year students concurrently.

This was necessary to transition the course from being a ‘second year only’ course to being a

‘first year only’ course in later years. Two computer labs were used at the same time, but the

number of available teaching assistants had to be spread out; this resulted in comments such

as “Could do with more teaching assistants” and “Need more demonstrators”. However, in the

other years (especially in 2013 and 2014) when just first year students were being taught, the

ratio of students to GTAs was low and the teaching assistants received a great deal of praise,

such as “Good demonstrators and feedback as well. Don’t have to wait very long if there’s

a problem, and usually solved quickly.” (2010), “GTAs are particularly helpful.” (2013), and

“Very helpful GTAs.” (2014).
7All teaching assistants in the department receive training in pedagogical techniques and marking before

they are permitted to help out in undergraduate courses.
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Conclusion

The successful development of an introductory computer programming course represents a

significant challenge, particularly when targeting undergraduate students with little or no

computing background and outside a mainstream computer science degree programme. This

study has outlined the influence of different methodologies on student perceptions of learning,

and what appears to be a positive impact on student examination results, over the course

of 5 years. Our findings reinforce the evidence in the literature that flipped classrooms and

blended learning approaches are much more effective at teaching programming than traditional

passive lecturing. However, we accept that our study would require further, more rigorous

investigation, potentially using a quasi-experimental design, to demonstrate learning gain.

The traditional passive lecturing style that featured in the early years of the course (2010 and

2011) was more in line with what students were used to, yet was ineffective at developing

the students’ skillset. The video lectures that were implemented in 2012 allowed students to

work through material and review it at their own pace, but a high student–GTA ratio and the

lack of traditional lecturing style was a concern for many students. In 2013 when a flipped

classroom approach was used, students did not feel like they were being taught, leading to a

lack of confidence both in themselves and in the course. It is problematic to make a direct

link between these interventions and end-of-term examination performance, but we believe

this demonstrates the rewards of a ‘learning through doing’ approach which would benefit

from further exploration via future studies. It is our belief that we have now converged on

a successful teaching strategy through the use of blended learning and formative feedback,

which featured in the 2014 run.

That said, many challenges surrounding the teaching of programming still remain. As class

sizes grow, some degree of automated marking would be beneficial for the lecturer and teaching

assistants. However, this is technically difficult. While it is possible to automatically run

all the students’ programs and determine whether they produce the correct answer, such

an answer must usually be something simple, like a single integer, rather than a plot, for

example. Furthermore, much like systems such as flake8 (Flake8 Development Team, 2015)

which check Python coding style compliance with the PEP 8 standard (van Rossum et al.,

2001), it is possible to automate checks such as ‘Has the student added docstrings for each
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function?’; however, determining whether these docstrings or comments are actually useful or

not presents a much bigger challenge.

There is a large amount of pedagogical research and knowledge regarding how people learn

and how best to teach programming skills. Despite this, many courses still follow the more

traditional passive lecturing style, since change may be viewed as a risky process from an

institutional point-of-view. It is therefore hoped that the findings presented in this paper

will inform and encourage departments and educators to reconsider their existing approach

to teaching programming.

Recommendations for Adoption

The various aspects of our course’s instructional design can be readily applied to other courses.

For example, the sticky note system is not just applicable to computer programming, and can

indeed be applied to most courses that involve the completion of in-class exercises and require

one-to-one help from the lecturer/GTAs. However, the appropriateness of the technical aspect

will need to be considered carefully; we found that the IPython Notebook is an excellent

environment to teach programming, but for practical exercises not involving computer code,

a different practical setup may have to be designed. For example, for mechanical engineering

design problems, a Computer Aided Design (CAD) package could be a more appropriate

learning environment. For pure mathematics an interactive symbolic algebra package such as

Maple may be desirable (although symbolic algebra can also be handled by readily-importable

Python modules such as SymPy (Joyner et al., 2012)).

The course material is freely available under the Creative Commons Attribution 3.0 Unported

(CC-BY 3.0) licence and can be tailored to an individual setting. It can be downloaded from

https://github.com/ggorman/Introduction-to-programming-for-geoscientists.

Outlook

Although the findings in this paper provide a valuable insight into the methodologies used to

teach computer programming, we acknowledge that the limitations in the type and quantity

of the available data may be detrimental to the reproducibility of our findings. We therefore
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believe that it would be beneficial to conduct a more rigorous, quasi-experimental study in

the future, with a more formal data collection plan from the outset.

Given that using a blended learning methodology throughout the last two years that the course

was run featured consistently high performance, we hope that similar performance would be

maintained in future classes. However, a much more rigorous study would be required to

confirm this. With such a study we could also potentially investigate whether there is any

correlation in, for example, the number of students with a Mathematics or Computing A-Level

and examination performance. Although we don’t envisage any significant effects of a change

of lecturer on student performance (as long as the methodology was applied consistently and

the new lecturer had the appropriate background and experience), this would be another

avenue of investigation to consider, once again requiring appropriate evidence to back up this

statement. On the other hand, we found that some GTAs were mentioned by name more than

others and given high praise in the student feedback; it is unclear whether the unavailability

of these particular GTAs during some weeks (due to the rota system) affected performance

since student satisfaction is not a measure of actual learning. However, this is something that

will be looked at more closely in later work.

For the purposes of demonstrating how student examination responses were graded, and to

illustrate that the responses were of a consistent quality throughout the years, a revised study

would also record anonymised examples during the data collection phase. We plan to consider

both high and low quality responses for comparison.

Further improvements in the software supporting the students’ learning (in this case, the

IPython Notebook) may potentially affect student performance. For example, the version

used in 2014 was prone to crashing when infinite ‘while’ loops occurred. Students were able to

seek assistance swiftly from the GTAs when such technical difficulties occurred but sometimes

caused frustration, especially if the IPython Notebook had to be restarted and part of the

student’s work was lost. If such software issues were to be resolved, this may boost the

students’ satisfaction and confidence in the course. However, once again, a more rigorous

study would be needed to show whether this positively affects student performance, since

improved student satisfaction does not necessarily yield learning gain.

Other courses that form part of the geoscience curriculum would also be considered, as it could
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act as a way of measuring how well information is retained from the introductory programming

course. For example, in 2014 another course took place the following term that required the

use of Python. More specifically, it focussed on the application of Python’s numerical and

scientific libraries NumPy and SciPy to perform statistical analysis of geoscientific data. This

has since been replaced (for the 2015 class, outside the timeframe of the current study) by

a course that concerns the Python implementation of numerical methods to solve systems

of equations modelling geophysical phenomena. Both of these courses aim to further the

students’ education in computational geoscience.
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Appendix A: SOLE lecturer and module scoring criteria

Responses to the criteria below were requested as part of SOLE with respect to both the

module and the lecturer. Note that in 2010, 2011 and 2012, the available responses were

“Very Good, Good, Satisfactory, Poor, Very Poor, No response”, whereas in 2013 and 2014

the available responses were “Definitely Agree, Mostly Agree, Neither Agree or Disagree,

Mostly Disagree, Definitely Disagree, Not applicable”. In addition to the criteria, text boxes

were also provided such that students could provide additional constructive feedback.

A1. Lecturer score criteria (2010, 2011)

1. The structure and delivery of the lectures

2. The explanation of concepts given by the lecturer

3. The approachability of the lecturer

4. The interest and enthusiasm generated by the lecturer

A2. Module score criteria (2010, 2011)

1. The support materials available for this module (e.g. handouts, blackboard/web pages,

problem sheets and/or notes on the board)

2. The organisation of the module

3. The structure and delivery of the lectures

4. The explanation of concepts given by the lecturer

5. The approachability of the lecturer

6. The interest and enthusiasm generated by the lecturer

A3. Lecturer score criteria (2012)

1. The structure and delivery of the teaching sessions
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A4. Module score criteria (2012)

1. The structure and delivery of the teaching sessions

2. The content of this module

A5. Lecturer score criteria (2013, 2014)

1. The lecturer explained the material well

2. The lecturer generated interest and enthusiasm

3. The lecturer was approachable

4. Overall, I am satisfied with this lecturer

A6. Module score criteria (2013, 2014)

1. The content of the module is well structured

2. The content of the module is intellectually stimulating

3. I have received helpful feedback on my work

4. Overall, I am satisfied with the quality of the module
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Table 1: Total number of students registered on the programming course each year. In 2010
the programming course was optional and the 35 students represent only a fraction of the
total number of first year students in the department that year. In 2012 two separate classes
were run: one comprising 73 first year students and one comprising 89 second year students,
in order to transition the course from being a second year course to a first year course in later
years, hence the larger total number of students.

Year Number of Students
2010 35
2011 89
2012 162
2013 85
2014 87

Table 2: Total number of A-Level (Further Education) qualifications attained (by subject)
by each year’s departmental student intake. The 2010 and 2011 programming classes were
for second year students, respectively corresponding to the 2009 and 2010 intake. Not all
of the students from the 2009 intake took to the programming course in 2010, since it was
optional just for that year, which is why the number of A-Levels in 2009 sometimes exceeds
the total number of 2010 programming students in Table 1. The 2012 programming class
combined both the first and second year students, corresponding to the 2011 and 2012 intake
respectively.

Subject 2009 2010 2011 2012 2013 2014
Maths 51 68 71 67 75 74
Physics 37 53 57 49 55 60

Chemistry 38 45 52 51 63 52
Geology 18 24 24 13 35 26
Biology 19 27 25 20 26 22

Computing 2 0 1 0 2 0
Other 46 79 39 70 74 16
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Table 3: Demographic information for each year’s departmental student intake. Note that
‘EU’ (European Union) does not include the UK here, and ‘Overseas’ denotes any non-EU
or non-UK country, except qualifying overseas territories determined by The Education (Fees
and Awards) (England) Regulations 2007. The 2010 and 2011 programming classes were
for second year students, respectively corresponding to the 2009 and 2010 intake. The 2012
programming class combined both the first and second year students, corresponding to the
2011 and 2012 intake respectively.

Year Gender (male : female) Student status (UK : EU : Overseas)
2009 39:25 55:0:9
2010 56:33 79:3:7
2011 50:39 68:10:11
2012 44:29 61:3:9
2013 53:32 64:4:17
2014 53:34 60:5:22

Table 4: Total number of Graduate Teaching Assistants (GTAs) who helped in the program-
ming course each year. In 2013 and 2014 there were a larger total number of GTAs assisting.
In these years, the GTAs took turns and operated a rota system, to ensure that approximately
8–10 GTAs were present in each workshop.

Year Number of GTAs
2010 4
2011 7
2012 9
2013 18
2014 14

Table 5: Module (left) and lecturer (right) scores for various criterion, in the year 2010. An
average score of -2 to -1.5 indicates ‘Very Poor’, -1.5 to -0.5 indicates ‘Poor’, -0.5 to 0.5
indicates ‘Satisfactory’, 0.5 to 1.5 indicates ‘Good’ and 1.5 to 2 indicates ‘Very Good’. The
relatively high scores suggest that the traditional lecturing style met the students’ expectations
here.

Criterion Score
Support material 1.20

Organisation 0.89
Structure/delivery 1.11

Explanation 1.11
Approachability 1.65

Interest generated 1.26
Mean 1.20 (Good)

Criterion Score
Structure/delivery 1.11

Explanation 1.11
Approachability 1.65

Interest generated 1.26
Mean 1.28 (Good)
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Table 6: Module (left) and lecturer (right) scores for various criterion, in the year 2011. An
average score of -2 to -1.5 indicates ‘Very Poor’, -1.5 to -0.5 indicates ‘Poor’, -0.5 to 0.5
indicates ‘Satisfactory’, 0.5 to 1.5 indicates ‘Good’ and 1.5 to 2 indicates ‘Very Good’. The
relatively high scores suggest that the traditional lecturing style met the students’ expectations
here.

Criterion Score
Support material 0.58

Organisation 0.82
Structure/delivery 0.65

Explanation 0.37
Approachability 1.10

Interest generated 0.95
Mean 0.75 (Good)

Criterion Score
Structure/delivery 0.65

Explanation 0.37
Approachability 1.10

Interest generated 0.95
Mean 0.77 (Good)

Table 7: Module (left) and lecturer (right) scores for various criterion, in the year 2012. An
average score of -2 to -1.5 indicates ‘Very Poor’, -1.5 to -0.5 indicates ‘Poor’, -0.5 to 0.5
indicates ‘Satisfactory’, 0.5 to 1.5 indicates ‘Good’ and 1.5 to 2 indicates ‘Very Good’. The
much lower scores here suggest that the students were put off by the flipped classroom format
since it was not what they were used to.

Criterion Score
Structure/delivery 0.38

Content 0.49
Mean 0.44 (Satisfactory)

Criterion Score
Structure/delivery 0.38

Mean 0.38 (Satisfactory)

Table 8: Module (left) and lecturer (right) scores for various criterion, in the year 2013. An
average score of -2 to -1.5 indicates ‘Very Poor’, -1.5 to -0.5 indicates ‘Poor’, -0.5 to 0.5
indicates ‘Satisfactory’, 0.5 to 1.5 indicates ‘Good’ and 1.5 to 2 indicates ‘Very Good’. The
much lower scores here (particularly for the “Explanation” criterion) suggest that the students
were put off by the flipped classroom format since it was not what they were used to.

Criterion Score
Structure 0.45

Intellectual stimulation 0.72
Feedback 0.47

Overall satisfaction 0.36
Mean 0.50 (Satisfactory)

Criterion Score
Explanation -0.06

Interest generated 0.67
Approachability 1.33

Overall satisfaction 0.71
Mean 0.66 (Good)
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Table 9: Module (left) and lecturer (right) scores for various criterion, in the year 2014. An
average score of -2 to -1.5 indicates ‘Very Poor’, -1.5 to -0.5 indicates ‘Poor’, -0.5 to 0.5
indicates ‘Satisfactory’, 0.5 to 1.5 indicates ‘Good’ and 1.5 to 2 indicates ‘Very Good’. The
scores were much higher for this year after reassuring and justifying the blended learning
approach to the students.

Criterion Score
Structure 1.26

Intellectual stimulation 1.30
Feedback 1.32

Overall satisfaction 1.21
Mean 1.27 (Good)

Criterion Score
Explanation 1.11

Interest generated 1.59
Approachability 1.73

Overall satisfaction 1.69
Mean 1.53 (Very good)
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(c)

• Lectured in the traditional sense but with less time for practical exercises.

• Largely negative sentiments about pace and difficulty of material.

• Students were positive about traditional lecturing approach, although the learning outcomes
were poor.

1
Figure 1: Data for the 2010 class: (a) histogram of final exam marks; (b) histogram showing
mean (combined) module and lecturer SOLE scores for all modules in the Department of
Earth Science and Engineering; (c) pie chart showing the emergent topics from the SOLE
feedback; (bottom row) overall student sentiments. There were 35 students who sat the final
exam in 2010. Note that in all years, there were no mean combined (lecturer and module)
SOLE scores below ‘Satisfactory’.
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• Doubled the teaching time to 6 hours by introducing a separate 3-hour practical workshop.

• Significantly more positive comments about the support received.

• However, the pace was still too fast and material still hard to follow.

1
Figure 2: Data for the 2011 class: (a) histogram of final exam marks; (b) histogram showing
mean (combined) module and lecturer SOLE scores for all modules in the Department of
Earth Science and Engineering; (c) pie chart showing the emergent topics from the SOLE
feedback; (bottom row) overall student sentiments. There were 89 students who sat the final
exam in 2011. Note that in all years, there were no mean combined (lecturer and module)
SOLE scores below ‘Satisfactory’.
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• YouTube videos introduced.

• Largely negative comments about the lecturer and method of delivery, as a result of the
moving away from the traditional passive classroom environment.

• Comments regarding the material were, unlike previous years, mostly positive; students liked
that they could work through the lecture material at their own pace, and go back to repeat
certain parts of the video. Furthermore, the students reponded positively to the removal of
advanced material such as classes and objects.

1
Figure 3: Data for the 2012 class: (a) histogram of final exam marks; (b) histogram showing
mean (combined) module and lecturer SOLE scores for all modules in the Department of
Earth Science and Engineering; (c) pie chart showing the emergent topics from the SOLE
feedback; (bottom row) overall student sentiments. There were 162 (73 first year and 89
second year) students who sat the final exam in 2012. Note that in all years, there were no
mean combined (lecturer and module) SOLE scores below ‘Satisfactory’.
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(c)

• Moved away from the video and traditional style of lecturing, to a blended learning approach.

• Positive feedback regarding one-to-one support, and almost no negative comments regarding
quantity of material covered, unlike previous years.

• But the majority of comments about the lecturing style were negative because it did not
match with their expectations of what a traditional lecture was.

1
Figure 4: Data for the 2013 class: (a) histogram of final exam marks; (b) histogram showing
mean (combined) module and lecturer SOLE scores for all modules in the Department of
Earth Science and Engineering; (c) pie chart showing the emergent topics from the SOLE
feedback; (bottom row) overall student sentiments. There were 85 students who sat the final
exam in 2013. Note that in all years, there were no mean combined (lecturer and module)
SOLE scores below ‘Satisfactory’.
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(c)

• Explained the blended learning approach and emphasised the benefits throughout the course.

• Split up the workshops into ‘bite-size’ chunks; a series of 10 minute lectures followed by
practical exercises, rather than one long practical session.

• Students felt reassured, resulting in only positive comments regarding the style of lecturing.

• The sticky notes and ability to give feedback at the end of each workshop resulted in positive
comments regarding support.

1
Figure 5: Data for the 2014 class: (a) histogram of final exam marks; (b) histogram showing
mean (combined) module and lecturer SOLE scores for all modules in the Department of
Earth Science and Engineering; (c) pie chart showing the emergent topics from the SOLE
feedback; (bottom row) overall student sentiments. There were 87 students who sat the final
exam in 2014. Note that in all years, there were no mean combined (lecturer and module)
SOLE scores below ‘Satisfactory’.
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