arm

TensorFlow and PyTorch on Arm Servers

Linaro Virtual Connect 2020

Ashok Bhat, Sr Product Manager Sep 2020

Agenda

TensorFlow and PyTorch on Arm Servers for on-CPU inference

- What is the end goal?
- What is available today for end users?
- What is being worked on to improve usability and performance?
- How to get involved?

Not being covered

- Training use-case
- Machine learning using Arm + GPU
- Benchmarks and performance comparison

On-CPU Machine Learning (Inference)

Goal: Easy to use, best-in-class performance, ML inference solution on Arm servers using ML specific CPU features

arm

AArch64 packages and images

+ + + + + + + + + + + + +

For machine learning users on Arm servers

+ + + + + + + + + + + + + + +

Ready-to-use Python Packages

Goal: Readily available TensorFlow and PyTorch packages from standard repositories

Current status

- TensorFlow 1.15 and 2.3 package snapshots available
 - <u>https://snapshots.linaro.org/hpc/python/tensorflow/latest/</u>
- PyTorch nightly package snapshots available
 - <u>https://snapshots.linaro.org/hpc/python/pytorch/latest</u>

Next steps

- Snapshots Add support for PyTorch v1.6
- Linaro hosted packages Host ready-to-use packages for TensorFlow and PyTorch
- Work with upstream to provide AArch64 ready packages

Docker recipes

Goal: Recipe to build your own Docker images

Current status

- TensorFlow
 - <u>https://github.com/ARM-software/Tool-Solutions/tree/master/docker/tensorflow-aarch64</u>
 - Versions 1.15 and 2.3
 - Configurations Eigen backend, oneDNN(ArmPL), oneDNN(OpenBLAS)
- PyTorch
 - <u>https://github.com/ARM-software/Tool-Solutions/tree/master/docker/pytorch-aarch64</u>
 - Versions 1.6
 - Configurations OpenBLAS backend

Next steps

- Upgrade recipes to newer releases
- Add oneDNN(ACL) based configuration

Docker images

Goal: Readily available docker images on par with other architectures

Current status

- Images for Arm Neoverse N1 is available in a <u>staging area</u>
 - TensorFlow 2.3 with Eigen, oneDNN (ArmPL)
 - PyTorch 1.6 with OpenBLAS

Next steps

- Upgrade images to newer releases
- Add oneDNN(ACL) based configuration
- Add images tuned for Fujitsu A64FX
- Provide images on Linaro Docker Hub repo
- Work with upstream to provide images in standard repositories

Orm Best-in-class performance using ML-specific Arm features

+ + + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + + + +

Key open source projects

Key open source projects for ML on Servers

Frameworks

- ML Framework TensorFlow
 - Popular open source ML framework
 - Has multiple backends on x86 Eigen GEBP, oneDNN (with BLAS, direct kernels, JIT)
- ML Framework PyTorch
 - Popular ML framework
 - Has multiple backends on x86 NNPACK, OpenBLAS, oneDNN (with BLAS, direct kernels, JIT)

Key open source projects for ML on Servers

Libraries

- Library Eigen
 - Eigen is a C++ template library for linear algebra: vectors, matrices, and related algorithms
 - TensorFlow heavily uses Eigen to represent internal data structures and their operations.
 - Eigen's GEBP kernel is used as a default CPU backend for FP32 contraction kernel
- Library oneDNN
 - Intel's ML acceleration open-source library Integrated with all major frameworks
 - Experimental support for AArch64
- Library Arm Compute Library
 - Open source ML acceleration library for Arm used in edge/mobile use-cases
 - Contains high level operators which can be used in oneDNN
- Library OpenBLAS
 - Most common open source BLAS backend

Arm Compute Library

A software library for computer vision and machine learning

- Collection of low-level functions
 - Optimized for Arm CPU and GPU architectures
 - Targeted at image processing, computer vision, and machine learning.
- Available free of charge under a permissive MIT open source license.
- Used to accelerate ArmNN (Arm's inference engine for CPUs, GPUs and NPUs)

oneDNN primitives – Implementation options

| Primitive implementation | Notes | x86_64 libraries | Arm libraries |
|--------------------------|---|-------------------------------------|--------------------------------------|
| C++ reference code | Slowest, provided for correctness | NA | NA |
| GEMM based | Use BLAS library via CBLAS interface | Intel MKLML (a subset of Intel MKL) | Arm Performance Libraries
(ArmPL) |
| Optimized primitives | Typically uses hand-coded intrinsic or assembly | xybak (JIT assembler) | Arm Compute Library |

TensorFlow software stack on Arm – Status and Plan

| Timeline | Library options |
|---------------|---|
| 2.2 (May 20) | Eigen (FP32) |
| 2.3 (Jul 20) | Eigen (FP32) |
| 2.4* (Q4, 20) | Eigen (FP32)
oneDNN (ArmPL via CBLAS) |
| 2.5* (Q1, 21) | Eigen (+SVE)
oneDNN (ArmPL via CBLAS)
oneDNN (ACL) (FP32, INT8) |

* Future release information (version and date) is Arm's estimate based on previous releases.

PyTorch software stack on Arm – Status and Plan

| Timeline | Library options |
|---------------|--|
| 1.6 (Jul 20) | OpenBLAS (FP32) |
| 1.7* (Oct 20) | OpenBLAS (FP32) |
| 1.8* (Dec 20) | OpenBLAS (FP32)
oneDNN (ACL) (FP32, INT8) |

* Future release information (version and date) is Arm's estimate based on previous releases.

Data type support

Status and plan

| Data type | TF
Eigen | TF
ACL
(via oneDNN) | PyTorch
OpenBLAS | PyTorch
ACL
(via oneDNN) |
|-----------|-------------|---------------------------|---------------------|--------------------------------|
| FP32 type | Yes | Q4 CY20 | Yes | Q4CY20 |
| INT8 type | | Q4 CY20 | | Q4 CY20 |
| BF16 type | Q4 CY20 | Future | | Future |

Not planned

arm

Wrap Up

Get involved in Machine Learning on Arm

| Try | Try the Docker recipes/images to run TensorFlow and PyTorch on AArch64 |
|---------------------|---|
| Learn | Learn about the Arm Compute Library |
| Provide
Feedback | Provide feedback on performance for your applications on Arm machines |
| Get involved | Get involved in the open source development of ML inference on Arm
Weekly public meeting to get involved at: <u>https://bit.ly/arm-server-ml</u> |

arm

| + · | + | + | + • | + . | + | + - | ÷ . | + - | + . | + | + - | F . | + - | 6 |
|-----|---|---|-----|-----|---|-----|-----|-----|-----|---|-----|-----|-----|---|
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |

| [*] Thảnk Yỏu
Danko | | | | | | rn | C | |
|--|--|--|--|---|--|----|---|--|
| Merci | | | | | | | | |
| ・
・
・
・
・
・
・
・
・
・
・
・
・
・ | | | | | | | | |
| + Gracias | | | | | | | | |
| Kiitos
감사합니다 | | | | | | | | |
| धन्यवाद
شکرًا | | | | | | | | |
| ধ্ব্যবাদ
নাদ্র | | | | + | | | | |
| | | | | | | | | |

| + | + | + | + . | + . | + . | + · | + · | + - | + · | + - | + • | + - | |
|---|---|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
| | | | | | | | | | | | | | |

| ar | ſ | ,
↑ | | | ⁺ The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners. |
|----|---|--------|--|--|---|
| | | | | | |

www.arm.com/company/policies/trademarks

| | | + | | | | | |
|--|--|---|--|--|--|--|--|
| | | | | | | | |