
ni.com

ni.com

Foundational Design Patterns for
Moving Beyond One Loop

Steve Chiang

Technical Marketing Engineer

3 ni.com

Agenda

• Why move beyond one loop?

• What is a design pattern?

• Why learn communication mechanisms?
• Functional global variables

• Queued message handlers

4 ni.com

When Most

Consider Advanced

Architectures

When You Should Consider Advanced

Architectures

Defining Advanced Applications & LabVIEW Ability

Ability

3-Icon

Apps

State

Machines

Parallel

Apps
Multi-Target

Apps

L
e
a
rn

in
g
 E

ff
o
rt

5 ni.com

Master Key Design Patterns…
 …and Understand Their Limitations

Ability

3-Icon

Apps

State

Machines

Parallel

Apps
Multi-Target

Apps

L
e
a
rn

in
g
 E

ff
o
rt

Master the FGV

and the QMH

6 ni.com

While Loop

Acquire Analyze Log Present

10ms 50ms 250ms 20ms

Doing Everything in One Loop Can Cause Problems

• One cycle takes at least 330 ms

• If the acquisition reads from a buffer, it may fill up

• User interface can only be updated every 330 ms

7 ni.com

While Loop

Acquire Analyze

Log

Present 10ms 50ms

250ms

20ms

Doing Everything in One Loop Can Cause Problems

• One cycle still takes at least 310 ms

• If the acquisition reads from a buffer, it may fill up

• User interface can only be updated every 310 ms

8 ni.com

While Loop

Log

Present

How do we implement multiple loops?

While Loop

Acquire

Analyze

While Loop

Acquire

While Loop

Analyze

While Loop

Present

While Loop

Log

While Loop

Acquire

While Loop

Analyze

While Loop

Log

Present

?

9 ni.com

While Loop

Log

Present

How do we communicate between loops?

While Loop

Acquire

Analyze

While Loop

Acquire

While Loop

Analyze

While Loop

Present

While Loop

Log

While Loop

Acquire

While Loop

Analyze

While Loop

Log

Present

?

10 ni.com

“Don’t Re-invent

 the Wheel…

…or Worse,

a Flat Tire.”
-Head First Design Patterns

11 ni.com

What is a design pattern and why use one?

• Definition:
• A general reusable approach to a commonly occurring problem

• Well-established, proven techniques

• A formalized best practice

• Not a finished design

• Design patterns:
• Save time

• Improve code longevity

• Improve code readability

• Simplify code maintenance

12 ni.com

What is the difference between a design pattern and a
framework?

Design Pattern

• Focuses on a specific
problem

• Geared toward solo
developers

• More foundational

Framework

• Focuses on larger
applications

• Geared toward team
development

• Often involve an architect

13 ni.com

Design Patterns are not Specific to LabVIEW

• Gained popularity from the “Gang of Four” (GoF or Go4)

• Includes examples in C++, Smalltalk

• The LabVIEW community has
adopted and extended several design
patterns for use with LabVIEW

• Examples:

o Producer / Consumer

o State Machine

o Queued Message Handler

o Factory Pattern

o Singleton Pattern

14 ni.com

Risks Associated with a “Flat Tire”
 (Poor Application Design)

• Nothing happens when you press “Stop”

• Poor error handling

• No consistent style

• Complicated maintenance and debugging

• Difficulty scaling application

• Tight coupling, poor cohesion

15 ni.com

User Interface Event Handler

DAQ Acquisition

DAQ

Execution: The user interface cannot respond to other input while acquiring data

Development: Modifying one process requires modifying the other

Extensibility: How do you add a data logging process?

Fragility: Can you fix a bug in one process without affecting another?

Maintenance: Can you test one piece of an application without testing its entirety?

Why is Coupling Bad?

16 ni.com

Coupling is Often Accidental: Case Study

Initial Scope

• Demonstrate:
• Data Acquisition

• CAN Synchronization

• Selected Architecture:
• State Machine

Final [Expanded] Scope

• Demonstrate:
• Data Acquisition

• CAN Synchronization

• IMAQ Acquisition

• TDMS Streaming

• DIAdem Post-processing

• Selected Architecture:
• Band-Aids and Duct Tape

NIWeek 2011 Hummer Demo

17 ni.com

Coupling is Often Accidental: Case Study
Final Demo Code

• Once

• Once you start…you can’t stop

• You can’t test independent actions

• There are 7 shift registers:
• State
• DAQ Settings
• TDMS Settings
• Errors
• DIAdem References
• IMAQ Settings
• CAN Settings

• Whether used or not, every shift

register goes across every case

18 ni.com

While Loop

Cohesion: Limiting Process Scope

• Often, shift register
defines scope of process

• Processes should be very
cohesive

• Independent processes
should be separate loops

• Good example: A drop-in
Functional Global Variable
(FGV)

» DAQ »

» TDMS »

» User Interface »

» State Information »

Multiple shift registers for one process
indicate over-coupling

X

X

X

19 ni.com

The Rewritten Hummer Demo
Using a Queued Message Handler Architecture

•
Once

•Once

20 ni.com

DAQ Application

Event-Driven Loop

How to De-Couple Independent Processes

Best Practices

1. Identify data scope

2. Delegate actions to appropriate
process

3. Avoid polling or using timeouts*
*except for code that communicates with hardware

Considerations

1. How do you send commands?

2. How do you send data?

3. Which processes can communicate
with each other?

4. How do you update the UI?

?

21 ni.com

Inter-Process Communication
ensures tasks run asynchronously
and efficiently

Goals
• Loops are running independently

• User interface can be updated
every 20 ms

• Acquisition runs every 10ms,
helping to not overflow the buffer

• All while loops run entirely
parallel with each other

While Loop

Acquire

While Loop

Analyze

While Loop

Present

While Loop

Log

10ms

50ms

250ms

20ms

…How?

22 ni.com

Many Data Communication Options Exist in LabVIEW

1. TCP and UDP

2. Network Streams

3. Shared Variables

4. DMAs

5. Web Services

6. Peer-to-Peer Streaming

7. Queues

8. Dynamic Events

9. Functional Global Variables

10. RT FIFOs

11. Datasocket

12. Local Variables

13. Programmatic Front Panel
Interface

14. Target-scoped FIFOs

15. Notifiers

16. Simple TCP/IP Messaging

17. AMC

18. HTTP

19. FTP

20. Global variables

… just to name a few!

In no particular order…

23 ni.com

Tactic 1: Functional Global Variables

• What is a functional global variable (FGV)?

• Does the FGV prevent race conditions?

• Is the FGV better than the global variable?

24 ni.com

Inter-Process Communication

• Store Data

• Stream Data

• Send
Message

Many more variations,
permutations, and design

considerations

Typically straightforward
use cases with limited

implementation options

25 ni.com

De-Facto Communication Choice: Locals / Globals

• Local and Global variables are simple and obvious

• Problem: Locals / Globals are pure data storage

• Text-based mindset isn’t used to parallel programs,
multithreading

“The traditional, text-based programmer’s first instinct

is always to use local variables.”
 – Brian Powell

26 ni.com

What is a Functional Global Variable?

• The general form of a functional global variable includes
an uninitialized shift register (1) with a single iteration For
or While Loop

1.

Functional Global
Variable Code

27 ni.com

What is a Functional Global Variable?

• A functional global variable usually has an action input
parameter that specifies which task the VI performs

• The uninitialized shift register in a loop holds the result of
the operation

28 ni.com

Best Practices for Documenting FGVs

• The action / method control should be a type
defined enum

• Make “Get” the default action / method
• Include this in the label

• Consider making the action / method required
• Wire to the top connector

29 ni.com

Replacing Global Variables with FGVs

• This is a common initial use case
• Not necessarily a best practice for every application

30 ni.com

Functional Global Variables – Benefits

• Provide global access to data while also providing a
framework to avoid potential race conditions

• Encapsulate data so that debugging and maintenance is
easier

• Facilitate the creation of reusable modules which
simplifies writing and maintenance of code

• Program becomes more readable

• Adorn data storage

31 ni.com

Comparison of Options

Global and Local Variables

• Cannot perform actions on
data

• Can cause race conditions

• Create copies of data in
memory

• Cannot handle error wires

• Drag and drop

Functional Global Variables

• Can behave like action
engines

• Can prevent race conditions

• No copies of data created in
memory

• Can handle error wires

• Take time to make

32 ni.com

Considerations for Storing Data

• Data is stored and made “globally” accessible

• Storage mechanism holds only the current value

• Other code modules can access the data as needed

• The potential for race conditions must be considered

UI Process 1
Headless
Process 1

Headless
Process N

Use Cases

Configuration data
Slowly changing data
Non-critical messages “Global Data”

33 ni.com

Traditional FGVs Do Not Eliminate Race Conditions

• What if the FGV includes only set and get methods?

What happens when 2 VIs call the get and both
modify the data before either has called the set?

Modify
Data

Modify
Data

VI-1.vi

VI-2.vi

34 ni.com

Use FGVs to Protect Critical Sections of Code

• Identify a critical section of code, such as the
modification of a counter value or a timer value

• Identify the actions that modify the data (increment,
decrement)

• Encapsulate the entire get/modify/set steps in the FGV

This is commonly called an Action Engine.
It is a special type of FGV.

35 ni.com

FGV – Action Engine Protects Critical Sections of
Code

• This action engine wraps the “get/modify/set” around the
critical section of code

FGV Counter.vi

Get Set Modify

36 ni.com

Action Engines Protect Critical Sections!

The FGV will block other instance from running until it has
completed execution. Therefore, encapsulating the

entire action does prevent the potential race condition.

VI-1.vi

VI-2.vi

Modify
Data

Modify
Data

VI-1.vi

VI-2.vi

37 ni.com

Sidebar: Reentrant vs. Non-Reentrant

• Non-reentrancy is required for FGVs

• Reentrancy allows one subVI to be called simultaneously
from different places

• To allow a subVI to be called in parallel

• To allow a subVI instance to maintain its own state

Data

Space

Data

Space

Data

Space

State (or the data that
resides in the uninitialized
shift register) is
maintained between all
instances of the FGV

38 ni.com

Various Inter-process Communication Methods Exist

• FGVs are one tool of many in the toolbox:

• When you need more than one (counter, timer, etc),
investigate Data Value References (DVRs)

Same target
Same application instance

Same target, different application instances /
Different targets on network

Storing -
Current Value

• Single-process shared variables
• Local and global variables
• FGV, SEQ, DVR
• CVT
• Notifiers (Get Notifier)

• Network-published shared variables
(single-element)

• CCC

Sending
Message

• Queues (N:1)
• User events (N:N)
• Notifiers (1:N)
• User Events

• TCP, UDP
• Network Streams (1:1)
• AMC (N:1)
• STM (1:1)

Streaming
• Queues • Network Streams

• TCP

39 ni.com

What Else Do I Need to Know?

• Store Data

• Stream Data

• Send
Message

Many more variations,
permutations, and design

considerations

Typically straightforward
use cases with limited

implementation options

40 ni.com

Tactic 2: Queued Message Handlers

• What are Queues?
• What is the Queued Message Handler (QMH)?

• Basic modifications to the QMH template

41 ni.com

Adding Elements to the Queue

Dequeueing Elements

Reference to existing queue in memory

Select the data type the queue will hold

Dequeue will wait for data or time-out
(defaults to -1)

Queues 101: Inter-Process Communication

42 ni.com

Producer Consumer Generalization

Thread 1

Thread 2

Thread 3

Best Practices

1. One consumer per queue

2. Keep at least one reference to a
named queue available at any time

3. Consumers can be their own
producers

4. Do not use variables

Considerations

1. How do you stop all loops?

2. What data should the queue send?
Q

U
E

U
E

Q
U

E
U

E

43 ni.com

Anatomy of a “Producer” Process
Process

Stop
Condition

Met?

Send
Information Data

Information

Action or Event

Sends message to other process, program, or target

44 ni.com

Anatomy of a Message Producer Process
Process

Stop
Condition

Met?

Inter-Process
Communication Data

Command

Action or Event

Sends message to other process, program, or target

Message comprised of a
command and optional data

45 ni.com

Constructing a Message

Examples:

Data
Variant allows data-type to
vary. Different messages
may require different data.

Command
Enumerated constants
(or strings) list all of the
options.

Command Data

Initialize UI Cluster containing configuration
data

Populate Menu Array of strings to display in menu

Resize Display Array of integers [Width, Height]

Load Subpanel Reference of VI to Load

Insert Header String

Stop -

46 ni.com

Sidebar: Enums versus Strings for Commands?

Enumerated Constant

• Safer to use – prevents
misspellings

• Compiler checks for
message validity

• Requires a copy for each
API (e.g. “Initialize”)

• “Add case for every value”

String

• Misspellings could lead to
runtime errors

• Onus is on the developer to
get messages correct

• Streamlines usage across
multiple APIs

• Universal data type

47 ni.com

?

Next
Steps

FIRST STATE

Case structure has a case for every command

Next steps could enqueue new action for
any other loop, including this one

Data cluster for all
states

After command is executed,
data cluster may be updated

Queue
Reference

Command
Execution

State
Specific

Data-type
Definition

Variant To Data

Dequeue
Action &

Data

Queued Message Handler “Consumer” Process

Defines the scope
of operations this
consumer can
handle Stop

Condition
Met?

48 ni.com

Queued Message Handler

Template

49 ni.com

Queued Message Handler

UI event capture loop

Message handling loop

Queue
setup

Template

50 ni.com

Queued Message Handler

UI event capture loop

Message handling loop

Create queue for message communication and user
event to stop event loop

Template

51 ni.com

Queued Message Handler

Message handling loop

Queue
setup

Event structure
in its own loop

String messages
added to a queue

Template

52 ni.com

QMH Extends Producer/Consumer

SubVI Encapsulation

Exit
Strategy

Standard
Cases

Basic Controls
Included

53 ni.com

QMH Features

Local Data

Receive Communication
Command: String
Data: Variant

Event Handler

Update local
data?

Next steps

Stop
condition
met?

54 ni.com

General Modifications to the QMH Template

• Add Additional Message Handlers

• Add Exit LabVIEW on Run Time to Destroy User Event
• Exiting when on run-time should exit LabVIEW

• Add Timeout to Dequeue Messages
• May want to timeout for regular Update Display execution

• Move Register User Event out of Create User Event
• Forking this wire causes unpredictable results

• Remove Error Case Structure from Producer
• Adds more real estate and declutters

• Determine whether a use case exists for keeping this structure

• Determine an Interrupt Strategy
• What if a process needs to disrupt the flow of tasks?

• …etc.

54

55 ni.com

Application-Specific Modifications to the QMH

• Official Login Process
• Operator login and documentation

• Customized or Interactive Displays
• Different ways of displaying different types of data

• Standardized Logging
• Company or application specific file formatting and structure

• Cloud or mobile device publishing
• Send acquired or analyzed results to a cloud server

• …etc.

55

56 ni.com

Summary and Next Steps

• FGVs are an effective data storage mechanism

• Action engines prevent race conditions

• The QMH is really a starting point
• It will get you really far, but…

• It is frequently customized

• It is frequently one component in a larger framework

• Next Steps:
• Advanced Architectures in LabVIEW CustEd Course

• History Probe for keeping track of actions:

https://decibel.ni.com/content/docs/DOC-1106

https://decibel.ni.com/content/docs/DOC-1106
https://decibel.ni.com/content/docs/DOC-1106
https://decibel.ni.com/content/docs/DOC-1106

