
Vol. 25, No. 4 · NOVEMBER 2011	 $15

Stop Worrying and
Love Oracle
By Guy Harrison.

See page 6.

A Relational Model
of Data
The original paper by Dr. Codd.

See page 10.

Words As Hard As
Cannon-balls
An interview with Professor
Michael Stonebraker.

See page 4.

✸

25 Years of NoCOUG25 Years of NoCOUG

Much more inside . . .

2 November 2011

2011 NoCOUG Board
President

Iggy Fernandez
iggy_fernandez@hotmail.com

Vice President
Hanan Hit, HIT Consulting, Inc.

hithanan@gmail.com

Secretary/Treasurer
Naren Nagtode, eBay
nagtode@yahoo.com

Director of Membership
Vacant Position

Journal Editor
Dave Abercrombie

vendor_coordinator@nocoug.org

Webmaster
Eric Hutchinson, Independent Consultant

erichutchinson@comcast.net

Vendor Coordinator
Omar Anwar

oanwar@gwmail.gwu.edu

Director of Conference Programming
Chen (Gwen) Shapira, Pythian

cshapi@gmail.com

Director of Marketing
Vacant Position

Training Day Coordinator
Randy Samberg

rsamberg@sbcglobal.net

Volunteer Coordinator
Scott Alexander

alexander_scott@yahoo.com

Member-at-Large
Jen Hong, Stanford University

hong_jen@yahoo.com

Book Reviewer
Brian Hitchcock

Publication Notices and Submission Format

The NoCOUG Journal is published four times a year by the Northern
California Oracle Users Group (NoCOUG) approximately two weeks prior to
the quarterly educational conferences.

Please send your questions, feedback, and submissions to the NoCOUG
Journal editor at journal@nocoug.org.

The submission deadline for the upcoming February 2012 issue is November 30,
2011. Article submissions should be made in Microsoft Word format via
email.

Copyright © 2011 by the Northern California Oracle Users Group except
where otherwise indicated.

NoCOUG does not warrant the NoCOUG Journal to be error-free.

President’s Message 3

Words as Hard as Cannon-balls..................... 4

Stop Worrying and Love Oracle...................... 6

A Relational Model of Data............................ 10

Second International NoCOUG
SQL Challenge.. 20

Sponsorship Appreciation.............................. 24

NoCOUG Roll of Honor................................... 26

Conference Schedule...................................... 28

ADVERTISERS

Delphix... 7

Quest Software... 9

HiT Software...21

Oracle Press.. 23

Embarcadero Technologies........................... 25

Confio Software.. 25

Quilogy Services... 25

GridIron Systems.. 25

Database Specialists....................................... 27

Table of Contents

ADVERTISING RATES
The NoCOUG Journal is published quarterly.

 Size Per Issue Per Year

 Quarter Page $125 $400

 Half Page $250 $800

 Full Page $500 $1,600

 Inside Cover $750 $2,400

Personnel recruitment ads are not accepted.

journal@nocoug.org

Thanking the Team

T
ake a moment to think about the huge amount of effort that goes

into this publication. Your first thought might be about the care

and attention required of the authors. Yes, writing is hard work.

Now consider each author’s years of hard-won experience; then

add it up. The cumulative amount of time spent to acquire the knowledge

printed in each issue is decades—maybe even centuries.

But let’s take a moment to thank the people who make it possible for us to

share this knowledge with you. Without the dedication and skill of our produc-

tion team, all that we’d have is a jumble of Word files and a bunch of JPEGs.

Copyeditor Karen Mead of Creative Solutions transforms our technobabble into

readable English. Layout artist Kenneth Lockerbie and graphics guru Richard

Repas give the Journal its professional layout.

Finally, what really distinguishes this Journal is that it is actually printed!

Special thanks go to Jo Dziubek and Allen Hom of Andover Printing Services for

making us more than just a magnetically recorded byte stream. s

—NoCOUG Journal Editor

3The NoCOUG Journal

p r e s i d e n t ’ s
m e s s a g e

T
he story of the Little Engine That Could is more
than 100 years old and has been retold for genera-
tions. The version below is from The Expositor and
Current Anecdotes, Volume XIII, Number 1 (1911).

Once upon a time a little freight car loaded with coal stood
on the track in a coal-yard. The little freight car waited for an
engine to pull it up the hill and over the hill and down the hill
on the other side. Over the hill in the valley people needed the
coal on the little freight car to keep them warm.

By and by a great big engine came along, the smokestack
puffing smoke and the bell ringing, “Ding! Ding! Ding!”

“Oh, stop! Please stop, big engine!” said the little freight car.
“Pull me up the hill and over the hill and down the hill, to the
people in the valley on the other side.”

But the big engine said, “I can’t, I’m too busy.” And away it
went—Choo! Choo! Choo! Choo!

The little freight car waited again a long time till a smaller
engine came puffing by.

“Oh, stop! dear engine, please stop!” said the little freight car.
But the engine puffed a big puff and said. “I can’t, you’re too
heavy.” Then away it went, too—Choo! Choo! Choo!

“Oh, dear!” said the little freight car, “what shall I do? The
people in the valley on the other side will be so cold without any
coal.”

After a long time a little pony engine came along, puffing just
as hard as a little engine could.

“Oh, stop! dear engine, please stop and take me up the hill
and over the hill and down the hill, to the people on the other
side,” said the patient little freight car.

The pony engine stopped right away and said, “You’re very
heavy and I’m not very big, but I think I can. I’ll try. Hitch
on!”

All the way up the hill the pony engine kept saying, “I think I
can, I think I can, I think I can. I think I can!” quite fast at
first.

Then the hill was steeper and the pony engine had to pull
harder and go slower, but all the time it kept saying: “I think-I-
can! I-think-I-can!” till it reached the very top with a long
puff—“Sh-s-s-s-s!”

It was easy to go down the hill on the other side.
Away went the happy little pony engine saying very fast, “I

thought I could! I thought I could! I thought I could! I thought I
could.”

Don’t forget the lesson, boys and girls. Think you can. Never
think you can’t.

NoCOUG is the little user group that could! As you might
imagine, it requires a vast amount of work to organize a tech-
nical conference and publish a printed journal, but no sooner
has a conference ended and a journal mailed than it is time to
start work on the next conference and the next journal. We
have very few resources compared to the national and inter-
national user groups, but the NoCOUG volunteers always
manage to pull it off, quarter after quarter for 25 long years.
There are so many to thank that their names will not all fit on
this page, but the award for the longest-serving volunteer
goes to Joel Rosingana who—along with staff member Nora
Rosingana—were the anchors of NoCOUG for much of its
history.

Conference #100 Sponsored by Quest Software—Sim­
plicity at Work is the culmination of our long journey to-
gether. It will be held at the Computer History Museum in
Mountain View—a fitting location for such an occasion. The
museum features marvelous computing artifacts such as a
Hollerith Tabulating Machine and an actual operational
Babbage Difference Engine—one of two that were construct-
ed in the past decade. Steven Feuerstein—the first Oracle
Database expert featured on Wikipedia—will deliver an en-
tertaining yet educational keynote address, Coding Therapy
for Database Professionals, and will be followed by an all-star
cast of internationally recognized speakers, including Craig
Shallahamer, Alex Gorbachev, Dan Tow, and Andrew Zitelli.
This history-making issue of the NoCOUG Journal features
an interview with Michael Stonebraker—the high priest of
relational databases—as well as the research paper by Dr.
Edgar Codd that started the relational revolution in 1970—A
Shared Model of Data for Large Shared Data Banks.

This is one NoCOUG conference that you won’t want to
miss. It will be our biggest, baddest conference ever, with the
best speakers ever, the best food ever, and the most raffle
prizes ever. Will you be there? s

The Little User
Group That Could!

by Iggy Fernandez
Iggy Fernandez

http:// www.nocoug.org.download/2011-08/cdbms_service.sql.txt
http:// www.nocoug.org.download/2011-08/cdbms_service.sql.txt

4 November 2011

M
ichael Stonebraker has been a pioneer of data-
base research and technology for more than a
quarter of a century. He was the main architect
of the INGRES relational DBMS, the object-

relational DBMS, POSTGRES, and the federated data system,
Mariposa. All three prototypes were developed at the University
of California at Berkeley, where Stonebraker was a professor of
computer science for 25 years. Stonebraker moved to MIT in 2001
where he focused on database scalability and opposed the old
idea that one size fits all. He was instrumental in building Aurora
(an early stream-processing engine), C-Store (one of the first
column stores), H-Store (a shared-nothing row-store for OLTP),
and SciDB (a DBMS for scientists). He epitomizes the philoso-
phy of the American philosopher Emerson, who said: “A foolish
consistency is the hobgoblin of little minds, adored by little
statesmen and philosophers and divines…speak what you
think today in words as hard as cannon-balls, and tomorrow
speak what tomorrow thinks in hard words again, though it
contradict every thing you said to-day.” (http://books.google.
com/books?id=RI09AAAAcAAJ&pg=PA30)

Ingres and Postgres—The Backstory

The Ingres RDBMS was the first open-source software prod­
uct, wasn’t it? There’s wasn’t a GNU Public License at the
time, so it was used to create commercial products. Why was
Ingres distributed so freely? Which commercial database
management systems owe their beginnings to the Ingres
project?

Essentially all of the early RDBMS implementations bor-
rowed from either Ingres or System R. Berkeley/CS has a tradi
tion of open-source projects (Unix 4BSD, Ingres, Postgres, etc.)

The embedded query language used by the Ingres RDBMS
was QUEL, not SQL. Like SQL, QUEL was based on rela­
tional calculus, but—unlike SQL—QUEL failed to win ac­
ceptance in the marketplace. Why did QUEL fail to win
acceptance in the marketplace?

QUEL is an obviously better language than SQL. See a long
paper by Chris Date in 1985 for all of the reasons why. The
only reason SQL won in the marketplace was because IBM
released DB2 in 1984 without changing the System R query
language. At the time, it had sufficient “throw-weight” to en-
sure that SQL won. If IBM hadn’t released DB2, Ingres Corp.
and Oracle Corp. would have traded futures.

Postgres and PostgreSQL succeeded Ingres. Why was a re­
placement for Ingres necessary?

RDBMSs (at the time) were good at business data process-
ing but not at geographic data, medical data, etc. Postgres was
designed to extend database technology into other areas. All
of the RDBMS vendors have implemented the Postgres exten-
sibility ideas.

Structured Query Language

According to the inventors of SQL, Donald Chamberlin and
Raymond Boyce, SQL was intended for the use of accoun­
tants, engineers, architects, and urban planners who, “while
they are not computer specialists, would be willing to learn
to interact with a computer in a reasonably high-level, non-
procedural query language.” (http://www.joakimdalby.dk/
HTM/sequel.pdf) Why didn’t things work out the way Cham­
berlin and Boyce predicted?

SQL is a language for programmers. That was well known
by 1985. Vendors implemented other forms-based notations
for non-programmers.

Chris Date quotes you as having said that “SQL is intergalac­
tic data-speak.” (http://archive.computerhistory.org/
resources/access/text/Oral_History/102658166.05.01.acc.
pdf#page=43) What did you mean?

SQL is intergalactic data speak—i.e., it is the standard
way for programmers to talk to databases.

Dr. Edgar Codd said in 1972: “Requesting data by its prop­
erties is far more natural than devising a particular algo­
rithm of sequence of operations for its retrieval. Thus a
calculus-oriented language provides a good target language
for a more user-oriented source language.” (http://www.
eecs.berkeley.edu/~christos/classics/Codd72a.pdf) With
the benefit of hindsight, should we have rejected user-
oriented calculus-oriented languages in favor of program­
mer-oriented algebra-oriented languages with full support
for complex operations such as relational division, outer
join, semi join, anti join, and star join?

Mere mortals cannot understand division. That doomed
the relational algebra. It is interesting to note that science
users seem to want algebraic query languages rather than
calculus ones. Hence, SciDB supports both.

No to Structured Query Language?

NoSQL is confusing to many in the relational camp. Is

“Words As Hard
As Cannon-balls“

with Professor Michael Stonebraker

INTER V IE W

Michael Stonebraker

http://books.google.com/books?id=RI09AAAAcAAJ&pg=PA30
http://books.google.com/books?id=RI09AAAAcAAJ&pg=PA30
http://www.joakimdalby.dk/HTM/sequel.pdf
http://www.joakimdalby.dk/HTM/sequel.pdf
http://archive.computerhistory.org/resources/access/text/Oral_History/102658166.05.01.acc.pdf#page=43
http://archive.computerhistory.org/resources/access/text/Oral_History/102658166.05.01.acc.pdf#page=43
http://archive.computerhistory.org/resources/access/text/Oral_History/102658166.05.01.acc.pdf#page=43
http://www.eecs.berkeley.edu/~christos/classics/Codd72a.pdf
http://www.eecs.berkeley.edu/~christos/classics/Codd72a.pdf

5The NoCOUG Journal

NoSQL a rejection of SQL or of relational database man­
agement systems, or both? Or is it just confused?

NoSQL is a collection of 50 or 75 vendors with various
objectives. For some of them, the goal is to go fast by rejecting
SQL and ACID. I feel these folks are misguided, since SQL is
not the performance problem in current RDBMSs. In fact,
there is a NewSQL movement that contains very high-perfor-
mance ACID/SQL implementations.

Other members of the NoSQL movement are focused on
document management or semi-structured data—application
areas where RDBMSs are known not to work very well. These
folks seem to be filling a market not well served by RDBMSs.

You’ve been championing NewSQL as an answer to NoSQL?
What exactly is NewSQL?

Current RDBMSs are too slow to meet some of the de-
manding current-day applications. This causes some users to
look for other alternatives. NewSQL preserves SQL and ACID,
and gets much better performance with a different architec-
ture than that used by the traditional RDBMS vendors.

Oracle Database did not enforce referential integrity con­
straints until Version 7. Back then, Berkeley/CS Professor
Larry Rowe suggested that the best way for the CODASYL
systems to compete against the relational systems was to point
out that they did not [yet] support referential integrity.
(http://findarticles.com/p/articles/mi_m0SMG/is_n1_v9/
ai_7328281/) Can the new entrants in the DBMS marketplace
prevail against the established players without enforcing in­
tegrity constraints and business rules?

I have seen several applications where the current RDBMS
vendors are more than an order of magnitude too slow to
meet the user’s needs. In this world, the traditional vendors
are nonstarters, and users are looking for something that
meets their needs.

The older players in the DBMS marketplace are encumbered
by enterprise-grade capabilities that hamper performance.
(http://www.think88.com/Examples/Think88_SybaseIQ_
wp.pdf) Are enterprise-grade capabilities and performance
mutually exclusive?

Everybody should read a great book by Clayton Christensen
called The Innovator’s Dilemma. The established vendors are
hampered (in my opinion) primarily by legacy code and an
unwillingness to delete or change features in their products. As
such, they are 30-year-old technology that is no longer good at
anything. The products from the current vendors deserve to be
sent to the Home for Tired Software. How to morph from
obsolete products to new ones without losing one’s customer
base is a challenge—which is the topic of the book above.

The Cutting Edge

Why do you believe that it is time for a complete rewrite of
relational database management systems?

In every market I can think of, the traditional vendors can
be beaten by one to two orders of magnitude by something else.
In OLTP, it is NewSQL; in data warehouses, it is column stores;
in complex analytics, it is array stores; in document manage-
ment, it is NoSQL. I see a world where there are (perhaps) a

half-dozen differently architected DBMSs that are purpose
built. In other words, I see the death of one-size-fits-all.

Your latest projects, Vertica and VoltDB, claim to leave legacy
database management systems in the dust, yet neither of
them have published TPC benchmarks. How relevant are
TPC benchmarks today?

It is well understood that the standard benchmarks have
been constructed largely by the traditional RDBMS vendors to
highlight their products. Also, it is clear that they can make
their products go an order of magnitude faster on standard
benchmarks than is possible on similar workloads.

I encourage customers to demand benchmark numbers on
their real applications.

A massively parallel, shared-nothing database management
system scales very well if the data can be sharded and if each
node has all the data it needs. However, if the physical data­
base design does not meet the needs of the application, then
broadcasting of data over the network will result in dimin­
ished scalability. How can this problem be prevented?

Physical database design will continue to be a big challenge,
for the reasons you mention. It is not clear how to get high
performance from an application that does not shard well
without giving something else up. This will allow application
architects to earn the big bucks for the foreseeable future.

Go West, Young Woman, Go West and Grow Up
with the Country

You’ve had a ringside seat during the relational era and have
spent a lot of time in the ring yourself. What would you have
changed if you could go back and start all over again?

I would have made Oracle do serious quality control and
not confuse future tense and present tense with regard to pro
duct features.

Big Data is watching us every minute of the day. Every move­
ment is tracked and recorded by cell towers; every thought is
tracked and recorded by search engines; every financial trans­
action is tracked and recorded by the financial industry; and
every text message, email message, and phone conversation is
tracked and recorded by service providers. Are databases
more evil than good?

A good example is the imminent arrival of sensors in your
car, put there by your insurance carrier in exchange for lower
rates. Of course, the sensor tracks your every movement, and
your privacy is compromised. I expect most customers to vol-
untarily relinquish their privacy in exchange for lower rates.
Cell phones and credit cards are similar; we give up privacy in
exchange for some sort of service. I expect that our privacy will
be further compromised, off into the future.

As long as we feel this way as a society, privacy will be non-
existent.

What advice do you have for the young IT professional just
starting out today? Which way is west?

The Internet made text search a mainstream task. Ad place-
ment and web mass personalization are doing likewise for
machine learning. Databases are getting bigger faster than
hardware is getting cheaper. Hence, I expect DBMS technol-
ogy will continue to enjoy a place in the sun. s

http://findarticles.com/p/articles/mi_m0SMG/is_n1_v9/ai_7328281/
http://findarticles.com/p/articles/mi_m0SMG/is_n1_v9/ai_7328281/
http://www.think88.com/Examples/Think88_SybaseIQ_wp.pdf
http://www.think88.com/Examples/Think88_SybaseIQ_wp.pdf

6 November 2011

SPE C IA L
F EAT U RE

How I Learned to Stop
Worrying and Love Oracle

by Guy Harrison

I
f asked to name the most influential and successful soft-
ware company of the past 25 years, your average lay
person would probably nominate IBM, Microsoft, or
Google; however, for readers of this journal—and argu-

ably for IT professionals as a whole—the most successful
software company has actually been Oracle.

IBM has a longer history, but it’s in second or third place at
best in most of its key markets. Microsoft undoubtedly en-
abled and leveraged the PC revolution during the ’80s and
’90s, but it never quite broke into the enterprise software and
server segments, and it seems constantly on the back foot to
day. Finally, Google undeniably revolutionized search as well
as targeted Internet advertising, but in many respects, it’s still
a one-trick pony and generates only a fraction of its income
from direct software sales.

Like many of you, I’ve made a career based largely around
Oracle technologies. Looking back, it’s been a good strategy.
But there have definitely been many times over the years when
I’ve worried that I may have backed the wrong horse. And
while it took some time, I’ve learned to trust in Oracle.

Genesis of Oracle

In 1970, Edgar Codd first published the famous paper on
the relational model. Although IBM was working toward a
prototype implementation of a relational database (“System
R”), there was no commercial relational system in 1977 when
Larry Ellison founded the company that would become Oracle.
Common wisdom at the time was that relational databases
were incapable of providing the transactional performance
delivered by the dominant hierarchical and network databases
(IMS, for instance). But Larry Ellison believed that by decou-
pling the physical and logical representation of data, one could
deliver the application and flexible reporting benefits of the
relational model, as well as the performance of an optimised
physical model.

The battle between the disruptive relational database
model, as pioneered by Oracle, and the established—mostly
mainframe—databases was waged primarily in the first half
of the 1980s. By 1985 the relational database had achieved
complete mindshare dominance. Virtually all databases in
1985 claimed to be relational—even those, such as Ashton-
Tate’s dBase, that were little more than flat file systems.

Battle of the Client Server Behemoths

I first started using Oracle technology around 1987 with
Oracle RDBMS 5.1. At that point, a pitched battle between the
relational contenders of Oracle, Ingres, Sybase, and Informix
was in full swing—and Oracle was not always winning. Oracle
was late in delivering features such as stored procedures, cost-
based optimization, and referential integrity. Some commen-
tators claimed that Oracle had the inferior technology.

However, Oracle demonstrated—throughout the late ’80s
and early ’90s—a characteristic that we have seen again and
again over the years: an ability to out-market and out-ma-
noeuvre competitors who sometimes seem to have the techni-
cal high ground. Through aggressive marketing campaigns
and relentless sales execution, Oracle won over the bigger cor-
porate accounts; furthermore, while the competitive products
often had more hyped-up bells and whistles, Oracle—particu-
larly starting with version 6—introduced foundation tech-
nologies that delivered better business benefits. Oracle’s
superior locking and concurrency mechanisms, and the ability
to back up a running database in particular, allowed the devel-
opment of more serious business applications based on a rela-
tional database.

An Object-Oriented Distraction

Around the middle of the 1990s, object-oriented (OO)
programming was revolutionizing software languages. It was
widely suggested that this new paradigm should extend to
databases as well. OO zealots complained of the “impedance
mismatch” between relational structures and objects. What
was needed, they claimed, was a database that could natively
store objects rather than one that required objects to be de-
composed into relational structures.

During this period, Informix aggressively claimed technical
superiority over Oracle in OO database management and, for
a while, it seemed to be winning the battle of public opinion.
The most famous example of this was the “Warning: Dinosaurs
Crossing” billboard, which Informix planted directly across
from Oracle’s headquarters!

Apparently accepting the OO paradigm shift, Oracle re-
sponded by releasing Oracle 8, which included facets of object
database technology, including object tables, nested tables, and
Varrays.

Guy Harrison

7The NoCOUG Journal

But it turned out that in the real world, these OO features
addressed a demand that did not really exist. Informix im-
ploded in an Enron-style fraud scandal in 1997. And by then,
the IT world was focused on a true paradigm shift with e-com-
merce and the Internet, as well as the impending Y2K chal-
lenge.

The Internet Changes Everything

The rapid uptake of the Internet and the World Wide Web
is, of course, as big a paradigm shift in computing—and
maybe society—as many of us are likely to see. It generated a
massive investment in software and hardware as businesses
strived to become Internet-enabled.

Around the same time, Y2K projects provided another huge
influx of funding, as all critical systems were examined for
vulnerabilities and bugs. Though the actual impact of Y2K
bugs was negligible, the effect on IT budgets was massive.

In 2000, with Y2K out of the way and the e-commerce
bubble in full swing, we experienced an IT gold rush of unpar-
alleled proportions. For Internet start-ups, money was no ob-
ject and scalability was everything. This “budgetless funding”
environment encouraged purchasing only premium hardware
and software. Oracle—as the premium and most scalable
database—thrived during this period.

The World Is Not Enough

Having fought and—seemingly won—the database battle,
Oracle in the early 2000s was highly motivated to diversify
beyond the database business. Oracle applications had been a
significant business for some time and Oracle had introduced
their own Java application server, but they were not the out-
right leader in either of these market segments.

Throughout the 2000s, Oracle achieved leadership in both
the middleware and application-software categories through
an aggressive series of acquisitions, which included PeopleSoft,
Siebel, JD Edwards, Hyperion, BEA, and dozens of other sig-
nificant acquisitions.

The Innovator’s Dilemma

With the collapse of the e-commerce bubble in 2001 and
throughout the succeeding decade, IT moved from a gold-rush
mentality to a more austere environment in which return on
investment (ROI) and total cost of ownership (TCO) became
the driving principles. This gave the relatively cheaper Microsoft
SQL Server database an edge in many cases and raised the pos-
sibility of Oracle’s dominant position being disrupted by a
low-cost, good-enough competitor—the classic “innovator’s
dilemma.”1

During the years 2003 to 2006, MySQL looked like a sig-
nificant threat to Oracle’s database business. The MySQL free
open source edition was enormously popular, and enterprise
pricing was a fraction of Oracle pricing. With the enterprise
focus on cost containment, MySQL looked potentially disrup-
tive.

Oracle’s response to MySQL’s popularity stands, in my
mind, as a classic defence to disruptive technology. Oracle
competed at the low end by releasing a free version: Oracle XE.
At the high end, Oracle had at last perfected its database clus-

tering technology (i.e., RAC). RAC allowed Oracle to maintain
its dominance for highly available, mission-critical databases.
In addition, Oracle acquired some of the MySQL foundation
technologies, such as InnoDB and BerkeleyDB. Oracle effec-
tively “disrupted the disruptor.” Of course, following the Sun
acquisition, MySQL became an Oracle technology.

Shared Disk Clustering Pays Off at Last

Oracle had pursued a vision of database clustering since the
early ’90s. Oracle 6.1 introduced an early version of Oracle’s
parallel server (OPS) technology in beta. Initially, performance
of the clustered Oracle database was far from satisfactory. The
OPS technology was eventually released in production during
the Oracle 7 timeframe, but it was regarded as a complex and
risky technology and was not widely adopted.

However, Oracle relentlessly pursued a vision of database
clustering that was virtually unique in the industry. Most da-
tabase clustering technologies are “shared nothing”—in which
the database is partitioned across cluster nodes, which “share
nothing” with other nodes. Such an approach requires manual
partitioning and load balancing and is impractical for many
applications. Oracle believed that “shared disk” database clus-
ters—in which each member of the cluster had access to the
entire database—were possible. Such a cluster would allow an
application to use a database cluster without modification.

Oracle released Real Application Clusters (RAC) with the
Oracle 9i database. Competitors continue to claim that RAC is

1	http://amzn.to/mUftel

http://amzn.to/mUftel

8 November 2011

a flawed technology—declaring their own “shared nothing”
clustering as superior. Yet the widespread uptake of RAC
within the Oracle community speaks for itself; the technology
has clearly been successful.

It’s Not Water Vapor!

In 2009, “cloud mania” hit the IT industry, promoting a
vision of a world in which all computing would be done “in
the cloud”—effectively outsourcing IT to companies such as
Amazon and Google. Larry Ellison was famously skeptical—at
one point claiming, “It’s absurdity—it’s nonsense . . . What
are you talking about? It’s not water vapor. It’s a computer
attached to a network!”2

However, cloud computing can be seen as a synonym for
Internet grid computing—in which computing resources are
provided on demand from a pool of virtualized computing
resources made available across the Internet. Ironically, Oracle
had done more than any other commercial company to
popularize many of the concepts underlying cloud computing
through its grid vision (after all, the “g” in 10g stands for grid).

Despite that, Oracle has continued to develop key “cloud-
like” technologies, such as Oracle Virtual Machine (VM). We
expect to hear more from Oracle regarding a cloud vision at
OOW 2011.

Exadata

One of the reasons for Oracle’s early success was its por
tability; by writing code in the then-relatively new “C” language,
Oracle was capable of porting its software to new hardware
platforms with relative ease. The downside of this portability
is that Oracle software is often installed upon under-configured
or unbalanced hardware configurations. This actually became
a disadvantage in the data-warehousing world, where vendors
such as Teradata would deliver a solution as a bundled ap
pliance running a balanced hardware and software stack.

Oracle was, therefore, highly motivated to provide a database
appliance. Their first attempt—Exadata V1—was based on
a partnership with HP. The subsequent acquisition of Sun
Microsystems in 2010 allowed Oracle to create a fully integrated
appliance completely in-house. The result—Exadata V2—has
been a remarkable technology and market success story.

Exadata succeeds, in my mind, on three levels. First, it uses
best-of-breed standard technologies such as InfiniBand and
Flash solid state disk (SSD). Second, it exploits some of the
unique capabilities of the Oracle DBMS—shared disk clus
tering, ASM, parallel query, and so on. Third, Oracle has
incorporated new technologies, such as smart scans, enhanced
hybrid columnar compression, and storage indexes. The result
is a highly optimized hardware or software combination that
will be very difficult for competitors to match.

Combined with Exalogic—an Exadata-like appliance for
Oracle middleware—Oracle can offer a complete hardware
and software solution, the likes of which has not been seen
since the days of the IBM mainframe.

Why I Stopped Worrying

It’s been a long time since I—or probably anybody—has
had reason to worry about Oracle. Oracle has shown, over

more than two decades, a remarkable ability to execute on
technology and generate profitable growth. Oracle’s technical
strength is coupled with an unwavering business focus: Oracle
never forgets how to make money from their technical innova-
tions. As an individual, I’ve found working with Oracle tech-
nology to be a constant challenge—without a boring minute.
I look forward to seeing what Oracle comes up with next.

Quest Viewpoint

Since the 1990s, Quest Software has developed innovative
tools, including flagship brands such as Toad® and Foglight®,
to make Oracle professionals more productive and efficient,
and we expect to continue doing so for decades to come. As a
true independent software vendor, Quest has no stake in a par
ticular database and no potential conflicts of interests when
helping you maximize your database and related infrastructure
investments.

As a result, Quest’s footprint includes support for not only
Oracle but a variety of other major relational and non-
relational database platforms to meet our customers’ needs for
more heterogeneous toolsets. Quest is committed to providing
tools with the deepest functionality in the business while
giving you the freedom to choose the platforms that are the
best fit, and the most cost-effective, for your environment.

Toad, for example, not only provides specific editions built
for various job functions, but it also supports more than 15
types of databases, including NoSQL platforms like Hadoop.
Imagine being able to leverage your existing skill set on new
platforms and technologies to meet future demands: you can
today with Toad. It gives you a simple, consistent way to build,
access, manage, optimize, and maintain database applica-
tions. s

Guy Harrison is an Oracle ACE and director of research and
development at Quest Software. Guy is the author of Oracle
Performance Survival Guide (Prentice Hall, 2009) and MySQL
Stored Procedure Programming (O’Reilly, 2006, with Steven
Feuerstein) as well as other books, articles, and presentations
on database technology. Guy also writes a monthly column for
Database Trends and Applications (http://www.dbta.com). Guy
can be found on the Internet at http://www.guyharrison.net
and on email at guy.harrison@quest.com, and he is @guy-
harrison on Twitter.

Quest Software (Nasdaq: QSFT) simplifies and reduces the
cost of managing IT for more than 100,000 customers worldwide.
Our innovative solutions make solving the toughest IT manage
ment problems easier, enabling customers to save time and money
across physical, virtual, and cloud environments. For more infor
mation about Quest solutions, visit http://www.quest.com.

2	http://www.youtube.com/watch?v=UOEFXaWHppE

http://www.dbta.com
http://www.guyharrison.net
mailto:guy.harrison@quest.com
http://twitter.com/guyharrison
http://twitter.com/guyharrison
http://www.quest.com/
http://www.youtube.com/watch?v=UOEFXaWHppE

Two Million Database Professionals Count on One Solution.

Simply the best for Oracle database professionals - Toad 11. Supported by over a decade
of proven excellence, only Toad combines the deepest functionality available, extensive automation,
and a work� ow that enables database professionals of all skill and experience levels to work
e� ciently and accurately. Countless organizations empower their database professionals with Toad.
The best just got better.

Watch the video at www.quest.com/Toad11SimplyBetter.

© 2011 Quest Software, Inc. ALL RIGHTS RESERVED. Quest, Quest Software and the Quest Software logo
are registered trademarks of Quest Software, Inc. in the U.S.A. and/or other countries. All other trademarks

and registered trademarks are property of their respective owners. ADD_Toad_FullPage_US_INK_201108

A Relational Model of Data for Large Shared Data Banks

E. F. Codd
∗

IBM Research Laboratory, San Jose, California

ABSTRACT
Future users of large data banks must be protected from
having to know how the data is organized in the machine
(the internal representation). A prompting service which
supplies such information is not a satisfactory solution. Ac-
tivities of users at terminals and most application programs
should remain unaffected when the internal representation of
data is changed and even when some aspects of the external
representation are changed. Changes in data representation
will often be needed as a result of changes in query, update,
and report traffic and natural growth in the types of stored
information.

Existing noninferential, formatted data systems provide
users with tree-structured files or slightly more general net-
work models of the data. In Section 1, inadequacies of these
models are discussed. A model based on n-ary relations,
a normal form for data base relations, and the concept of
a universal data sublanguage are introduced. In Section 2,
certain operations on relations (other than logical inference)
are discussed and applied to the problems of redundancy
and consistency in the user’s model.

1. RELATIONAL MODEL AND NORMAL
FORM

1.1 Introduction
This paper is concerned with the application of elementary

relation theory to systems which provide shared access to
large banks of formatted data. Except for a paper by Childs
[1], the principal application of relations to data systems has
been to deductive question-answering systems. Levein and
Maron [2] provide numerous references to work in this area.

In contrast, the problems treated here are those of data in-
dependence—the independence of application programs and
terminal activities from growth in data types and changes
in data representation—and certain kinds of data inconsis-
tency which are expected to become troublesome even in
nondeductive systems.

The relational view (or model) of data described in Sec-
tion 1 appears to be superior in several respects to the graph
or network model [3, 4] presently in vogue for noninferential
systems. It provides a means of describing data with its nat-
ural structure only—that is, without superimposing any ad-
ditional structure for machine representation purposes. Ac-
cordingly, it provides a basis for a high level data language

∗E. F. Codd. 1970. A relational model of data
for large shared data banks. Commun. ACM 13,
6 (June 1970), 377-387. DOI=10.1145/362384.362685
http://doi.acm.org/10.1145/362384.362685

which will yield maximal independence between programs
on the one hand and machine representation and organiza-
tion of data on the other.

A further advantage of the relational view is that it forms
a sound basis for treating derivability, redundancy, and con-
sistency of relations—these are discussed in Section 2. The
network model, on the other hand, has spawned a number of
confusions, not the least of which is mistaking the derivation
of connections for the derivation of relations (see remarks in
Section 2 on the “connection trap”).

Finally, the relational view permits a clearer evaluation of
the scope and logical limitations of present formatted data
systems, and also the relative merits (from a logical stand-
point) of competing representations of data within a single
system. Examples of this clearer perspective are cited in
various parts of this paper. Implementations of systems to
support the relational model are not discussed.

1.2 Data Dependencies in Present Systems
The provision of data description tables in recently de-

veloped information systems represents a major advance to-
ward the goal of data independence [5, 6, 7]. Such tables
facilitate changing certain characteristics of the data rep-
resentation stored in a data bank. However, the variety
of data representation characteristics which can be changed
without logically impairing some application programs is still
quite limited. Further, the model of data with which users
interact is still cluttered with representational properties,
particularly in regard to the representation of collections of
data (as opposed to individual items). Three of the principal
kinds of data dependencies which still need to be removed
are: ordering dependence, indexing dependence, and access
path dependence. In some systems these dependencies are
not clearly separable from one another.

1.2.1 Ordering Dependence
Elements of data in a data bank may be stored in a va-

riety of ways, some involving no concern for ordering, some
permitting each element to participate in one ordering only,
others permitting each element to participate in several or-
derings. Let us consider those existing systems which either
require or permit data elements to be stored in at least one
total ordering which is closely associated with the hardware-
determined ordering of addresses. For example, the records
of a file concerning parts might be stored in ascending order
by part serial number. Such systems normally permit appli-
cation programs to assume that the order of presentation of
records from such a file is identical to (or is a subordering
of) the stored ordering. Those application programs which
take advantage of the stored ordering of a file are likely to

fail to operate correctly if for some reason it becomes nec-
essary to replace that ordering by a different one. Similar
remarks hold for a stored ordering implemented by means
of pointers.

It is unnecessary to single out any system as an exam-
ple, because all the well-known information systems that
are marketed today fail to make a clear distinction between
order of presentation on the one hand and stored ordering
on the other. Significant implementation problems must be
solved to provide this kind of independence.

1.2.2 Indexing Dependence
In the context of formatted data, an index is usually

thought of as a purely performance-oriented component of
the data representation. It tends to improve response to
queries and updates and, at the same time, slow down re-
sponse to insertions and deletions. From an informational
standpoint, an index is a redundant component of the data
representation. If a system uses indices at all and if it is to
perform well in an environment with changing patterns of
activity on the data bank, an ability to create and destroy
indices from time to time will probably be necessary. The
question then arises: Can application programs and termi-
nal activities remain invariant as indices come and go?

Present formatted data systems take widely different ap-
proaches to indexing. TDMS [7] unconditionally provides
indexing on all attributes. The presently released version
of IMS [5] provides the user with a choice for each file: a
choice between no indexing at all (the hierarchic sequential
organization) or indexing on the primary key only (the hi-
erarchic indexed sequential organization). In neither case is
the user’s application logic dependent on the existence of the
unconditionally provided indices. IDS [8], however, permits
the file designers to select attributes to be indexed and to
incorporate indices into the file structure by means of ad-
ditional chains. Application programs taking advantage of
the performance benefit of these indexing chains must refer
to those chains by name. Such programs do not operate
correctly if these chains are later removed.

1.2.3 Access Path Dependence
Many of the existing formatted data systems provide users

with tree-structured files or slightly more general network
models of the data. Application programs developed to work
with these systems tend to be logically impaired if the trees
or networks are changed in structure. A simple example
follows.

Suppose the data bank contains information about parts
and projects. For each part, the part number, part name,
part description, quantity-on-hand, and quantity-on-order
are recorded. For each project, the project number, project
name, project description are recorded. Whenever a project
makes use of a certain part, the quantity of that part com-
mitted to the given project is also recorded. Suppose that
the system requires the user or file designer to declare or
define the data in terms of tree structures. Then, any one
of the hierarchical structures may be adopted for the infor-
mation mentioned above (see Structures l–5).

Now, consider the problem of printing out the part num-
ber, part name, and quantity committed for every part used
in the project whose project name is “alpha.” The follow-
ing observations may be made regardless of which available
tree-oriented information system is selected to tackle this
problem. If a program P is developed for this problem as-
suming one of the five structures above—that is, P makes

Structure 1. Projects Subordinate to Parts
File Segment Fields
F PART part #

part name
part description
quantity-on-hand
quantity-on-order

PROJECT project #
project name
project description
quantity committed

Structure 2. Parts Subordinate to Projects
File Segment Fields
F PROJECT project #

project name
project description

PART part #
part name
part description
quantity-on-hand
quantity-on-order
quantity committed

Structure 3. Parts and Projects as Peers
Commitment Relationship Subordinate to Projects

File Segment Fields
F PART part #

part name
part description
quantity-on-hand
quantity-on-order

G PROJECT project #
project name
project description

PART part #
quantity committed

Structure 4. Parts and Projects as Peers
Commitment Relationship Subordinate to Parts

File Segment Fields
F PART part #

part description
quantity-on-hand
quantity-on-order

PROJECT project #
quantity committed

G PROJECT project #
project name
project description

Structure 5. Parts, Projects, and Commitment
Relationship as Peers

File Segment Fields
F PART part #

part name
part description
quantity-on-hand
quantity-on-order

G PROJECT project #
project name
project description

H COMMIT part #
project #
quantity committed

no test to determine which structure is in effect—then P
will fail on at least three of the remaining structures. More
specifically, if P succeeds with structure 5, it will fail with
all the others; if P succeeds with structure 3 or 4, it will fail
with at least 1,2, and 5; if P succeeds with 1 or 2, it will
fail with at least 3, 4, and 5. The reason is simple in each
case. In the absence of a test to determine which structure
is in effect, P fails because an attempt is made to exceute a
reference to a nonexistent file (available systems treat this
as an error) or no attempt is made to execute a reference to
a file containing needed information. The reader who is not
convinced should develop sample programs for this simple
problem.

Since, in general, it is not practical to develop application
programs which test for all tree structurings permitted by
the system, these programs fail when a change in structure
becomes necessary.

Systems which provide users with a network model of
the data run into similar difficulties. In both the tree and
network cases, the user (or his program) is required to ex-
ploit a collection of user access paths to the data. It does
not matter whether these paths are in close correspondence
with pointer-defined paths in the stored representation—in
IDS the correspondence is extremely simple, in TDMS it is
just the opposite. The consequence, regardless of the stored
representation, is that terminal activities and programs be-
come dependent on the continued existence of the user access
paths.

One solution to this is to adopt the policy that once a user
access path is defined it will not be made obsolete until all
application programs using that path have become obsolete.
Such a policy is not practical, because the number of access
paths in the total model for the community of users of a
data bank would eventually become excessively large.

1.3 A Relational View of Data
The term relation is used here in its accepted mathemat-

ical sense. Given sets S1, S2, . . . , Sn (not necessarily dis-
tinct), R is a relation on these n sets if it is a set of n-tuples
each of which has its first element from S1, its second ele-
ment from S2, and so on.1 We shall refer to Sj as the jth
domain of R. As defined above, R is said to have degree n.
Relations of degree 1 are often called unary, degree 2 binary,
degree 3 ternary, and degree n n-ary.

For expository reasons, we shall frequently make use of an
array representation of relations, but it must be remembered
that this particular representation is not an essential part
of the relational view being expounded. An array which
represents an n-ary relation R has the following properties:

1. Each row represents an n-tuple of R.

2. The ordering of rows is immaterial.

3. All rows are distinct.

4. The ordering of columns is significant—it corresponds
to the ordering S1, S2, . . . , Sn of the domains on which
R is defined (see, however, remarks below on domain-
ordered and domain-unordered relations).

5. The significance of each column is partially conveyed
by labeling it with the name of the corresponding do-
main.

1More concisely, R is a subset of the Cartesian product S1×
S2 × . . .× Sn.

supply (supplier part project quantity)
1 2 5 17
1 3 5 23
2 3 7 9
2 7 5 4
4 1 1 12

Fig. 1. A relation of degree 4

component (part part quantity)
1 5 9
2 5 7
3 5 2
2 6 12
3 6 3
4 7 1
6 7 1

Fig. 2. A relation with two identical domains

The example in Figure 1 illustrates a relation of degree
4, called supply, which reflects the shipments-in-progress of
parts from specified suppliers to specified projects in speci-
fied quantities.

One might ask: If the columns are labeled by the name of
corresponding domains, why should the ordering of columns
matter? As the example in Figure 2 shows, two columns
may have identical headings (indicating identical domains)
but possess distinct meanings with respect to the relation.
The relation depicted is called component. It is a ternary
relation, whose first two domains are called part and third
domain is called quantity. The meaning of component (x, y,
z) is that part x is an immediate component (or subassem-
bly) of part y, and z units of part x are needed to assemble
one unit of part y. It is a relation which plays a critical role
in the parts explosion problem.

It is a remarkable fact that several existing information
systems (chiefly those based on tree-structured files) fail to
provide data representations for relations which have two or
more identical domains. The present version of IMS/360 [5]
is an example of such a system.

The totality of data in a data bank may be viewed as a
collection of time-varying relations. These relations are of
assorted degrees. As time progresses, each n-ary relation
may be subject to insertion of additional n-tuples, deletion
of existing ones, and alteration of components of any of its
existing n-tuples.

In many commercial, governmental, and scientific data
banks, however, some of the relations are of quite high de-
gree (a degree of 30 is not at all uncommon). Users should
not normally be burdened with remembering the domain
ordering of any relation (for example, the ordering supplier,
then part, then project, then quantity in the relation sup-
ply). Accordingly, we propose that users deal, not with
relations which are domain-ordered, but with relationships
which are their domain-unordered counterparts.2 To accom-
plish this, domains must be uniquely identifiable at least
within any given relation, without using position. Thus,
where there are two or more identical domains, we require
in each case that the domain name be qualified by a distinc-
tive role name, which serves to identify the role played by
that domain in the given relation. For example, in the rela-
tion component of Figure 2, the first domain part might be

2In mathematical terms, a relationship is an equivalence
class of those relations that are equivalent under permu-
tation of domains (see Section 2.1.1).

qualified by the role name sub, and the second by super, so
that users could deal with the relationship component and
its domains—sub.part super.part, quantity—without regard
to any ordering between these domains.

To sum up, it is proposed that most users should interact
with a relational model of the data consisting of a collection
of time-varying relationships (rather than relations). Each
user need not know more about any relationship than its
name together with the names of its domains (role qualified
whenever necessary).3 Even this information might be of-
fered in menu style by the system (subject to security and
privacy constraints) upon request by the user.

There are usually many alternative ways in which a rela-
tional model may be established for a data bank. In order
to discuss a preferred way (or normal form), we must first
introduce a few additional concepts (active domain, primary
key, foreign key, nonsimple domain) and establish some links
with terminology currently in use in information systems
programming. In the remainder of this paper, we shall not
bother to distinguish between relations and relationships ex-
cept where it appears advantageous to be explicit.

Consider an example of a data bank which includes rela-
tions concerning parts, projects, and suppliers. One relation
called part is defined on the following domains:

1. part number

2. part name

3. part color

4. part weight

5. quantity on hand

6. quantity on order

and possibly other domains as well. Each of these domains
is, in effect, a pool of values, some or all of which may be
represented in the data bank at any instant. While it is
conceivable that, at some instant, all part colors are present,
it is unlikely that all possible part weights, part names, and
part numbers are. We shall call the set of values represented
at some instant the active domain at that instant.

Normally, one domain (or combination of domains) of a
given relation has values which uniquely identify each ele-
ment (n-tuple) of that relation. Such a domain (or combi-
nation) is called a primary key. In the example above, part
number would be a primary key, while part color would not
be. A primary key is nonredundant if it is either a sim-
ple domain (not a combination) or a combination such that
none of the participating simple domains is superfluous in
uniquely identifying each element. A relation may possess
more than one nonredundant primary key. This would be
the case in the example if different parts were always given
distinct names. Whenever a relation has two or more nonre-
dundant primary keys, one of them is arbitrarily selected and
called the primary key of that relation.

A common requirement is for elements of a relation to
cross-reference other elements of the same relation or ele-
ments of a different relation. Keys provide a user-oriented
means (but not the only means) of expressing such crossref-
erences. We shall call a domain (or domain combination) of
relation R a foreign key if it is not the primary key of R but

3Naturally, as with any data put into and retrieved from
a computer system, the user will normally make far more
effective use of the data if he is aware of its meaning.

its elements are values of the primary key of some relation S
(the possibility that S and R are identical is not excluded).
In the relation supply of Figure 1, the combination of sup-
plier, part, project is the primary key, while each of these
three domains taken separately is a foreign key.

In previous work there has been a strong tendency to treat
the data in a data bank as consisting of two parts, one part
consisting of entity descriptions (for example, descriptions
of suppliers) and the other part consisting of relations be-
tween the various entities or types of entities (for example,
the supply relation). This distinction is difficult to maintain
when one may have foreign keys in any relation whatsoever.
In the user’s relational model there appears to be no ad-
vantage to making such a distinction (there may be some
advantage, however, when one applies relational concepts to
machine representations of the user’s set of relationships).

So far, we have discussed examples of relations which are
defined on simple domains—domains whose elements are
atomic (nondecomposable) values. Nonatomic values can be
discussed within the relational framework. Thus, some do-
mains may have relations as elements. These relations may,
in turn, be defined on nonsimple domains, and so on. For
example, one of the domains on which the relation employee
is defined might be salary history. An element of the salary
history domain is a binary relation defined on the domain
date and the domain salary. The salary history domain is
the set of all such binary relations. At any instant of time
there are as many instances of the salary history relation in
the data bank as there are employees. In contrast, there is
only one instance of the employee relation.

The terms attribute and repeating group in present data
base terminology are roughly analogous to simple domain
and nonsimple domain, respectively. Much of the confusion
in present terminology is due to failure to distinguish be-
tween type and instance (as in “record”) and between com-
ponents of a user model of the data on the one hand and
their machine representation counterparts on the other hand
(again, we cite “record” as an example).

1.4 Normal Form
A relation whose domains are all simple can be repre-

sented in storage by a two-dimensional column-homogeneous
array of the kind discussed above. Some more complicated
data structure is necessary for a relation with one or more
nonsimple domains. For this reason (and others to be cited
below) the possibility of eliminating nonsimple domains ap-
pears worth investigating.4 There is, in fact, a very simple
elimination procedure, which we shall call normalization.

Consider, for example, the collection of relations exhib-
ited in Figure 3(a). Job history and children are nonsimple
domains of the relation employee. Salary history is a non-
simple domain of the relation job history. The tree in Figure
3(a) shows just these interrelationships of the nonsimple do-
mains.

employee

|

+-----------------------------+

| |

jobhistory children

|

salaryhistory

4M. E. Sanko of IBM, San Jose, independently recognized
the desirability of eliminating nonsimple domains.

employee (man#, name, birthdate, jobhistory, children)
jobhistory (jobdate, title, salaryhistory)
salaryhistory (salarydate, salary)
children (childname, birthyear)

Fig. 3(a). Unnormalized set

employee� (man#, name, birthdate)
jobhistory� (man#, jobdate, title)
salaryhistory� (man#, jobdate, salarydate, salary)
children� (man#, childname, birthyear)

Fig. 3(b). Normalized set

Normalization proceeds as follows. Starting with the rela-
tion at the top of the tree, take its primary key and expand
each of the immediately subordinate relations by inserting
this primary key domain or domain combination. The pri-
mary key of each expanded relation consists of the primary
key before expansion augmented by the primary key copied
down from the parent relation. Now, strike out from the
parent relation all nonsimple domains, remove the top node
of the tree, and repeat the same sequence of operations on
each remaining subtree.

The result of normalizing the collection of relations in Fig-
ure 3(a) is the collection in Figure 3(b). The primary key
of each relation is italicized to show how such keys are ex-
panded by the normalization.

If normalization as described above is to be applicable,
the unnormalized collection of relations must satisfy the fol-
lowing conditions:

1. The graph of interrelationships of the nonsimple do-
mains is a collection of trees.

2. No primary key has a component domain which is non-
simple.

The writer knows of no application which would require
any relaxation of these conditions. Further operations of a
normalizing kind are possible. These are not discussed in
this paper.

The simplicity of the array representation which becomes
feasible when all relations are cast in normal form is not only
an advantage for storage purposes but also for communica-
tion of bulk data between systems which use widely different
representations of the data. The communication form would
be a suitably compressed version of the array representation
and would have the following advantages:

1. It would be devoid of pointers (address-valued or
displacement-valued).

2. It would avoid all dependence on hash addressing
schemes.

3. It would contain no indices or ordering lists.

If the user’s relational model is set up in normal form, names
of items of data in the data bank can take a simpler form
than would otherwise be the case. A general name would
take a form such as

R(g).r.d

where R is a relational name; g is a generation identifier
(optional); r is a role name (optional); d is a domain name.
Since g is needed only when several generations of a given
relation exist, or are anticipated to exist, and r is needed
only when the relation R has two or more domains named
d, the simple form R.d will often be adequate.

1.5 Some Linguistic Aspects
The adoption of a relational model of data, as described

above, permits the development of a universal data sub-
language based on an applied predicate calculus. A first-
order predicate calculus suffices if the collection of relations
is in normal form. Such a language would provide a yard-
stick of linguistic power for all other proposed data lan-
guages, and would itself be a strong candidate for embedding
(with appropriate syntactic modification) in a variety of host
languages (programming, command- or problem-oriented).
While it is not the purpose of this paper to describe such a
language in detail, its salient features would be as follows.

Let us denote the data sublanguage by R and the host
language by H . R permits the declaration of relations and
their domains. Each declaration of a relation identifies the
primary key for that relation. Declared relations are added
to the system catalog for use by any members of the user
community who have appropriate authorization. H permits
supporting declarations which indicate, perhaps less perma-
nently, how these relations are represented in storage. R
permits the specification for retrieval of any subset of data
from the data bank. Action on such a retrieval request is
subject to security constraints.

The universality of the data sublanguage lies in its de-
scriptive ability (not its computing ability). In a large data
bank each subset of the data has a very large number of pos-
sible (and sensible) descriptions, even when we assume (as
we do) that there is only a finite set of function subroutines
to which the system has access for use in qualifying data for
retrieval. Thus, the class of qualification expressions which
can be used in a set specification must have the descrip-
tive power of the class of well-formed formulas of an applied
predicate calculus. It is well known that to preserve this
descriptive power it is unnecessary to express (in whatever
syntax is chosen) every formula of the selected predicate cal-
culus. For example, just those in prenex normal form are
adequate [9].

Arithmetic functions may be needed in the qualification
or other parts of retrieval statements. Such functions can
be defined in H and invoked in R.

A set so specified may be fetched for query purposes only,
or it may be held for possible changes. Insertions take the
form of adding new elements to declared relations without
regard to any ordering that may be present in their ma-
chine representation. Deletions which are effective for the
community (as opposed to the individual user or subcom-
munities) take the form of removing elements from declared
relations. Some deletions and updates may be triggered by
others, if deletion and update dependencies between speci-
fied relations are declared in R.

One important effect that the view adopted toward data
has on the language used to retrieve it is in the naming of
data elements and sets. Some aspects of this have been dis-
cussed in the previous section. With the usual network view,
users will often be burdened with coining and using more re-
lation names than are absolutely necessary, since names are
associated with paths (or path types) rather than with rela-
tions.

Once a user is aware that a certain relation is stored, he
will expect to be able to exploit5 it using any combination of
its arguments as “knowns” and the remaining arguments as
“unknowns,” because the information (like Everest) is there.
This is a system feature (missing from many current infor-

5Exploiting a relation includes query, update, and delete.

mation systems) which we shall call (logically) symmetric ex-
ploitation of relations. Naturally, symmetry in performance
is not to be expected.

To support symmetric exploitation of a single binary rela-
tion, two directed paths are needed. For a relation of degree
n, the number of paths to be named and controlled is n
factorial.

Again, if a relational view is adopted in which every n-
ary relation (n > 2) has to be expressed by the user as a
nested expression involving only binary relations (see Feld-
man’s LEAP System [10], for example) then 2n − 1 names
have to be coined instead of only n + 1 with direct n-ary
notation as described in Section 1.2. For example, the 4-ary
relation supply of Figure 1, which entails 5 names in n-ary
notation, would be represented in the form

P (supplier,Q(part,R(project, quantity)))

in nested binary notation and, thus, employ 7 names.
A further disadvantage of this kind of expression is its

asymmetry. Although this asymmetry does not prohibit
symmetric exploitation, it certainly makes some bases of in-
terrogation very awkward for the user to express (consider,
for example, a query for those parts and quantities related
to certain given projects via Q and R).

1.6 Expressible, Named, and Stored Relations
Associated with a data bank are two collections of rela-

tions: the named set and the expressible set. The named set
is the collection of all those relations that the community of
users can identify by means of a simple name (or identifier).
A relation R acquires membership in the named set when
a suitably authorized user declares R; it loses membership
when a suitably authorized user cancels the declaration of
R.

The expressible set is the total collection of relations that
can be designated by expressions in the data language. Such
expressions are constructed from simple names of relations
in the named set; names of generations, roles and domains;
logical connectives; the quantifiers of the predicate calculus;6

and certain constant relation symbols such as = , >. The
named set is a subset of the expressible set—usually a very
small subset.

Since some relations in the named set may be time-inde-
pendent combinations of others in that set, it is useful to
consider associating with the named set a collection of state-
ments that define these time-independent constraints. We
shall postpone further discussion of this until we have intro-
duced several operations on relations (see Section 2).

One of the major problems confronting the designer of a
data system which is to support a relational model for its
users is that of determining the class of stored representa-
tions to be supported. Ideally, the variety of permitted data
representations should be just adequate to cover the spec-
trum of performance requirements of the total collection of
installations. Too great a variety leads to unnecessary over-
head in storage and continual reinterpretation of descrip-
tions for the structures currently in effect.

For any selected class of stored representations the data
system must provide a means of translating user requests
expressed in the data language of the relational model into

6Because each relation in a practical data bank is a finite set
at every instant of time, the existential and universal quan-
tifiers can be expressed in terms of a function that counts
the number of elements in any finite set.

corresponding—and efficient—actions on the current stored
representation. For a high level data language this presents
a challenging design problem. Nevertheless, it is a prob-
lem which must be solved—as more users obtain concurrent
access to a large data bank, responsibility for providing ef-
ficient response and throughput shifts from the individual
user to the data system.

2. REDUNDANCY AND CONSISTENCY

2.1 Operations on Relations
Since relations are sets, all of the usual set operations are

applicable to them. Nevertheless, the result may not be a
relation; for example, the union of a binary relation and a
ternary relation is not a relation.

The operations discussed below are specifically for rela-
tions. These operations are introduced because of their key
role in deriving relations from other relations. Their prin-
cipal application is in noninferential information systems—
systems which do not provide logical inference services—
although their applicability is not necessarily destroyed when
such services are added.

Most users would not be directly concerned with these
operations. Information systems designers and people con-
cerned with data bank control should, however, be thor-
oughly familiar with them.

2.1.1 Permutation
A binary relation has an array representation with two

columns. Interchanging these columns yields the converse
relation. More generally, if a permutation is applied to the
columns of an n-ary relation, the resulting relation is said
to be a permutation of the given relation. There are, for
example, 4! = 24 permutations of the relation supply in
Figure 1, if we include the identity permutation which leaves
the ordering of columns unchanged.

Since the user’s relational model consists of a collection
of relationships (domain-unordered relations), permutation
is not relevant to such a model considered in isolation. It is,
however, relevant to the consideration of stored representa-
tions of the model. In a system which provides symmetric
exploitation of relations, the set of queries answerable by
a stored relation is identical to the set answerable by any
permutation of that relation. Although it is logically unnec-
essary to store both a relation and some permutation of it,
performance considerations could make it advisable.

2.1.2 Projection
Suppose now we select certain columns of a relation (strik-

ing out the others) and then remove from the resulting array
any duplication in the rows. The final array represents a re-
lation which is said to be a projection of the given relation.

A selection operator π is used to obtain any desired per-
mutation, projection, or combination of the two operations.
Thus, if L is a list of k indices7 L = i1, ii, . . . , ik and R is
an n-ary relation (n >= k), then πL(R) is the k-ary relation
whose jth column is column ij of R (j = 1,2, . . . ,k) except
that duplication in resulting rows is removed. Consider the
relation supply of Figure 1. A permuted projection of this
relation is exhibited in Figure 4. Note that, in this particu-
lar case, the projection has fewer n-tuples than the relation

7When dealing with relationships, we use domain names
(role-qualified whenever necessary) instead of domain po-
sitions.

from which it is derived.

2.1.3 Join
Suppose we are given two binary relations, which have

some domain in common. Under what circumstances can
we combine these relations to form a ternary relation which
preserves all of the information in the given relations?

The example in Figure 5 shows two relations R, S, which
are joinable without loss of information, while Figure 6 shows
a join of R with S. A binary relation R is joinable with a
binary relation S if there exists a ternary relation U such
that π12(U) = R and π23(U) = S. Any such ternary rela-
tion is called a join of R with S. If R, S are binary relations
such that π2(R) = π1(S), then R is joinable with S. One
join that always exists in such a case is the natural join of
R with S defined by

R ∗ S = {(a, b, c) : R(a, b) ∧ S(b, c)}
where R(a, b) has the value true if (a, b) is a member of R
and similarly for S(b, c). It is immediate that

π12(R ∗ S) = R

and

π23(R ∗ S) = S.

Note that the join shown in Figure 6 is the natural join of
R with S from Figure 5. Another join is shown in Figure 7.

Inspection of these relations reveals an element (element
1) of the domain part (the domain on which the join is to
be made) with the property that it possesses more than one
relative under R and also under S. It is this element which
gives rise to the plurality of joins. Such an element in the
joining domain is called a point of ambiguity with respect to
the joining of R with S.

If either π21(R) or S is a function,8 no point of ambiguity
can occur in joining R with S. In such a case, the natural
join of R with S is the only join of R with S. Note that the
reiterated qualification “of R with S” is necessary, because
S might be joinable with R (as well as R with S), and this
join would be an entirely separate consideration. In Figure
5, none of the relations R, π21(R), S, π21(S) is a function.

Ambiguity in the joining of R with S can sometimes be
resolved by means of other relations. Suppose we are given,
or can derive from sources independent of R and S, a relation
T on the domains project and supplier with the following
properties :

1. π1(T) = π2(S),

2. π2(T) = π1(R),

3. T (j, s) → ∃p(R(S, p) ∧ S(p, j)),

4. R(s, p) → ∃j(S(p, j) ∧ T (j, s)),

5. S(p, j) → ∃s(T (j, s) ∧R(s, p)),

then we may form a three-way join of R, S, T ; that is, a
ternary relation such that

π12(U) = R,π23(U) = S, π31(U) = T.

Such a join will be called a cyclic 3-join to distinguish it
from a linear 3-join which would be a quaternary relation
V such that

π12(V) = R, π23(V) = S, π34(V) = T.

Π31(supply) (project supplier)
5 1
5 2
1 4
7 2

Fig. 4. A permuted projection of the relation in Figure 1

R (supplier part) S (part project)
1 1 1 1
2 1 1 2
2 2 2 1

Fig. 5. Two joinable relations

R*S (supplier part project)
1 1 1
1 1 2
2 1 1
2 1 2
2 2 1

Fig. 6. The natural join of R with S (from Figure 5)

U (supplier part project)
1 1 2
2 1 1
2 2 1

Fig. 7. Another join of R with S (from Figure 5)

R (s p) S (p j) T (j s)
1 a a d d 1
2 a a e d 2
2 b b d e 2

b e e 2
Fig. 8. Binary relations with a plurality of cyclic 3-joins

U (s p j) U� (s p j)
1 a d 1 a d
2 a e 2 a d
2 b d 2 a e
2 b e 2 b d

2 b e
Fig. 9. Two cyclic 3-joins of the relations in Figure 8

R·S (project supplier)
1 1
1 2
2 1
2 2

Fig. 10. The natural composition of R with S (from
Figure 5)

T (project supplier)
1 2
2 1

Fig. 11. Another composition of R with S (from Figure 5)

R (supplier part) S (part project)
1 a a g
1 b b f
1 c c f
2 c c g
2 d d g
2 e e f

Fig. 12. Many joins, only one composition

While it is possible for more than one cyclic 3-join to exist
(see Figures 8,9, for an example), the circumstances under
which this can occur entail much more severe constraints
than those for a plurality of 2-joins. To be specific, the
relations R, S, T must possess points of ambiguity with
respect to joining R with S (say point x), S with T (say y),
and T with R (say z), and, furthermore, y must be a relative
of x under S, z a relative of y under T , and x a relative of z
under R. Note that in Figure 8 the points x = a; y = d; z = 2
have this property.

The natural linear 3-join of three binary relations R, S, T
is given by

R ∗ S ∗ T = {(a, b, c, d) : R(a, b) ∧ S(b, c) ∧ T (c, d)}
where parentheses are not needed on the left-hand side be-
cause the natural 2-join (∗) is associative. To obtain the
cyclic counterpart, we introduce the operator γ which pro-
duces a relation of degree n − 1 from a relation of degree n
by tying its ends together. Thus, if R is an n-ary relation
(n ≥ 2), the tie of R is defined by the equation

γ(R) = {(a1, a2, . . . , an−1) : R(a1, a2, . . . , an−1, an)∧a1 = an}.
We may now represent the natural cyclic 3-join of R, S,

T by the expression

γ(R ∗ S ∗ T).

Extension of the notions of linear and cyclic 3-join and
their natural counterparts to the joining of n binary rela-
tions (where n ≥ 3) is obvious. A few words may be appro-
priate, however, regarding the joining of relations which are
not necessarily binary. Consider the case of two relations R
(degree r), S(degree s) which are to be joined on p of their
domains (p < r, p < s). For simplicity, suppose these p
domains are the last p of the r domains of R, and the first p
of the s domains of S. If this were not so, we could always
apply appropriate permutations to make it so. Now, take
the Cartesian product of the first r-p domains of R, and call
this new domain A. Take the Cartesian product of the last
p domains of R, and call this B. Take the Cartesian product
of the last s-p domains of S and call this C.

We can treat R as if it were a binary relation on the do-
mains A, B. Similarly, we can treat S as if it were a binary
relation on the domains B, C. The notions of linear and
cyclic 3-join are now directly applicable. A similar approach
can be taken with the linear and cyclic n-joins of n relations
of assorted degrees.

2.1.4 Composition
The reader is probably familiar with the notion of compo-

sition applied to functions. We shall discuss a generalization
of that concept and apply it first to binary relations. Our
definitions of composition and composability are based very
directly on the definitions of join and joinability given above.

Suppose we are given two relations R, S. T is a composi-
tion of R with S if there exists a join U of R with S such
that T = π13(U). Thus, two relations are composable if and
only if they are joinable. However, the existence of more
than one join of R with S does not imply the existence of
more than one composition of R with S.

Corresponding to the natural join of R with S is the nat-

8A function is a binary relation, which is one-one or many-
one, but not one-many.

ural composition9 of R with S defined by

R · S = π13(R ∗ S).

Taking the relations R, S from Figure 5, their natural
composition is exhibited in Figure 10 and another composi-
tion is exhibited in Figure 11 (derived from the join exhibited
in Figure 7).

When two or more joins exist, the number of distinct com-
positions may be as few as one or as many as the number of
distinct joins. Figure 12 shows an example of two relations
which have several joins but only one composition. Note
that the ambiguity of point c is lost in composing R with S,
because of unambiguous associations made via the points a,
b, d, e.

Extension of composition to pairs of relations which are
not necessarily binary (and which may be of different de-
grees) follows the same pattern as extension of pairwise join-
ing to such relations.

A lack of understanding of relational composition has led
several systems designers into what may be called the con-
nection trap. This trap may be described in terms of the fol-
lowing example. Suppose each supplier description is linked
by pointers to the descriptions of each part supplied by that
supplier, and each part description is similarly linked to the
descriptions of each project which uses that part. A conclu-
sion is now drawn which is, in general, erroneous: namely
that, if all possible paths are followed from a given sup-
plier via the parts he supplies to the projects using those
parts, one will obtain a valid set of all projects supplied
by that supplier. Such a conclusion is correct only in the
very special case that the target relation between projects
and suppliers is, in fact, the natural composition of the other
two relations—and we must normally add the phrase “for all
time,” because this is usually implied in claims concerning
path-following techniques.

2.1.5 Restriction
A subset of a relation is a relation. One way in which

a relation S may act on a relation R to generate a subset
of R is through the operation restriction of R by S. This
operation is a generalization of the restriction of a function
to a subset of its domain, and is defined as follows.

Let L, M be equal-length lists of indices such that L =
i1, i2, . . . , ik,M = j1, j2, . . . , jk where k ≤ degree of R and k
≤ degree of S. Then the L, M restriction of R by S denoted
RL | MS is the maximal subset R� of R such that

πL(R
�) = πM (S).

The operation is defined only if equality is applicable be-
tween elements of πih(R) on the one hand and πjh(S) on
the other for all h = 1, 2, . . . , k. The three relations R, S,
R� of Figure 13 satisfy the equation R� = R(2,3) | (1,2)S.

We are now in a position to consider various applications
of these operations on relations.

2.2 Redundancy
Redundancy in the named set of relations must be dis-

tinguished from redundancy in the stored set of represen-
tations. We are primarily concerned here with the former.
To begin with, we need a precise notion of derivability for
relations.

9Other writers tend to ignore compositions other than the
natural one, and accordingly refer to this particular composi-
tion as the composition—see, for example, Kelley’s “General
Topology.”

R (s p j) S (p j) R� (s p j)
1 a A a A 1 a A
2 a A c B 2 a A
2 a B b B 2 b B
2 b A
2 b B

Fig. 13. Example of restriction

Suppose θ is a collection of operations on relations and
each operation has the property that from its operands it
yields a unique relation (thus natural join is eligible, but
join is not). A relation R is θ-derivable from a set S of
relations if there exists a sequence of operations from the
collection θ which, for all time, yields R from members of
S. The phrase “for all time” is present, because we are deal-
ing with time-varying relations, and our interest is in deriv-
ability which holds over a significant period of time. For
the named set of relationships in noninferential systems, it
appears that an adequate collection θ1 contains the follow-
ing operations: projection, natural join, tie, and restriction.
Permutation is irrelevant and natural composition need not
be included, because it is obtainable by taking a natural
join and then a projection. For the stored set of representa-
tions, an adequate collection θ2 of operations would include
permutation and additional operations concerned with sub-
setting and merging relations, and ordering and connecting
their elements.

2.2.1 Strong Redundancy
A set of relations is strongly redundant if it contains at

least one relation that possesses a projection which is deriv-
able from other projections of relations in the set. The fol-
lowing two examples are intended to explain why strong re-
dundancy is defined this way, and to demonstrate its prac-
tical use. In the first example the collection of relations
consists of just the following relation:

employee(serial#,name,manager#,managername)

with serial# as the primary key and manager# as a foreign
key. Let us denote the active domain by ∆t, and suppose
that

∆t(manager#) ⊂ ∆t(serial#)

and

∆t(managername) ⊂ ∆t(name)

for all time t. In this case the redundancy is obvious: the
domain managername is unnecessary. To see that it is a
strong redundancy as defined above, we observe that

π34(employee) = π12(employee)1 | 1π3(employee).

In the second example the collection of relations includes
a relation S describing suppliers with primary key s#, a
relation D describing departments with primary key d#, a
relation J describing projects with primary key j#, and the
following relations:

P (s#, d#, . . .), Q(s#, j#, . . .), R(d#, j#, . . .),

where in each case . . . denotes domains other than s#, d#,
j#. Let us suppose the following condition C is known to
hold independent of time: supplier s supplies department d
(relation P) if and only if supplier s supplies some project
j (relation Q) to which d is assigned (relation R). Then, we
can write the equation

π12(P) = π12(Q) · π21(R)

and thereby exhibit a strong redundancy.
An important reason for the existence of strong redundan-

cies in the named set of relationships is user convenience. A
particular case of this is the retention of semiobsolete rela-
tionships in the named set so that old programs that refer
to them by name can continue to run correctly. Knowledge
of the existence of strong redundancies in the named set en-
ables a system or data base administrator greater freedom
in the selection of stored representations to cope more ef-
ficiently with current traffic. If the strong redundancies in
the named set are directly reflected in strong redundancies
in the stored set (or if other strong redundancies are intro-
duced into the stored set), then, generally speaking, extra
storage space and update time are consumed with a poten-
tial drop in query time for some queries and in load on the
central processing units.

2.2.2 Weak Redundancy
A second type of redundancy may exist. In contrast to

strong redundancy it is not characterized by an equation.
A collection of relations is weakly redundant if it contains a
relation that has a projection which is not derivable from
other members but is at all times a projection of some join
of other projections of relations in the collection.

We can exhibit a weak redundancy by taking the second
example (cited above) for a strong redundancy, and assum-
ing now that condition C does not hold at all times.

The relations π12(P), π12(Q), π12(R) are complex10 rela-
tions with the possibility of points of ambiguity occurring
from time to time in the potential joining of any two. Un-
der these circumstances, none of them is derivable from the
other two. However, constraints do exist between them,
since each is a projection of some cyclic join of the three of
them. One of the weak redundancies can be characterized
by the statement: for all time, π12(P) is some composition
of π12(Q) with π21(R). The composition in question might
be the natural one at some instant and a nonnatural one at
another instant.

Generally speaking, weak redundancies are inherent in the
logical needs of the community of users. They are not re-
movable by the system or data base administrator. If they
appear at all, they appear in both the named set and the
stored set of representations.

2.3 Consistency
Whenever the named set of relations is redundant in ei-

ther sense, we shall associate with that set a collection of
statements which define all of the redundancies which hold
independent of time between the member relations. If the in-
formation system lacks—and it most probably will—detailed
semantic information about each named relation, it cannot
deduce the redundancies applicable to the named set. It
might, over a period of time, make attempts to induce the
redundancies, but such attempts would be fallible.

Given a collection C of time-varying relations, an asso-
ciated set Z of constraint statements and an instantaneous
value V for C, we shall call the state (C,Z, V) consistent
or inconsistent according as V does or does not satisfy Z.
For example, given stored relations R, S, T together with
the constraint statement “π12(T) is a composition of π12(R)
with π12(S)”, we may check from time to time that the val-
ues stored for R,S, T satisfy this constraint. An algorithm

10A binary relation is complex if neither it nor its converse
is a function.

for making this check would examine the first two columns
of each of R,S, T (in whatever way they are represented in
the system) and determine whether

1. π1(T) = π1(R),

2. π2(T) = π2(S),

3. for every element pair (a, c) in the relation π12(T) there
is an element b such that (a, b) is in π12(R) and (b, c)
is in π12(S).

There are practica1 problems (which we shall not discuss
here) in taking an instantaneous snapshot of a collection
of relations, some of which may be very large and highly
variable.

It is important to note that consistency as defined above is
a property of the instantaneous state of a data bank, and is
independent of how that state came about. Thus, in partic-
ular, there is no distinction made on the basis of whether a
user generated an inconsistency due to an act of omission or
an act of commission. Examination of a simple example will
show the reasonableness of this (possibly unconventional)
approach to consistency.

Suppose the named set C includes the relations S, J , D,
P , Q, R of the example in Section 2.2 and that P , Q, R
possess either the strong or weak redundancies described
therein (in the particular case now under consideration, it
does not matter which kind of redundancy occurs). Further,
suppose that at some time t the data bank state is consis-
tent and contains no project j such that supplier 2 supplies
project j and j is assigned to department 5. Accordingly,
there is no element (2, 5) in π12(P). Now, a user introduces
the element (2, 5) into π12(P) by inserting some appropri-
ate element into P. The data bank state is now inconsistent.
The inconsistency could have arisen from an act of omission,
if the input (2, 5) is correct, and there does exist a project j
such that supplier 2 supplies j and j is assigned to depart-
ment 5. In this case, it is very likely that the user intends in
the near future to insert elements into Q and R which will
have the effect of introducing (2, j) into π12(Q) and (5, j)
in π12(R). On the other hand, the input (2, 5) might have
been faulty. It could be the case that the user intended to in-
sert some other element into P—an element whose insertion
would transform a consistent state into a consistent state.
The point is that the system will normally have no way of re-
solving this question without interrogating its environment
(perhaps the user who created the inconsistency).

There are, of course, several possible ways in which a sys-
tem can detect inconsistencies and respond to them. In one
approach the system checks for possible inconsistency when-
ever an insertion, deletion, or key update occurs. Naturally,
such checking will slow these operations down. If an incon-
sistency has been generated, details are logged internally,
and if it is not remedied within some reasonable time inter-
val, either the user or someone responsible for the security
and integrity of the data is notified. Another approach is
to conduct consistency checking as a batch operation once
a day or less frequently. Inputs causing the inconsistencies
which remain in the data bank state at checking time can be
tracked down if the system maintains a journal of all state-
changing transactions. This latter approach would certainly
be superior if few non-transitory inconsistencies occurred.

2.4 Summary
In Section 1 a relational model of data is proposed as a

basis for protecting users of formatted data systems from the

potentially disruptive changes in data representation caused
by growth in the data bank and changes in traffic. A nor-
mal form for the time-varying collection of relationships is
introduced.

In Section 2 operations on relations and two types of re-
dundancy are defined and applied to the problem of main-
taining the data in a consistent state. This is bound to
become a serious practical problem as more and more differ-
ent types of data are integrated together into common data
banks.

Many questions are raised and left unanswered. For ex-
ample, only a few of the more important properties of the
data sublanguage in Section 1.4 are mentioned. Neither the
purely linguistic details of such a language nor the imple-
mentation problems are discussed. Nevertheless, the ma-
terial presented should be adequate for experienced sys-
tems programmers to visualize several approaches. It is also
hoped that this paper can contribute to greater precision in
work on formatted data systems.

Acknowledgment. It was C. T. Davies of IBM Pough-
keepsie who convinced the author of the need for data inde-
pendence in future information systems. The author wishes
to thank him and also F. P. Palermo, C. P. Wang, E. B.
Altman, and M. E. Senko of the IBM San Jose Research
Laboratory for helpful discussions.

3. REFERENCES
[1] Childs, D. L. Feasibility of a set-theoretical data

structure—a general structure based on a reconstituted
definition of relation. Proc. IFIP Cong., 1968, North
Holland Pub. Co., Amsterdam, p. 162–172.

[2] Levein, R. E., and Maron, M. E. A computer
system for inference execution and data retrieval.
Comm. ACM 10, 11 (Nov. 1967), 715–721.

[3] Bachman, C. W. Software for random access
processing. Datamation (Apr. 1965), 36–41.

[4] McGee, W. C. Generalized file processing. In Annual
Review in Automatic Programming 5, 13, Pergamon
Press, New York, 1969, pp. 77–149.

[5] Information Management System/360, Application
Description Manual H20-0524-1. IBM Corp., White
Plains, N. Y., July 1968.

[6] GIS (Generalized Information System), Application
Description Manual H20-0574. IBM Corp., White
Plains, N. Y., 1965.

[7] Bleier, R. E. Treating hierarchical data structures in
the SDC time-shared data management system
(TDMS). Proc. ACM 22nd Nat. Conf., 1967, MDI
Publications, Wayne, Pa., pp. 41–49.

[8] IDS Reference Manual GE 625/635, GE Inform. Sys.
Div., Pheonix, Ariz., CPB 1093B, Feb. 1968.

[9] Church, A. An Introduction to Mathematical Logic I.
Princeton U. Press, Princeton, N.J., 1956.

[10] Feldman, J. A., and Rovner, P. D. An Algol-based
associative language. Stanford Artificial Intelligence
Rep. AI-66, Aug. 1, 1968.

20 November 2011

SPE C IA L
F EAT U RE

T
he Second International NoCOUG SQL Challenge
was published on February 13, 2011, in the February
2011 issue of the NoCOUG Journal (http://bit.ly/
gVNZsW). SQL commands to create the data were

provided at http://bit.ly/g58WVn. The challenge was to find
the secret message hidden in a seemingly random collection
of words. The winners are Andre Araujo (Australia), Rob van
Wijk (Netherlands), and Ilya Chuhnakov (Russia.) Each win-
ner will receive an Amazon Kindle from contest sponsor
Pythian and the August Order of the Wooden Pretzel, in keep-
ing with the pronouncement of Steven Feuerstein that “some
people can perform seeming miracles with straight Es-Cue-El,
but the statements end up looking like pretzels created by some-
body who is experimenting with hallucinogens.”

The first reaction to the challenge was one of puzzlement.
Van Wijk wrote on his blog on February 14, 2011: “Unfortunately,
I don’t understand what needs to be done. Is it forming a sen-
tence? Three sentences? Do all words need to be used? If so, lots of
sentences can be made; how do I know which is the right one? I’m
afraid I don’t think it is a *SQL* Challenge, but I may be missing
something.” However, the puzzle quickly fell to the combined
onslaught of the international database community. At 6:11
a.m. PST on February 15, 2011, we received a solution from
Araujo. He had realized that the words formed a binary tree
and used “recursive common table expressions” to decode the
secret message (the winning solution to a contest conducted
by columnist Marilyn vos Savant in which contestants had to
write a sensible paragraph of one hundred unique words).

“TRYING TO TYPE ONE HUNDRED DISTINCT WORDS
IN A SINGLE PARAGRAPH IS REALLY TOUGH IF I CANNOT
REPEAT ANY OF THEM THEN PROBABLY THOSE WITH
MANY LETTERS SHOULD BE USED MAYBE SOME
READERS WILL UTILIZE DICTIONARIES THESAURUSES
THESAURI OR POSSIBLY EVEN ENCYCLOPEDIAS BUT MY
PREFERENCE HAS ALWAYS BEEN THAT GRAY MATTER
BETWEEN YOUR EARS SERIOUSLY MARILYN CHAL
LENGES SUCH AS THIS REQUIRE SKILLS BEYOND MATH
SCIENCE AND PHYSICS SO WHAT DO YOU ASK READING
COMPREHENSION WRITING ABILITY GOOD OLD
FASHIONED ELBOW GREASE SCIENTISTS DON’T CARE
ABOUT STRUCTURE THEY WANT RESULTS HEY LOOK
ONLY ELEVEN MORE LEFT FIVE FOUR THREE TWO
DONE”

Araujo posted a detailed analysis of the problem at http://
www.pythian.com/news/20757/nocoug-sql-challenge-
entry-2/. He admitted that—even though he had successfully

decoded the secret message—his solution would not work for
all binary trees. At 1:08 p.m. PST the same day, van Wijk sent
us a recursive CTE solution that works for all binary trees.
Here is the solution with some modifications for extra clarity.

-- Assign an ordering string to each node
WITH CTE(word1, word2, word3, ordering) AS
(
 -- This is the anchor member of the recursive CTE
 -- Identify the root of the binary tree
 SELECT
 r.word1, r.word2, r.word3,
 -- The ordering string for the root node is '1'
 cast('1' AS VARCHAR2(4000)) AS ordering
 FROM riddle r
 WHERE NOT EXISTS (
 SELECT * FROM riddle r2
 WHERE r.word2 IN (r2.word1, r2.word3))

 UNION ALL

 -- This is the recursive member of the recursive CTE
 -- Identify the left and right nodes if any
 SELECT
 r.word1, r.word2, r.word3,
 -- Compute the ordering string for this node
 CASE
 -- Handle the case of a left node
 WHEN r.word2 = CTE.word1
 -- Change the last digit to '0' and then append '1'
 THEN replace(CTE.ordering, '1', '0') || '1'
 -- Handle the case of a right node
 WHEN r.word2 = CTE.word3
 -- Change the last digit to '2' and then append '1'
 THEN replace(CTE.ordering, '1', '2') || '1'
 END AS ordering
 FROM riddle r JOIN CTE
 ON r.word2 IN (CTE.word1, CTE.word3)
)
-- Sort the words using the ordering string
SELECT word2 FROM CTE ORDER BY ordering;

A recursive CTE consists of an “anchor” member and one
or more “recursive” members. The anchor member generates
seed data, while the recursive member generates additional
data. Any additional data is fed right back to the recursive mem
ber, and the process continues until no more data is found. To
help understand van Wijk’s solution, store the words of the
sentence “Quick brown Fox jumps over the lazy dog” in a binary
tree as shown in Figure 1.

Second International
NoCOUG SQL Challenge

(continued on page 22)

http://bit.ly/gVNZsW
http://bit.ly/gVNZsW
http://bit.ly/g58WVn
http://www.pythian.com/news/20757/nocoug-sql-challenge-entry-2/
http://www.pythian.com/news/20757/nocoug-sql-challenge-entry-2/
http://www.pythian.com/news/20757/nocoug-sql-challenge-entry-2/

Change Data Capture and Data
Integration for Oracle®, MySQL®, MySQL® ®,
IBM® DB2, SQL Server®, Informix®, Informix® ®, Informix®, Informix,
Sybase® and others.

TOP PERFORMANCE

Copyright © 2011 HiT Software, Inc., A BackO� ce Associates, LLC Company. All rights reserved. HiT Software®, HiT Software logo, and DBMoto® are either trademarks or registered
trademarks of HiT Software and BackO� ce Associates, LLC in the United States and other countries. Oracle and Java are registered trademarks of Oracle and/or its a� liates. All other
products, company names, brand names, trademarks and logos are the property of their respective companies.

T +1.408.345.4001 www.hitsw.com info@hitsw.com

DATABASES SUPPORTED:
Oracle (v.9 and above) · MySQL · Microsoft SQL Server · IBM DB2 (all versions) · Netezza · Informix · Sybase ASE · SQL Anywhere · Ingres · PostgreSQL

DBMoto® is the best independent data replication and data integration solution available today for real-time Change Data Capture
across multiple databases. No consulting required — data replication functions, mapping and verifi cation are all available through
prebuilt graphical interfaces!

Change Data Capture for fast, non-intrusive data updates
Open APIs to integrate DBMoto into your architecture
Supports Oracle databases and Oracle® RAC
Excellent for migrating data between di� erent versions of Oracle
Multi-server synchronization

DBMoto Verifi er™ for data comparisons before and after data
replication
Easy-to-use — wizards, intuitive graphical interfaces,
customizable functions
Small footprint — extreme performance!

Visit www.hitsw.com/NoCOUG for more information, including:
Free comparison sheet “Why DBMoto for Oracle?”
Read case study “TriActive Supports SaaS Business Model using DBMoto for Data Synchronization”
Download FREE trial of DBMoto (with full support)

“As a non-DBA expert, I am thrilled to have
a software package that was easy to
understand and deploy, and that manages
my data synchronization for me.”

— TriActive

“We had a very specifi c replication requirement
to transform the data before it was entered
into the MySQL databases. Traditionally this
process required manual input to set up and
initiate. With DBMoto it’s as simple as pressing
a button.”

— Gullivers Travel Associates

“We evaluated virtually every other data
replication product on the market and
DBMoto came up as the clear winner
on price, functionality and usability.”

— EFCO Corporation

22 November 2011

CREATE TABLE riddle
(
 word1 VARCHAR2(32),
 word2 VARCHAR2(32) NOT NULL,
 word3 VARCHAR2(32)
);
INSERT INTO RIDDLE VALUES (NULL, 'Quick', NULL);
INSERT INTO RIDDLE VALUES ('Quick', 'brown', NULL);
INSERT INTO RIDDLE VALUES ('brown', 'Fox', 'dog');
INSERT INTO RIDDLE VALUES (NULL, 'jumps', NULL);
INSERT INTO RIDDLE VALUES ('jumps', 'over', NULL);
INSERT INTO RIDDLE VALUES ('over', 'the', 'lazy');
INSERT INTO RIDDLE VALUES (NULL, 'lazy', NULL);
INSERT INTO RIDDLE VALUES ('the', 'dog', NULL);

Figure 1.

Figure 2.

The sentence can be reconstructed by traversing the tree in
“in-order” fashion, which involves performing the following
operations recursively at each node, starting with the root node:
first traverse the left sub-tree (if any), then process the node it-
self, and finally traverse the right sub-tree (if any.) Recursion can
be achieved in SQL queries using “recursive common table ex-
pressions” (recursive CTEs). However, recursive CTEs only per-
mit “pre-order” traversal (parent, left sub-tree, right sub-tree),
not “in-order” traversal. Van Wijk worked around the problem
by using a two-phase approach. An ordering string is generated
for each node during the pre-order traversal of the tree (Figure
2), and the results are then sorted using the ordering string.

On March 16, 2011, Chuhnakov submitted two solutions.
The first used the MODEL clause, which—in his words—
works “automagically.” Columns are classified into “dimen-
sion” and “measure” arrays where the two terms have the same
meaning as for fact tables in data warehouses. The Word2 col-
umn is the obvious dimension array, while Word1 and Word3
are measure arrays. Chuhnakov creates another measure array
called Text to store messages contained in sub-trees. Each Text
value is recursively defined in terms of other Text values by
concatenating the left sub-tree with the current node and the
right sub-tree. Note that the CV function returns the current
value of its argument.

SELECT MAX(text)
 KEEP (DENSE_RANK LAST ORDER BY length(text)) AS
text
FROM
(
 SELECT * FROM riddle
 MODEL
 DIMENSION BY (word2)
 MEASURES
 (
 word1,
 word3,
 CAST(NULL AS VARCHAR2(4000)) AS text
)
 RULES AUTOMATIC ORDER
 (
 text [word2] = trim (text [word1 [CV (word2)]]
 || ' ' || CV (word2)
 || ' ' || text [word3 [CV (word2)]])
)
);

Chuhnakov’s second solution was similar to van Wijk’s so-
lution but used the CONNECT BY method.

WITH CTE AS
(
 SELECT
 r.word2,
 -- Compute the ordering string for this node
 replace(sys_connect_by_path(
 CASE
 WHEN r.word2 = PRIOR word1 THEN '0'
 WHEN r.word2 = PRIOR word3 THEN '2'
 END, '/'), '/') || '1' AS ordering
 FROM riddle r

 -- Identify the root of the binary tree
 START WITH NOT EXISTS (
 SELECT * FROM riddle r2
 WHERE r.word2 IN (r2.word1, r2.word3))

 -- Identify the left and right nodes if any
 CONNECT BY r.word2 IN (PRIOR r.word1, PRIOR r.word3)
)
-- Sort the words using the ordering string
SELECT word2 FROM CTE ORDER BY ordering;

Other solutions using techniques similar to the ones al-
ready described were subsequently received. s

(continued from page 20)

YOUR DESTINATION FOR ORACLE AND JAVA EXPERTISE
Written by leading technology professionals, Oracle Press books offer the most definitive,

complete, and up-to-date coverage of Oracle products and technologies available.

E-BOOKS: Go to OraclePressBooks.com for Adobe Digital Editions (PDF) or
Amazon for Kindle Editions.
Join the Oracle Press Community: www.OraclePressBooks.com

Follow us @OraclePress

Oracle Business Process Management
Suite 11g Handbook

Manoj Das, Manas Deb, and Mark Wilkins
Implement successful business process

management projects

Oracle Hyperion Financial Management
Tips And Techniques
Peter John Fugere, Jr.

Consolidate financial data and maintain a scalable
compliance framework

Effective MySQL: Optimizing SQL Statements
Ronald Bradford

Improve database and application performance

Java Programming
Poornachandra Sarang

Learn advanced skills from a Java expert

24 November 2011

SPONSORSHIP
APPRECIATION

Thank you!
Year 2011

Gold Vendors:
 ➤ Confio Software

➤ Database Specialists

➤ Delphix

➤ Embarcadero Technologies

➤ GridIron Systems

➤ Quest Software

➤ Quilogy Services

 For information about our Gold
Vendor Program, contact the
NoCOUG vendor coordinator via
email at:
vendor_coordinator@nocoug.org.

Chevron

Oracle Corp.

Long-term event sponsorship:

 Naren Nagtode, Treasurer

Beginning Balance
July 1, 2011 $ 66,555.16

Revenue

Membership Dues 1,140.00
Meeting Fees 410.00
Vendor Receipts 4,500.00
Advertising Fee –
Training Day 4,200.00
Sponsorship –
Interest 4.26
Paypal balance –
Total Revenue $ 10,254.26

Expenses

Regional Meeting 9,793.62
Journal 3,803.91
Membership 48.46
Administration 20.00
Website –
Board Meeting 22.56
Marketing –
Insurance –
Vendors 14.80
Tax –
Training Day 123.60
IOUG Registration –
Miscellaneous (190.00)

Total Expenses	 $ 13,636.95

Ending Balance
September 30, 2011 $ 63,172.47

TREAS U RER ’ S REP O RT $

Many Thanks to Our Sponsors

N
oCOUG would like to acknowledge and thank our generous sponsors for their contributions.

Without this sponsorship, it would not be possible to present regular events while offering

low-cost memberships. If your company is able to offer sponsorship at any level, please

contact NoCOUG’s president, Iggy Fernandez, at iggy_fernandez@hotmail.com. 

Oracle Professional
Consulting and
Training Services

Certified training and professional
consulting when you need it,
where you need it.

www.quilogyservices.com
education@aspect.com

866.784.5649

Boost Oracle Performance up to 10x

See Customer Success Stories at www.GridIronSystems.com

Schedule a Briefing by Emailing Sales@GridIronSystems.com

GridIron TurboCharger™
Market’s First SAN Application Acceleration Appliance

Bring tier 0 performance to your IT environment!
 ZERO changes to existing servers, storage and applications

 Cost saving by leveraging current infrastructure

Boost Oracle Performance up to 10x

See Customer Success Stories at www.GridIronSystems.com

Schedule a Briefing by Emailing Sales@GridIronSystems.com

GridIron TurboCharger™
Market’s First SAN Application Acceleration Appliance

Bring tier 0 performance to your IT environment!
 ZERO changes to existing servers, storage and applications

 Cost saving by leveraging current infrastructure

Boost Oracle Performance up to 10x

See Customer Success Stories at www.GridIronSystems.com

Schedule a Briefing by Emailing Sales@GridIronSystems.com

GridIron TurboCharger™
Market’s First SAN Application Acceleration Appliance

Bring tier 0 performance to your IT environment!
 ZERO changes to existing servers, storage and applications

 Cost saving by leveraging current infrastructure

Boost Oracle Performance up to 10x

See Customer Success Stories at www.GridIronSystems.com

Schedule a Briefing by Emailing Sales@GridIronSystems.com

GridIron TurboCharger™
Market’s First SAN Application Acceleration Appliance

Bring tier 0 performance to your IT environment!
 ZERO changes to existing servers, storage and applications

 Cost saving by leveraging current infrastructure

Turn Up the Heat on Oracle Performance

Confio Software, Boulder Colorado.

Database Monitoring and Performance Analysis

Go to www.Confio.com

and try Ignite 8 today!

Only Ignite delivers a complete picture of database

performance from an end user perspective. It analyzes

response time, queries, sessions, and server resources

to show both historical and real-time performance.

© 2011 Embarcadero Technologies, Inc.
All trademarks are the property of their respective owners.

Introducing DB PowerStudio for Oracle.
It provides proven, highly-visual tools
that save time and reduce errors by simpli-
fying and automating many of the complex
things you need to do to take care of your data, and your customers.

Whether you already use OEM or some other third-party tool, you’ll
�nd you can do many things faster with DB PowerStudio for Oracle.

Oracle Database Administration, Development,
and Performance Tuning...
Only Faster.
Taking care of your company’s
data is an important job.
Making it easier and faster is our’s.

Go Faster Now. >>> Get Free Trials and More at www.embarcadero.com

Don’t forget Data Modeling! Embarcadero ER/Studio®,
the industry’s best tool for collaborative data modeling.

DB PowerStudio
™

> Easier administration
with DBArtisan®

> Faster performance
with DB Optimizer™

> Faster development
with Rapid SQL™

> Simpli�ed change management
with DB Change Manager™

26 November 2011

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

NoCOUG Roll of Honor
	 1.	Ann Seki	 T	 T	 T	 T	 T				
	 2.	Dan Lamb	 VP				
	 3.	Gary Falsken	 S	 VP	 P	 PE				
	 4.	James Moore	 JE	 JE	 JE	 JE	 IL		 MAL	 T				
	 5.	John De Voy	 P	 P		 DI		 P	 WM	 WM			
	 6.	Kathy Kamibayashi	 OL					
	 7.	Merrilee Nohr	 DM	 DM	 DM	 DM	 DM	 DM	 DM	 DM	 DM	 DM	 DM		
	 8.	Dale Benjamin		 DS	 DS		
	 9.	Katy Walneuski		 OL		
	 10.	Mike Oelkers		 S	 S	 S	 S			
	 11.	Rita Palanov		 DI	 VP	 P	 P	 PE	 DM	 P	 PE		
	 12.	Janice Ogi			 IL		
	 13.	Judy Boyle			 OL		
	 14.	Tina Kraus			 DI	 IL	
	 15.	Gary Johnson				 VP	
	 16.	Karen Kirsten				 VC
	 17.	Arnie Weinstein					 VC	 VC
	 18.	Barry Geraghty					 VP
	 19.	John Pon					 DI	 DP	 VP	 DP	 DP	 IL
	 20.	Mark Warren					 DP	 JE	 IL	 MAL
	 21.	Corinna Taruc-Burk						 T	 T
	 22.	Joel Rosingana						 VP	 P	 IL	 IL	 VP	 VP	 P	 DM	 DM	 DM	 DM	 DM	 DM	 DM	 DM	
	23.	Kari Esler						 S				
	 24.	Loren Gruner						 IL	 VC	 VC	 MAL			
	 25.	Breana Benton Bartholomew							 S				
	 26.	Jerry Hughes							 MAL	 MAL
	 27.	John Rommel							 MAL
	28.	Rich Matheson							 DP
	29.	Karen Bukowski								 S	 WM
	30.	Vilin Roufchaie								 MAL	 VP	 P	 P	 IL	 MAL	 MAL	 MAL						
	 31.	Walter Schenk								 VP	 P				
	 32.	Hans Yip									 T	 WM
	33.	Marshall Stevenson									 VC	 VC
	34.	Richard Flores									 S	 MAL
	35.	Cecile Lavoie										 DP	 MAL
	36.	Judy Lyman										 ST	 ST	 ST	 ST	 ST	 ST						
	 37.	Ken Leonard											 IL
	 38.	Lisa Loper											 JE	 JE	 JE	 JE	 JE	 VC	 P	 VC			
	 39.	Roger Schrag											 WM	 VP	 P	 P	 DCP	 DCP	 DCP	 P			
	 40.	Darrin Swan												 MAL	 VP	 VP	 P	 P	 VP				
	 41.	Ganesh Sankar												 VC	 MAL								
	 42.	Hamid Minoui												 MAL	 IL	 IL	 TC	 TC	 TC	 TC			
	43.	Vadim Barilko												 WM	 WM								
	 44.	Colette Lamm													 DCP	 VC	 VP						
	 45.	Eric Buskirk													 MAL	 DCP							
	 46.	Mike DeVito													 VC								
	 47.	Eric Hutchinson														 WM	 WM	 WM	 WM	 WM	 WM	 WM	 WM
	48.	Jen Hong														 DP	 DP	 VP	 ST	 ST	 VP	 VP	 MAL
	49.	Laurie Robbins														 JE							
	 50.	Les Kopari														 DP	 DP						
	 51.	Randy Samberg														 MAL	 TL	 TL	 TL	 DCP	 DCP	 DCP	 TC
	52.	Diane Lee															 VC	 ST	 VC				
	 53.	Iggy Fernandez															 IL	 JE	 JE	 JE	 JE	 JE	 P
	54.	Naren Nagtode															 MAL	 DP	 DP	 DP	 ST	 ST	 ST
	55.	Hanan Hit																 MAL	 TL	 VP	 P	 P	 VP
	56.	Claudia Zeiler																		 TL	 TL	 VC	
	 57.	Gwen Shapira																			 TC	 TC	 DCP
	58.	Noelle Stimely																			 VC	 MAL	
	 59.	Jenny Lin																				 DP	
	60.	Omar Anwar																				 TL	 VC
	 61.	Scott Alexander																				 MAL	 SC
	62.	Dave Abercrombie																					 JE

Joel Rosingana

—LEGEND—
DCP	 Director of Conference Programming
DI	 Director of Improvements
DM	 Director of Membership
DP	 Director of Publicity
DS	 Director of SIGs
IL	 IOUG Liaison
JE	 Journal Editor
MAL	 Member at Large
OL	 Oracle Liaison
P	 President
PE	 President Emeritus
S	 Secretary
SC	 Speaker Coordinator
ST	 Secretary/Treasurer
T	 Treasurer
TC	 Training Coordinator
TL	 Track Leader
VC	 Vendor Coordinator
VP	 Vice President
WM	 Webmaster

• Cost-effective and flexible extension of your

IT team

• Proactive database maintenance and quick

resolution of problems by Oracle experts

• Increased database uptime

• Improved database performance

• Constant database monitoring with

Database Rx

• Onsite and offsite flexibility

• Reliable support from a stable team of DBAs

familiar with your databases

Keeping your Oracle database systems highly available takes knowledge, skill, and experience. It also takes knowing that

each environment is different. From large companies that need additional DBA support and specialized expertise to small

companies that don’t require a full-time onsite DBA, flexibility is the key. That’s why Database Specialists offers a flexible

service called DBA Pro. With DBA Pro, we work with you to configure a program that best suits your needs and helps you

deal with any Oracle issues that arise. You receive cost-effective basic services for development systems and more com-

prehensive plans for production and mission-critical Oracle systems.

DBA Pro’s mix and match service components

Access to experienced senior Oracle expertise when you need it

We work as an extension of your team to set up and manage your Oracle databases to maintain reliability, scalability,

and peak performance. When you become a DBA Pro client, you are assigned a primary and secondary Database

Specialists DBA. They’ll become intimately familiar with your systems. When you need us, just call our toll-free number

or send email for assistance from an experienced DBA during regular business hours. If you need a fuller range of

coverage with guaranteed response times, you may choose our 24 x 7 option.

24 x 7 availability with guaranteed response time

For managing mission-critical systems, no service is more valuable than being able to call on a team of experts to solve

a database problem quickly and efficiently. You may call in an emergency request for help at any time, knowing your call

will be answered by a Database Specialists DBA within a guaranteed response time.

Daily review and recommendations for database care

A Database Specialists DBA will perform a daily review of activity and alerts on your Oracle database. This aids in a proac-

tive approach to managing your database systems. After each review, you receive personalized recommendations, com-

ments, and action items via email. This information is stored in the Database Rx Performance Portal for future reference.

Monthly review and report

Looking at trends and focusing on performance, availability, and stability are critical over time. Each month, a Database

Specialists DBA will review activity and alerts on your Oracle database and prepare a comprehensive report for you.

Proactive maintenance

When you want Database Specialists to handle ongoing proactive maintenance, we can automatically access your data-

base remotely and address issues directly — if the maintenance procedure is one you have pre-authorized us to perform.

You can rest assured knowing your Oracle systems are in good hands.

Onsite and offsite flexibility

You may choose to have Database Specialists consultants work onsite so they can work closely with your own DBA staff,

or you may bring us onsite only for specific projects. Or you may choose to save money on travel time and infrastructure

setup by having work done remotely. With DBA Pro we provide the most appropriate service program for you.

CUSTOMIZABLE SERVICE PLANS FOR ORACLE SYSTEMSD B A P R O B E N E F I T S

C A L L 1 - 8 8 8 - 6 4 8 - 0 5 0 0 T O D I S C U S S A S E R V I C E P L A N

Database Specialists: DBA Pro Service

© 2001, Database Specialists, Inc.
Database Rx is a trademark of Database Specialists,
Oracle is a registered trademark of Oracle Corporation.
All rights reserved.

All DBA Pro services include Database Rx, our

automated database monitoring and alert

notification service. Database Rx monitors

these and other key areas:

Instance configuration parameters

Messages in the alert log

I/O and free space

Tablespace sizing and configuration

Redo log configuration

Rollback segment configuration and contention

Temporary tablespace configuration

User configuration

Session statistics

Wait events and locks

Latch statistics and contention

Shared pool statistics

SQL statement execution and performance

Object sizing and storage

Index definitions and usability

Database jobs

Customer-defined metrics and alerts

“Database Specialists offers a
well-rounded set of experts who can
assist companies in a wide range of
database-related activities. It is clear
that they are an asset to any team.”

Wm. Brad Gallien

Vice President

NetForce, Inc.

TRUST DATABASE SPECIALISTS FOR ONGOING DATABASE SUPPORTI N C L U D E D W I T H D ATA B A S E R X

O R A C L E A P P L I C A T I O N S | B A C K U P A N D R E C O V E R Y S T R A T E G I E S | M I G R A T I O N S A N D U P G R A D E S | D A T A B A S E M O N I T O R I N G

S Y S T E M A R C H I T E C T U R E | D A T A B A S E D E S I G N | P R O D U C T I O N S U P P O R T | P E R F O R M A N C E T U N I N G | D A T A B A S E D E V E L O P M E N T

Our Oracle Certified Professionals have an average of eight years of experience, specifically with Oracle technology.

We have been providing Oracle systems consulting since 1995. Our consultants know how to assess the situation, plan

solutions in a timely manner, tackle system issues with efficiency and accuracy, and transfer critical knowledge to your

in-house personnel. After all, there’s no substitute for experience.

Database Rx: automated system monitoring included with all DBA Pro services

All DBA Pro plans include the use of Database Rx, our automated web-based Oracle database monitoring and alert

notification service. Depending on the service plan you choose, you can designate whether your in-house staff or the

DBA Pro team receives ongoing database alerts. You’ll also have an accurate record of your service history. All database

activity and performance history, calls and requests to Database Specialists, recommendations by Database Specialists

DBAs, and monthly reports are easily accessible at the Database Rx Performance Portal 24 x 7 via HTTPS.

Database access and security

Except for pre-authorized maintenance services, there is no need to provide Database Specialists with constant access

to your database or full DBA privileges. You may choose to provide read-only or DBA-privileged access in specific instances

in order to perform a specific task, but Database Specialists DBAs won’t be logging in to your database unless you want

us to. Database Rx uses a unique push technology that allows us to effectively monitor your databases and give you

detailed recommendations without logging in to your database remotely.

Full database administration outsourcing

By configuring a DBA Pro service plan with all available components, you get a full DBA outsourcing solution for

mission-critical systems — including proactive monitoring, 24 x 7 availability, full database maintenance, and

special projects.

Special projects

As we work together with you as part of your database support team, you may find you need additional assistance

in areas such as performance tuning, backup and recovery planning, database migrations or upgrades, mentoring, and

special projects. These can be performed onsite or offsite, depending on the task. And, we’ll have the benefit of our

ongoing familiarity with your system developed through our DBA Pro services.

Database Specialists, Inc.

388 Market Street, Suite 400, San Francisco, CA 94111

Tel: 415-344-0500 | Fax: 415-344-0509 | Toll-Free: 888-648-0500

www.dbspecialists.com

Database Specialists: DBA Pro Service

NoCOUG
P.O. Box 3282
Danville, CA 94526

FIRST-CLASS MAIL
U.S. POSTAGE

PAID
SAN FRANCISCO, CA

PERMIT NO. 11882

RSVP online at http://www.nocoug.org/rsvp.html

8:00 a.m.–9:00	 Registration and Continental Breakfast—Refreshments served

9:00–9:30	 Welcome: Iggy Fernandez, NoCOUG president

9:30–10:30	 Keynote: Coding Therapy for Database Professionals—Steven Feuerstein, Quest Software

10:30–11:00	 Break and Book Signing

11:00–11:50	 Parallel Sessions #1

	 Hahn: Four Things Every DBA and Developer Should Know About Oracle—Andrew Zitelli, Thales Raytheon

	 Boole: Making the Most of PL/SQL Error Management Features—Steven Feuerstein, Quest Software

	 Lovelace: Oracle Database Cloud Service—Richard Greenwald, Oracle

11:50–12:40 p.m.	 Lunch

12:40–1:30	 Parallel Sessions #2

	 Hahn: The History of Oracle Performance Analysis—Craig Shallahamer, OraPub

	 Boole: Real-Time SQL Monitoring—Greg Rahn, Oracle

	 Lovelace: The Case for Manual SQL Tuning—Dan Tow, Singing SQL

1:30–2:00	 Break and Refreshments

2:00–2:50	 Parallel Sessions #3

	 Hahn: Oracle Database Appliance—David Crawford, Cloud Creek Systems

	 Boole: Resolving Buffer Busy Waits—Craig Shallahamer, OraPub

	 Lovelace: Best Practices for Managing Optimizer Statistics—Maria Colgan, Oracle

2:50–3:10	 Raffle

3:10–4:00	 Parallel Sessions #4

	 Hahn: Under the Hood of Oracle ASM: Fault Tolerance—Alex Gorbachev, Pythian

	 Boole: Visual SQL Tuning By Example—Kyle Hailey, Delphix

	 Lovelace: Oracle NoSQL Database—Marie-Anne Neimat, Oracle

4:00–5:00	 Exhibition

NoCOUG Conference #100
Sponsored by Quest Software—Simplicity at Work

November 9, 2011—Computer History Museum, Mountain View
Please visit http://www.nocoug.org for updates and directions, and to submit your RSVP.

Cost: $50 admission fee for non-members. Members free. Includes lunch voucher.

Th
e

N
oC

O
UG

 Jo
ur

na
l d

es
ig

n
an

d
pr

od
uc

tio
n:

 G
ira

ffe
x,

 In
c.

, S
.F.

Co

py
ed

iti
ng

: K
ar

en
 M

ea
d,

 C
re

at
iv

e
So

lu
tio

ns
. C

ov
er

 im
ag

e:
 p

ho
to

s.c
om

.

	NoCOUG201111-CVR-fyi
	NoCOUG201111-fyi

