
11/20/2011 

1 

Sanity during Change 

Arup Nanda 

The $zillion Question 

• If it ain’t broken, don’t fix it! 

• Must Have Answers 

– What will happen – will the database at least perform as 
much as right now, or it might be worse? 

– How do we know? 

– How certain are we? 

Database 11g Upgrade 
2 



11/20/2011 

2 

Risks during Migration 
• Optimizer Plans could be change for better (or, 

worse) – performance related 

• Functionality may have changed, producing 
unexpected results 

• New bugs may be encountered for which there will 
be no patches, at least not immediately 

• Some new functionality may require further 
attention 

Database 11g Upgrade 
3 

What we will cover 

• Executing a stress-free migration 

• Ensuring Efficient Plans 

• Tools at your disposal 

– Database Replay 

– SQL Performance Analyzer 

– SQL Plan Baselines 

– Pending Stats 

– Intelligent Stats 

 

 
RAC for Beginners 

4 



11/20/2011 

3 

Parts of a System 

 

Database 11g Upgrade 
5 

Storage 

These are the 
only parts that 
are changing 

Database Replay 

• This is where Database Replay really shines 

• It captures the actual transactions from the 

production system, in the same order, with the 

same breaks in between 

• It‟s as if the users are redoing the same activities in 

front of the test system 

• Even sequence numbers are fetched the same way 

they occurred in production 

• No primary key violation 

Database 11g Upgrade 
6 



11/20/2011 

4 

Workload Capture 

• The package dbms_workload_capture captures 

workload from current production 

• The package exists in 11g, so what about 10g? 

• In 10.2.0.4 it exists 

• For earlier versions, a patch needs to be applied 

– Refer to MetaLink Note 560977.1 for details 

• The easiest is to use Enterprise Manager Grid 

Control 

• Grid Control 10.2.0.5 has the toolkit 

 
Database 11g Upgrade 

7 

Steps 

• Capture Workload 

– It produces a set of files with extension *.rec 

• Move them to the 11g system 

• Use Replay feature in command line or EM to 

replay the activities 

• Both these activities take AWR snapshots before 

and after events.  

– Use AWR Compare Period Report to compare the 
performance. 

Database 11g Upgrade 
8 



11/20/2011 

5 

Capture from 10g 
• Create a directory to hold the rec files 

create directory \  

• Add a Filter 
BEGIN 

dbms_workload_capture.add_filter( 

   fname      => 'myapp_filter', 

   fattribute => 'USER', 

   fvalue     => 'MYAPP'); 

END; 

• Allows you to capture only those for the user called 
MYAPP 

Database 11g Upgrade 
9 

• Start the Capture Process 
BEGIN 

DBMS_WORKLOAD_CAPTURE.START_CAPTURE ( 

   name              => 'capture1', 

   dir               => 'DBREPLAY', 

   duration          => 3600, 

   default_action    => 'INCLUDE', 

   auto_unrestrict   => TRUE); 

END; 

• It will generate a lot of files in the format wcr_*.rec 

in the c:\DBReplay directory. 

Database 11g Upgrade 
10 



11/20/2011 

6 

• Get the capture ID 
select ID from dba_workload_captures 

 

• Export the AWR 
begin 

  dbms_workload_capture.export_awr  

    (capture_id => <captureid>); 

end; 

• AWR will also be exported as a dumpfile in the 
DBReplay directory. 

• Copy all the files in that directory to the target system 

Database 11g Upgrade 
11 

Replay Steps 

1. Create directory on the target 

2. Pre-process the captured workload 

3. Replay the workload 

4. From the command line  
$ wrc system/manager 

replaydir=/u01/oracle/rat 

Database 11g Upgrade 
12 



11/20/2011 

7 

During Replay 

 

Database 11g Upgrade 
13 

Gives you an idea 
about how much is 

left 

Get the Reports 

 

Database 11g Upgrade 
14 

This “compare” 
report, aka “Diff-
diff Report” is the 
most important. It 

shows the system 
stats on the target 

and the source 
when the same 
activities were 
occurred there. 



11/20/2011 

8 

SQL Performance Analyzer 
• Some SQLs showed regression, i.e. they 

underperformed compared to 10g 

• You need to know why  

– optimizer environment, bind variables, etc? 

• SPA allows you to run captured SQLs in differing 
environments 
– In the same database but 

• Different optimizer parameters 

• Different ways of collecting stats,  

• With pending stats in 11g, can validate on PROD during 
maintenance windows/non-peak 

• Different indexes, or MVs 

Database 11g Upgrade 
15 

Source of SQLs 

• Shared Pool 

• Captured from Production during a workload 

• Stored in a SQL Tuning Set (STS) 

• Continuous Capture functionality to capture all 

SQLs 

 

 

 

Database 11g Upgrade 
16 

STS 

Source Export 
And 

Import 

STS 

Target Replay 



11/20/2011 

9 

Capture from 10g 
• The following captures the SQL Statements into a 

SQL Tuning Set (STS) in 10g. 
BEGIN dbms_sqltune.capture_cursor_cache_sqlset( 

     sqlset_name    =>'10GSTS', 

     time_limit     => '3600',  

     repeat_interval=>'300',  

     sqlset_owner   =>'SYS');  

END; 

This incrementally captures the SQL statements every 5 
mins for 10 hours. 

• You can export this STS and import into 11g. 

Database 11g Upgrade 
17 

SPA Tasks 

• Create an SPA Task on the STS imported 

• Replay with Optimizer = 10.2.0.4 

• Replay with Optimizer = 11.1.0.7 

• Compare and make adjustments 

• Repeat 2 through 4 as needed 

• http://www.oracle.com/technology/oramag/oracle/08-

mar/o28sqlperf.html 

Database 11g Upgrade 
18 



11/20/2011 

10 

SPA Optimizer Change 

 

Database 11g Upgrade 
19 

Create an SPA Task on the 
STS imported 

Compare 

 

Database 11g Upgrade 
20 

Elapsed time 

significantly 
reduced 

Majority of 

SQLs didn’t see 
their plan 
changed! 



11/20/2011 

11 

Compare … 

 

Database 11g Upgrade 
21 

Shows the SQL_IDs, we 

can find from v$sql 

Plan changed for this SQL, Using 
SQL_ID, check from v$sql 

 

Database 11g Upgrade 
22 

You can call upon SQL Tuning 
Advisor to suggest possible tuning 

options on this SQL 

The report continues with the plans 
before and after the upgrade, so you can 

compare them 



11/20/2011 

12 

 

RAC for Beginners 
23 

Pending 
Stats 

Lowdown on Stats 
• Optimizer Statistics on tables and indexes are vital 

for the optimizer to compute optimal execution 
plans 

• In many cases you gather stats with estimate  

• Without accurate stats, the optimizer may decide on 
a sub-optimal execution plan 

• When stats change, the optimizer may change the 
plan 

• Truth: stats affect the plan, but not necessarily 
positively 

24 



11/20/2011 

13 

Meet John the DBA 
• John the DBA at Acme Bank 

• Hard working, knowledgeable, politically not very 

savvy 

• Collects statistics every day via an automated job 

25 

Data: Value vs Pattern 
 

26 

State Customers %age 

CT 1,000 10% 

NY 5,000 50% 

CA 4,000 40% 
State Customers %age 

CT 2,000 10% 

NY 10,000 50% 

CA 8,000 40% 

After some days 

Important 

The data itself changed; but the 
pattern did not. The new stats will not 
change the execution path, and 
therefore probably not needed 



11/20/2011 

14 

Case 2 
 

27 

State Customers %age 

CT 1,000 10% 

NY 5,000 50% 

CA 4,000 40% 
State Customers %age 

CT 2,500 12.5% 

NY 10,500 52.5% 

CA 7,000 35.0% 

After some days 

Important 

The pattern is different; but still close 
to the original pattern. Most queries 
should perform well with the original 
execution plan. 

Naked Truth 
• Stats can actually create performance issues 

• Example 

– A query plan had nested loop as a path 

– Data changed in the underlying tables 

– But the pattern did not change much 

– So, NL was still the best path 

– Stats were collected 

– Optimizer detected the subtle change in data pattern 
and changed to hash joins 

– Disaster! 

28 



11/20/2011 

15 

The problem with new stats 
• The CBO does not now what is close enough 

– For it, 50.0% and 52.5% are different values 

• The internal logic of the CBO may determine a 

different plan due to this subtle change 

• This new plan may be better, or worse 

– This is why many experts recommend not collecting 

stats when database performance is acceptable 

29 

John followed the advice 
• John followed the advice  

• He stopped collecting stats 

• The database performance was acceptable 

• But one day – disaster struck! 

 

30 



11/20/2011 

16 

Data Pattern Changed 
 

31 

State Customers %age 

CT 1,000 10% 

NY 5,000 50% 

CA 4,000 40% 
State Customers %age 

CT 10,500 52.5% 

NY 2,500 12.5% 

CA 7,000 35.0% 

After some days 

CT was 12.5% but now it is 52.5% 

• Optimal Plan is Different 

– Queries against CT used to have index scan; but now a 

full table scan would be more appropriate 

• Since the stats were not collected, CBO did not 

know about the change 

– Queries against CT still used index scan 

– And NY still used full table scan 

• Disaster! 

• John was blamed 

32 



11/20/2011 

17 

What’s the Solution? 
• If only you could predict the effect of new stats before 

the CBO uses them 
– and make CBO use them if there are no untoward issues 

• Other Option 
– You can collect stats in a different database 

– Test in that database 

– If everything looks ok, you can export the stats from there 
and import into production database 

• The other option is not a very good one 
– The test database may not have the same distribution 

– It may not have the same workload 

– Worst – you don‟t have time to test all queries 

 

33 

Pending Stats 
• In Oracle 11g R1, John can use a new feature – 

Pending Statistics 

• In short 

– John collects stats as usual 

– But the CBO does not see these new stats 

– John examines the effects of the stats on queries of a 

session where these new stats are active 

– If all look well, he can “publish” these stats 

– Otherwise, he discards them 

34 



11/20/2011 

18 

How to Make Stats “Pending” 
• It‟s the property of the table (or index) 

• Set it by a packaged procedure 
DBMS_STATS.SET_TABLE_PREFS 

• Example: 
begin 
  dbms_stats.set_table_prefs (  
    ownname => 'ARUP',  
    tabname => 'SALES',  
    pname   => 'PUBLISH',  
    pvalue  => 'FALSE'  
  );      
end; 

• After this, the stats collected will be pending 

35 

prefs_false.sql 
sales_stats.sql_ 

Table Preferences 
• The procedure is not new. Used before to set the 

default properties for stats collection on a table. 

– e.g. to set the default degree of stats collection on the 
table to 4: 

 
 dbms_stats.set_table_prefs (  
    ownname => 'ARUP',  
    tabname => 'SALES',  

    pname   => 'DEGREE',  
    pvalue  => 4  
  );  

36 



11/20/2011 

19 

Stats after “Pending” 
• When the table property of stats “PUBLISH” is set 

to “”FALSE” 

• The stats are not visible to the Optimizer 

• The stats will not be updated on USER_TABLES 

view either: 
select to_char(last_analyzed,'mm/dd/yy hh24:mi:ss')  

from user_tables 
where table_name = 'SALES'; 

  
TO_CHAR(LAST_ANAL 

----------------- 
09/10/07 22:04:37 

37 

la.sql_ 

Visibility of Pending Stats 
• The stats will be visible on a new view 

USER_TAB_PENDING_STATS 

 
select to_char(last_analyzed,'mm/dd/yy hh24:mi:ss') 

from user_tab_pending_stats 
where table_name = 'SALES'; 

  
TO_CHAR(LAST_ANAL 

----------------- 
09/21/07 11:03:35 

 

38 

pending.sql_ 



11/20/2011 

20 

Checking the Effect of Pending Stats 

• Set a special parameter in the session 

alter session set 
optimizer_use_pending_statistics = true; 

• After this setting, the CBO will consider the new 

stats in that session only 

• You can even create and index and collect the 

pending stats on the presence of the index 

• To check if the index would make any sense 

39 

alter_true.sql_ 

Publishing Stats 
• Once satisfied, you can make the stats visible to 

optimizer 
begin 

   dbms_stats.publish_pending_stats 

      ('ARUP', 'SALES'); 

end; 

• Now the USER_TABLES will show the correct stats 

• Optimizer will use the newly collected stats 

• Pending Stats will be deleted 

40 

publish.sql_ 



11/20/2011 

21 

What if the New Stats make it Worse? 

• Simply delete them 
begin 

  dbms_stats.delete_pending_stats  

end; 

• The pending stats will be deleted 

• You will not be able to publish them 

 

41 

Checking for Preferences 
• You can check for the preference for publishing 

stats on the table SALES: 
select dbms_stats.get_prefs ('PUBLISH','ARUP','SALES') from dual; 
 
DBMS_STATS.GET_PREFS('PUBLISH','ARUP','SALES') 
---------------------------------------------- 
FALSE 

• Or, here is another way, with the change time: 
select pname, valchar, valnum, chgtime 
from optstat_user_prefs$ 
where obj# = (select object_id from dba_objects 
where object_name  
 
PNAME      VALCHAR CHGTIME 
---------- ------- ----------------------------------- 
PUBLISH    TRUE    02-MAR-10 01.38.56.362783 PM -05:00 

 

 
42 



11/20/2011 

22 

Other Preferences 
• The table property is now set to FALSE 

• You can set the default stats gathering of a whole 

schema to pending 
begin 
    dbms_stats.set_schema_prefs ( 
        ownname => 'ARUP', 
        pname   => 'PUBLISH',     
        pvalue  => 'FALSE'); 

end; 

• You can set it for the whole database as well 

– dbms_stats.set_database_prefs 

43 

Loading of Partitioned Tables 
 

44 

1. Load Partition  P1 
of Table 

2. Rebuild Partition 
P1 of the Local 
Index 

3. Repeat for all local 
indexes 

4. Collect stats 

1. Load Partition  P2 
of Table 

2. Rebuild Partition 
P2 of the Local 
Index 

3. Repeat for all local 
indexes 

4. Collect stats 

Collect Table Global Stats 

1. You may want to make sure that the final table global stats are collected 
after all partition stats are gathered 

2. And all are visible to CBO at the same time 



11/20/2011 

23 

Options 
• You can postpone the stats collection of the 

partitions to the very end 

• But that means you will lose the processing window 

that was available after the partition was loaded 

• Better option: set the table‟s stats PUBLISH 

preference to FALSE 

• Once the partition is loaded, collect the stat; but 

defer the publication to the very end 

 

45 

Defer Partition Table Stats 
 

46 

Time 

O
ri

gi
na

l 

Time 

Ch
an

ge
d

 

Table Loading 

Index Building 

Stats Collection 

Stats visible 
here 

Stats visible 
here 

P1 

P2 

P3 

P1 

P2 

P3 



11/20/2011 

24 

Stats History 
• When new stats are collected, they are maintained 

in a history as well  

• In the table SYS.WRI$_OPTSTAT_TAB_HISTORY 

• Exposed through *_TAB_STATS_HISTORY 
select to_char(stats_update_time,'mm/dd/yy hh24:mi:ss') 

from user_tab_stats_history 

where table_name  
 

TO_CHAR(STATS_UPD 
----------------- 

03/01/10 21:32:57 
03/01/10 21:40:38 

 

47 

hist.sql_ 

Reinstate the Stats 
• Suppose things go wrong 

• You wish the older stats were present rather than the 
newly collected ones 

• You want to restore the old stats 
 
begin 
   dbms_stats.restore_table_stats ( 
       ownname         => 'ARUP', 
       tabname         => 'SALES', 
       as_of_timestamp => '14-SEP-07 11:59:00 AM' 
   ); 
end; 
 

 

•   

 

48 

reinstate.sql_ 



11/20/2011 

25 

Exporting the Pending Stats 
• First create a table to hold the stats 

begin 

   dbms_stats.create_stat_table ( 
      ownname  => 'ARUP', 
      stattab  => 'STAT_TABLE' 
   ); 
end; 

• This will create a table called STAT_TABLE 

• This table will hold the pending stats 

49 

cr_stattab.sql_ 

Export the stats 
• Now export the pending stats to the newly created 

stats table 
begin 
   dbms_stats.export_pending_stats ( 
     tabname    => 'SALES', 

     stattab    => 'STAT_TABLE' 
   ); 
end; 

• Now you can export the table and plug in these 

stats in a test database 

– dbms_stats.import_pending_stats 

50 

export.sql 
del_stats.sql 

import.sql_ 



11/20/2011 

26 

Real Application Testing 
• You can use Database Replay and SQL Performance Analyzer to recreate the 

production workload 

• But under the pending stats, to see the impact 

• In SPA use alter session set optimizer_use_pending_statistics = 
true; 

• That way you can predict the impact of the new stats with your specific workload 

51 

Some additional uses 
• You can create a SQL Profile in your session 

– With private stats 

• Then this profile can be applied to the other queries 

• You can create SQL Plan Management Baselines 

based on these private stats 

• Later you can apply these baselines to other 

sessions 

52 



11/20/2011 

27 

 

RAC for Beginners 
53 

SPM 

SQL Plan Management 
 

54 

SELECT * FROM EMP  

WHERE SAL>1000 

SQL Statement 
SQL_ID = a1b2c3d4 

SELECT 
  ACCESS  
     TABLE 
        INDEX 

SELECT 
  ACCESS  
     TABLE 
        INDEX 

optimizer_goal = first_rows 

db_file_multiblock_read_count 

optimizer_goal = all_rows 
db_file_multiblock_read_count 

Plan 1 

PLAN_HASH_VALUE = 1a2b3c 

Plan 2 
PLAN_HASH_VALUE = 2a3b4c A single SQL statement may 

have multiple plans associated 
with it 



11/20/2011 

28 

 

55 

SQL Statement S1 

Plan P1 

Plan P2 

Plan P3 

Baseline 

A baseline is a 
collection of plans 
for a specific SQL 

statement 

 

56 

SQL Statement S1 

Plan P1 

Plan P2 

Plan P3 

Baseline 

Plan P4 

A new plan was 
generated as a 
result of some 

change, e.g. the 
optimizer 

parameters were 
changed. This plan 

is added to the 
baseline 



11/20/2011 

29 

 

57 

SQL Statement S1 

Plan P1 

Plan P2 

Plan P3 

Baseline 

Plan P4 

When a SQL is 
reparsed, the optimizer 
compares the plan to 
the list of plans in the 
baseline, but not the 
newly generated plan 
as it is not “accepted”.  

 

58 

SQL Statement S1 

Plan P1 

Plan P2 

Plan P3 

Baseline 

Plan P3 

A plan is no longer 
valid, e.g. it had an 
index scan; but the 

index was later 
dropped. It is 

marked as such. 



11/20/2011 

30 

New Plan is Worse 
• Baselines contain the 

history of plans for an 

SQL statement 

• If there was a good plan 

ever, it will be there in 

the baseline 

• So the optimizer can 

choose the plan with the 

lowest cost 

 

59 

Plan P1 

Plan P2 

Plan P3 

Baseline 

Plan P4 

Cost = 10 

Cost = 12 

Cost = 9 

New plan. 
Cost = 15 

Optimizer will choose 
P3 even though the 
new plan generated 

was P4 

New Plan is the Best 
• Even if the new plan is 

the best, it will be not 

be immediately used 

• The DBA can later 

made the plan fit for 

consideration by 

“evolving” it! 

 

60 

Plan P1 

Plan P2 

Plan P3 

Baseline 

Plan P4 

Cost = 10 

Cost = 12 

Cost = 9 

New plan. 
Cost = 6 

Optimizer will 
choose P3 since it is 

the best in the list 
of “accepted” plans 



11/20/2011 

31 

 

61 

SQL Statement 

New Plan Generated 

any other 
accepted plans in 

baseline? 

Add this plan to the SMB 

Baseline this plan but set to Not 
Accepted 

Choose the best accepted plan 

Use this best plan, not the new 

plan 

yes no 

SQL Management Base 
• A repository where the following are stored 

– Statements 

– Plan histories 

– Baselines 

– SQL profiles 

• Stored in SYSAUX tablespace 

 

62 



11/20/2011 

32 

Configuring SMB 
To Check 

select parameter_name, parameter_value  

from dba_sql_management_config;  

PARAMETER_NAME          PAMETER_VALUE 

----------------------- ------------- 

SPACE_BUDGET_PERCENT               10 

PLAN_RETENTION_WEEKS               53 

To Change: 
BEGIN  

  DBMS_SPM.CONFIGURE(    

    'PLAN_RETENTION_WEEKS',100);  

END; 

63 

Adding Baselined Plans 
• To capture baselines 
alter session set 

optimizer_capture_sql_plan_baselines = true 

/ 

• … execute the queries at least 2 times each 

• Or run the application as usual 
alter session set 

optimizer_capture_sql_plan_baselines = false 

/ 

• A plan is baselined when a SQL is executed more 
than once 

64 



11/20/2011 

33 

Adding more plans 
• Change the optimizer parameter to use pending stats 

alter session set 

optimizer_use_pending_statistics = true; 

• a new plan is generated 

• Capture the plans for the baseline 
alter session set 
optimizer_capture_sql_plan_baselines = true; 

• Now all the plans will use pending stats in the session 

• The new plan is stored in baseline but not “accepted”; 

so it will not be used by the optimizer 

65 

To check for Plans in the baseline 
select SQL_HANDLE, PLAN_NAME 

from dba_sql_plan_baselines 

where SQL_TEXT like '%SPM_TEST%' 

/ 

 

SQL_HANDLE                     PLAN_NAME 

------------------------------ ----------------------------- 

SYS_SQL_4602aed1563f4540       SYS_SQL_PLAN_563f454011df68d0 

SYS_SQL_4602aed1563f4540       SYS_SQL_PLAN_563f454054bc8843 

 
 

 

 

66 

SQL Handle is the same since it’s the 
same SQL; but there are two plans 



11/20/2011 

34 

To See Plan Steps in Baseline 
• Package DBMS_XPLAN has a new function called 

display_sql_plan_baseline: 
select * from table ( 

    dbms_xplan.display_sql_plan_baseline ( 

        sql_handle=>'SYS_SQL_4602aed1563f4540', 

        format=>'basic note') 

    ) 

 

 

67 

Checking Plans Being Used 
Execution Plan 
---------------------------------------------------------- 
Plan hash value: 2329019749 
 

---------------------------------------------------------------------------------------------- 
| Id  | Operation                   | Name           | Rows  | Bytes | Cost (%CPU)| Time     |  
---------------------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT            |                | 17139 |  1690K|   588   (1)| 00:00:08 |  
|*  1 |  TABLE ACCESS BY INDEX ROWID| ACCOUNTS       | 17139 |  1690K|   588   (1)| 00:00:08 |  

|*  2 |   INDEX RANGE SCAN          | IN_ACCOUNTS_01 | 34278 |       |    82   (0)| 00:00:01 |  
---------------------------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 
--------------------------------------------------- 

 
   1 - filter("TEMPORARY"='Y') 
   2 - access("STATUS"='INVALID') 
 
Note 

----- 
   - SQL plan baseline "SYS_SQL_PLAN_51f8575d04eca402" used for this statement 
 

68 

This shows that a SQL Plan 

Baseline is being used. 



11/20/2011 

35 

Evolve a Plan 
• Make a plan as acceptable (only if it is better) 
variable rep CLOB 
begin 
 :rep :=  
   dbms_spm.evolve_sql_plan_baseline ( 

    sql_handle  
     
   ); 
end; 
/ 

• Variable REP shows the analysis. 

69 

Fixing a Plan 
• A plan can be fixed by: 

 dbms_spm.alter_sql_plan_baseline ( 

   

  plan_name => 'SYS_SQL_PLAN_51f8575d04eca402', 

  attribute_name => 'fixed', 

  attribute_value => 'YES' 

 ) 

• Once fixed, the plan will be given priority 

• More than one plan can be fixed 

• In that case optimizer chooses the best from them 

• To “unfix”, use  

70 

spm_test6.sql 



11/20/2011 

36 

Use of Baselines 
• Checking the plan before accepting new stats 

• Fixing Plan for Third Party Applications 

• Database Upgrades 

– Both within 11g and 10g->11g 

– Capture SQLs into STS then move the STS to 11g 

• Database Changes 

– Parameters, Tablespace layout, etc. 

– Fix first; then gradually unfix them 

71 

Stored Outlines 
• Outlines make a plan for a query fixed 

– The optimizer will pick up the fixed plan every time 

• Problem: 

– Based on the bind variable value, data distribution, etc. 
specific plan may change 

– A fixed plan may actually be worse 

 

 

72 



11/20/2011 

37 

Summary 
• You can modify the property of a table so that new stats are not immediately visible 

to the optimizer 

• In a session, you can use a special parameter to make the optimizer see these 

pending stats, so that you can test the effect of these stats. 

• If you are happy with the stats collected, you can make them visible to optimizer 

• Otherwise, you can discard the stats 

• You can see the history of stats collected on tables 

• You can restore a previously collected set of stats 

• You can export the pending stats to a test database 

• You can test the effect of the pending stats with your specific workload by SQL 

Performance Analyzer and Database Replay. 

• You can create baselines by using the pending stats 

73 

 

RAC for Beginners 
74 

Compound 
Stats 



11/20/2011 

38 

Effect of Stats on Two Columns 
• Optimizer Statistics on tables and indexes are vital 

for the optimizer to compute optimal execution 

plans 

• If there are stats on two different columns used in 

the query, how does the optimizer decide? 

• It takes the selectivity of each column, and 

multiplies that to get the selectivity for the query. 

Example 
• Two columns 

– Month of Birth: selectivity = 1/12 

– Zodiac Sign: selectivity = 1/12 

• What will be the selectivity of a query 

– Where zodiac sign = „Pisces‟ 

– And month of birth = „January‟ 

• Problem: 

– According to the optimizer it will be 1/12 × 1/12 = 1/144 

– In reality, it will be 0, size the combination is not possible 

• What will be the selectivity of a query 

– Where zodiac sign = „Capricorn‟ 

– And month of birth = „January‟ 

 



11/20/2011 

39 

Multi-column Intelligence 
• If the Optimizer knew about these combinations, it 

would have been able to choose the proper path 

• How would you let the optimizer learn about these? 

• In Oracle 10g, we saw a good approach – SQL Profiles 
– which allowed data to be considered for execution plans 

– but was not a complete approach 

– it still lacked a dynamism – applicability in all circumstances 

• In 11g, there is an ability to provide this information to 
the optimizer 

– Multi-column stats 

An Example 
• Table BOOKINGS 

• Index on (HOTEL_ID, 

RATE_CODE) 

• What will be plan for the 

following? 
select min(book_txn) 
from bookings 
where hotel_id = 10 

and rate_code = 23 

vals.sql 

  HOTEL_ID  RATE_CODE   COUNT(1) 
---------- ---------- ---------- 

        10         11     444578 
        10         12      50308 

        20         22     100635 
        20         23     404479 



11/20/2011 

40 

The Plan 
Here is the plan 
------------------------------------------------------------------------------- 
| Id  | Operation          | Name     | Rows  | Bytes | Cost (%CPU)| Time     |  

------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT   |          |     1 |    10 |   769   (3)| 00:00:10 | 
|   1 |  SORT AGGREGATE    |          |     1 |    10 |            |          |  
|*  2 |   TABLE ACCESS FULL| BOOKINGS |   199K|  1951K|   769   (3)| 00:00:10 |  
------------------------------------------------------------------------------- 

 
Predicate Information (identified by operation id): 
 
PLAN_TABLE_OUTPUT 
--------------------------------------------------- 

   2 - filter("RATE_CODE"=23 AND "HOTEL_ID"=10)) 

• It didn‟t choose index scan 

• The estimated number of rows are 199K, or about 

20%; so full table scan was favored over index scan  
 

expl1.sql 

Solution 
• Create Extended Stats in the related columns – 

HOTEL_ID and RATE_CODE 
var ret varchar2(2000) 
begin 
  :ret := dbms_stats.create_extended_stats( 
    'ARUP', 'BOOKINGS','(HOTEL_ID, RATE_CODE)' 
  ); 
end; 
/ 
print ret 

• The variable “ret” shows the name of the extended 
statistics 

xstats.sql 



11/20/2011 

41 

Then Collect Stats Normally 
begin 
  dbms_stats.gather_table_stats ( 
    ownname         => 'ARUP', 
    tabname         => 'BOOKINGS', 
    estimate_percent=> 100, 
    method_opt      => 'FOR ALL COLUMNS SIZE SKEWONLY', 
    cascade         => true 
  ); 
end; 
/ 

 

stats.sql 

The Plan Now 
• After extended stats, the plan looks like this: 

 
----------------------------------------------------------------------------------------------- 

| Id  | Operation                    | Name           | Rows  | Bytes | Cost (%CPU)| Time     | 
----------------------------------------------------------------------------------------------- 

|   0 | SELECT STATEMENT             |                |     1 |    10 |   325   (1)| 00:00:04 | 

|   1 |  SORT AGGREGATE              |                |     1 |    10 |            |          | 
|   2 |   TABLE ACCESS BY INDEX ROWID| BOOKINGS       | 23997 |   234K|   325   (1)| 00:00:04 | 

|*  3 |    INDEX RANGE SCAN          | IN_BOOKINGS_01 | 23997 |       |    59   (0)| 00:00:01 | 
----------------------------------------------------------------------------------------------- 

 
• Note: 
– No of Rows is now more accurate 

– As a result, the index scan was chosen 

expl1.sql 



11/20/2011 

42 

Extended Stats 
• Extended stats store the correlation of data among 

the columns 

– The correlation helps optimizer decide on an execution 
path that takes into account the data  

– Execution plans are more accurate 

• Under the covers,  

– extended stats create an invisible virtual column 

– Stats on the columns collects stats on this virtual column 
as well 

 

10053 Trace 
 

Single Table Cardinality Estimation for BOOKINGS[BOOKINGS]  
  Column (#2): 

    NewDensity:0.247422, OldDensity:0.000000 BktCnt:1000000, 
PopBktCnt:1000000, PopValCnt:2, NDV:2 

  Column (#3):  
    NewDensity:0.025295, OldDensity:0.000000 BktCnt:1000000, 
PopBktCnt:1000000, PopValCnt:4, NDV:4 

  Column (#5):  
    NewDensity:0.025295, OldDensity:0.000000 BktCnt:1000000, 

PopBktCnt:1000000, PopValCnt:4, NDV:4 
  ColGroup (#1, VC) SYS_STU4JHE7J4YQ3ZLDXSW5L1O8KX 
    Col#: 2 3    CorStregth: 2.00 

  ColGroup Usage:: PredCnt: 2  Matches Full:   Using density: 
0.025295 of col #5 as selectivity of unpopular value pred 



11/20/2011 

43 

Extended Stats 
• This hidden virtual column shows up in column 

statistics 
 
select column_name, density, num_distinct 

from user_tab_col_statistics 
where table_name  
 

COLUMN_NAME                       DENSITY NUM_DISTINCT 
------------------------------ ---------- ------------ 

BOOKING_ID                        .000001      1000000 
HOTEL_ID                         .0000005            2 
RATE_CODE                        .0000005            4 

BOOK_TXN                       .002047465         2200 
SYS_STU4JHE7J4YQ3ZLDXSW5L1O8KX   .0000005            4 

 

Checking for Extended Stats 
• To check the presence of extended stats, check the 

view dba_stat_extensions. 

 
select extension_name, extension  
from dba_stat_extensions 
where table_name='BOOKINGS'; 

 

Output: 
EXTENSION_NAME                 EXTENSION 

------------------------------ ------------------------ 
SYS_STU4JHE7J4YQ3ZLDXSW5L1O8KX ("HOTEL_ID","RATE_CODE") 

 check.sql 



11/20/2011 

44 

Deleting Extended Stats 
• If you want, you can drop the extended stats, you 

can use the dbms_stats package, specifically the 

procedure drop_exteneded_stats 

 
begin 

  dbms_stats.drop_extended_stats ( 
    ownname => 'ARUP', 

    tabname => 'BOOKINGS', 
    extension => '("HOTEL_ID","RATE_CODE")' 

   ); 
end; 

 drop.sql 

Another way 
• You can collect the extended stats using the normal 

dbms_stats as well: 
begin 
    dbms_stats.gather_table_stats ( 

        ownname          => 'ARUP', 
        tabname          => 'BOOKINGS', 

        estimate_percent => 100, 
        method_opt       =>  

'FOR ALL COLUMNS SIZE SKEWONLY FOR COLUMNS 
(HOTEL_ID,RATE_CODE)', 

        cascade          => true 
    ); 

end; 
/ 

 

startx.sql 



11/20/2011 

45 

The Case on Case Sensitivity 
• A table of CUSTOMERS with 1 million rows 

• LAST_NAME field has the values 

– McDonald  20% 

– MCDONALD  10% 

– McDONALD  10% 

– mcdonald  10% 

• They make up 50% of the rows, with the variation of 
the same name. 

• When you issue a query like this: 
select * from customers where upper(last_name) = 'MCDONALD' 

Cust_cnt.sql 

Normal Plan  
• The plan looks like this: 
------------------------------------------------------------------------------- 
| Id  | Operation         | Name      | Rows  | Bytes | Cost (%CPU)| Time     |  

------------------------------------------------------------------------------- 
|   0 | SELECT STATEMENT  |           | 10000 |   498K|  2140   (2)| 00:00:26 | 
|*  1 |  TABLE ACCESS FULL| CUSTOMERS | 10000 |   498K|  2140   (2)| 00:00:26 |  
------------------------------------------------------------------------------- 
 

Predicate Information (identified by operation id): 
--------------------------------------------------- 
 
PLAN_TABLE_OUTPUT 
----------------------------------------------------------------------------- 

   1 - filter(UPPER("LAST_NAME")='MCDONALD') 
 

No of rows 
wrongly 
estimated 

expl2.sql 



11/20/2011 

46 

Extended Stats 
• You collect the stats for the UPPER() function 
begin 
  dbms_stats.gather_table_stats ( 
     ownname    => 'ARUP', 
     tabname    => 'CUSTOMERS', 
     method_opt => 'for all columns size 
skewonly for columns (upper(last_name))' 
  ); 
end; 

 
statsx_cust.sql 

With Extended Stats 
• The plan is now: 

 
------------------------------------------------------------------------------- 
| Id  | Operation         | Name      | Rows  | Bytes | Cost (%CPU)| Time     |  
------------------------------------------------------------------------------- 

|   0 | SELECT STATEMENT  |           |   500K|    33M|  2140   (2)| 00:00:26 | 
|*  1 |  TABLE ACCESS FULL| CUSTOMERS |   500K|    33M|  2140   (2)| 00:00:26 |  
------------------------------------------------------------------------------- 
 
Predicate Information (identified by operation id): 

--------------------------------------------------- 
 
PLAN_TABLE_OUTPUT 
------------------------------------------------------------------------------- 
   1 - filter("CUSTOMERS"."SYS_STUJ6BPFDTE396EPTURAB2DBI5"='MCDONALD') 

 

No of rows 
correctly 
estimated 

Extended stats 
name come here 

expl2.sql 



11/20/2011 

47 

Alternatives 
• Remember, the extended stats create a virtual 

column – hidden from you 

• You can have the same functionality as extended 

stats by defining virtual columns 

• Advantage 

– You can have a column name of your choice 

– You can index it, if needed 

– You can partition it 

– You can create Foreign Key constraints on it 

Restrictions 
• Has to be 11.0 or higher 

• Not for SYS owned tables 

• Not on IOT, clustered tables, GTT or external tables 

• Can‟t be on a virtual column 

• An Expression  
– can‟t contain a subquery 

– must have ≥1 columns 

• A Column Group 
– no of columns should be ≤32 and ≥2 

– can‟t contain expressions 

– can„t have the same column repeated 



11/20/2011 

48 

Summary 
• Normally the optimizer does not know the 

correlation between the columns 

– e.g. no one born in January can have a sun sign of 
Pisces 

– Therefore, perform an index scan if that combination is 
passed as predicate 

• Extended statistics enable the optimizer to know 
that relationship 

• More information to the optimizer 

• … results in better plans 

 


