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Abstract

Newcomb’s paradox highlights an apparent conflict involving the ax-
ioms of game theory. It concerns a game in which you choose to take either
one or both of two closed boxes. However before you choose, a prediction
algorithm deduces your choice, and fills the two boxes based on that deduc-
tion. The paradox is that game theory appears to provide two conflicting
recommendations for what choice you should make in this situation. Here
we analyze Newcomb’s paradox using a recently introduced extension of
game theory in which the players set conditional probability distributions in
a Bayes net. Using this extended game theory, we show that thetwo game
theory recommendations in Newcomb’s scenario implicitly assume different
Bayes nets relating the random variables of your choice and the algorithm’s
prediction. We resolve the paradox by proving that these twoassumed Bayes
nets are incompatible, i.e., the associated assumptions conflict. In doing this
we show that the accuracy of the algorithm’s prediction, which was the focus
of much previous work on Newcomb’s paradox, is irrelevant. We also show
that Newcomb’s paradox is time-reversal invariant; both the paradox and its
resolution are unchanged if the algorithm makes its “prediction” after you
make your choice rather than before.
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1 Introduction

Suppose you meet a Wise being (W) who tells you it has put $1,000 in box A,
and either $1 million or nothing in box B. This being tells youto either take
the contents of box B only, or to take the contents of both A andB. Suppose
further that the being had put the $1 million in box B only if a prediction algorithm
designed by the being had said that you would take only B. If the algorithm had
predicted you would take both boxes, then the being put nothing in box B.

Presume that due to determinism, there exists a perfectly accurate prediction
algorithm. AssumingW uses that algorithm, what choice should you make? In
Table 1 we present this question as a game theory matrix involving W’s predic-
tion and your choice. Two seemingly logical answers contradict each other. The
Realist answer is that you should take both boxes, because you have free will, and
your choice occurs afterW has already made its prediction. More precisely, if
W predicted you would take A along with B, then taking both gives you $1,000
rather than nothing. If insteadW predicted you would take only B, then taking
both boxes yields $1,001,000, which again is $1000 better than taking only B.
The Fearful answer, though, is thatW designed a prediction algorithm whose an-
swer will match what you do. So you can get $1,000 by taking both boxes or get
$1 million by taking only box B. Therefore you should take only B.

This is Newcomb’s Paradox, a famous logical riddle stated byWilliam New-
comb in 1960 [Nozick(1969), Gardner(1974), Bar-Hillel andMargalit(1972), Campbell and Lanning(1985),
Levi(1982), Collins(2001)]. Newcomb never published the paradox, but had long
conversations about it with with philosophers and physicists such as Robert Noz-
ick and Martin Kruskal, along with Scientific American’s Martin Gardner. Gard-
ner said after his second Scientific American column on Newcomb’s paradox ap-
peared that it generated more mail than any other column.

One of us (Benford) worked with Newcomb, publishing severalpapers to-
gether, and was a friend until Newcomb died in 1999. We often discussed the
paradox, which Newcomb thought would be his best rememberedscientific ac-
complishment. Newcomb invented his paradox to test his own ideas, as a lapsed
Catholic: How much faith do we place in the wise being’s predictive power?
Newcomb’s said that he would just take B; why fight a God-like being? How-
ever Nozick said, “To almost everyone, it is perfectly clearand obvious what
should be done. The difficulty is that these people seem to divide almost evenly
on the problem, with large numbers thinking that the opposing half is just being
silly” [Nozick(1969)].

Nozick also pointed out that two accepted principles of gametheory conflict in
Newcomb’s problem. The expected-utility principle, proceeding from the prob-
ability of each outcome, says you should take box B only. But the dominance
principle argues that if one strategy is always better, no matter what the circum-

2



stances, then you should pick it. No matter what box B contains, you are $1000
richer if you take both boxes than if you take B only.

Is there really a contradiction? Some philosophers argue that a perfect predic-
tor implies a time machine, since with such a machine causality is reversed, i.e.,
the future causes past events, allowing predictions to be perfect.1 Faced with New-
comb’s seemingly logical paradox, the conclusion must be that perfect prediction
is impossible.

But Nozick stated the problem specifically to exclude backward causation
(and so time travel), because his formulation demands only that the predictions
be of high accuracy, not certain. So this line of reasoning cannot resolve the is-
sue. Worse still, Nozick’s reformulation seems to imply that the (in)fallibility of
W’s prediction provides yet another conundrum, in addition to the one underlying
Newcomb’s paradox.

2 Game theory over Bayes nets

Central to Newcomb’s scenario is a prediction process, and its (in)fallibility. Re-
cent work has revealed deep formal connections between prediction and observa-
tion. Amongst other things, this work proves that any given prediction algorithm
must fail on at least one prediction task [Binder(2008), Wolpert(2008)]. Unfor-
tunately, that result doesn’t directly resolve Newcomb’s paradox. However its
proof requires an extension of game theory. And as we demonstrate below, that
extension can be used to resolve Newcomb’s paradox.

In game theory there are several “players”, each with their own preferences
over the values of an underlying set of game variables,{X j}. Every player has their
own “move set”, where each move is a probability distribution relating some of the
variables{X j}. To play the game, the players all independently choose a move (i.e.,
choose a distribution) from their respective move sets. Themoves sets are care-
fully designed so that every such joint move by the players uniquely specifies a le-
gal joint probability distribution relating the game’s variables [Fudenberg and Tirole(1991),
Myerson(1991), Osborne and Rubenstein(1994), Koller and Milch(2003)].

A richer mathematics arises if we expand the move sets of the players, so
that some joint moves would violate the laws of probability,and therefore are
impossible. It is this mathematics that is used to prove the fallibility of prediction
in [Binder(2008), Wolpert(2008)].

1Interestingly, near when Newcomb devised the paradox, he also coauthored a paper prov-
ing that a tachyonic time machine could not be reinterpretedin a way that precludes such para-
doxes [Benford et al.(1970)Benford, Book, and Newcomb]. The issues of time travel and para-
doxes are intertwined.
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What happens if we apply this mathematics to Newcomb’s paradox? There
are two game variables that are central to Newcomb’s paradox: the God-like being
W’s prediction,g, and the choice you actually make,y. So the player moves will
involve the distribution relating those variables. Since there are only two variables,
there are two ways to decompose that joint probability. These two decompositions
turn out to correspond to the two recommendations for how to answer Newcomb’s
question, one matching the reasoning of Realist and one matching Fearful.

The first way to decompose the joint probability is

P(y, g) = P(g | y)P(y) (1)

(where we define the right-hand side to equal 0 for anyy such thatP(y) = 0). Such
a decomposition is known as a “Bayes net” having two “nodes” [Pearl(2000)].
The unconditioned distribution,P(y) is identified with the first, “parent” node,
and the conditional distribution,P(g | y), is identified with the second, “child”
node.

This Bayes net can be used to express Fearful’s reasoning. Fearful interprets
the statement that “W designed a perfectly accurate prediction algorithm” to imply
that W has the power to set the conditional distribution in the child node of the
Bayes net,P(g | y), to anything it wants (for ally such thatP(y) , 0). More
precisely, since the algorithm is “perfectly accurate”, Fearful presumes thatW
chooses to setP(g | y) = δg,y, the distribution that equals 1 ifg = y, zero otherwise.
So Fearful presumes that there is nothing you can do that can affect the values of
P(g | y) (for all y such thatP(y) , 0). Instead, you get to choose the unconditioned
distribution in the parent node of the Bayes net,P(y). Intuitively, this choice
constitutes your “free will”.

Fearful’s interpretation of Newcomb’s paradox specifies what aspect ofP(y, g)
you can choose, and what aspect is instead chosen by W. Those choices —P(y)
and P(g | y), respectively — are the “moves” that you andW make. It is im-
portant to note that these moves by you andW do not directly specify the two
variablesy and g. Rather the moves you andW make specify two different
distributions which, taken together, specify the full joint distribution overy and
g [Koller and Milch(2003)]. This kind of move contrasts with the kind considered
in decision theory [Berger(1985)] or causal nets [Pearl(2000)], where the moves
are direct specifications of the variables (which here areg andy).

In game theory, your task is to make the move that maximizes your expected
payoff under the associated joint distribution. For Fearful, thismeans choosing
the P(y) that maximizes your expected payoff under theP(y, g) associated with
that choice. Given Fearful’s presumption that the Bayes netof Eq. 1 underlies the
game and that you get to set the distribution at the first nod3e, for you to maximize
expected payoff you should chooseP(y) = δy,B, i.e., you should make choice
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B with probability 1. Your doing so results in the joint distribution P(y, g) =
δg,yδy,B = δg,Bδy,B, with payoff 1, 000, 000. This is the formal justification of
Fearful’s recommendation.

The second way to decompose the joint probability is

P(y, g) = P(y | g)P(g) (2)

(where we define the right-hand side to equal 0 for anyg such thatP(g) = 0). In
the Bayes net of Eq. 2, the unconditioned distribution identified with the parent
node isP(g), and the conditioned distribution identified with the child node is
P(y | g). This Bayes net can be used to express Realist’s reasoning.Realist
interprets the statement that “your choice occurs afterW has already made its
prediction” to mean that you can choose any distributionh(y) and then setP(y | g)
to equalh(y) (for all g such thatP(g) , 0). This is how Realist interprets your
having “free will”. (Note that this is a different interpretation of “free will”’ from
the one made by Fearful.) Under this interpretation,W has no power to affect
P(y | g). RatherW gets to set the parent node in the Bayes net,P(g). For Realist,
this is the distribution that you cannot affect. (In contrast, in Fearful’s reasoning,
you set a non-conditional distribution, and it is the conditional distribution that
you cannot affect.)

Realist’s interpretation of Newcomb’s paradox specifies what it is you can fix
concerningP(y, g), and what is fixed by W. Just like under Fearful’s reasoning,
under Realist’s reasoning the “moves” you andW make do not directly specify
the variablesg andy. Rather the moves by you andW specify two distributions
which, taken together, specify the full joint distribution. As before, your task is
to choose your move — which now ish(y) — to maximize your expected payoff
under the associatedP(y, g). Given Realist’s presumption that the Bayes net of
Eq. 2 underlies the game and that you get to seth, you should chooseh(y) = P(y |
g) = δy,AB, i.e., you should make choiceAB with probability 1. Doing this results
in the expected payoff 1, 000 P(g = AB) + 1, 001, 000 P(g = B), which is your
maximum expected payoff no matter what the values ofP(g = AB) andP(g = B)
are. This is the formal justification of Realist’s recommendation.2

What happens if we try to merge the Bayes net that Fearful presumes to under-
lie the game with the Bayes net that Realist presumes to underlie the game? More

2In Realist’s Bayes net, given the associated restricted possible form ofP(y | g), g andy are
“causally independent”, to use the language of causal nets [Pearl(2000)]. This is consistent with
interpreting Newcomb’s scenario as the game in Table 1. In contrast, in Fearful’s Bayes net,y
“causally influences”g. To cast this kind of causal influence in terms of conventional game theory,
we would have to replace the game in Table 1 with an extensive form game in which you first set
y, andthen Wmoves, having observedy. This alternative game is incompatible with Newcomb’s
stipulation thatW moves before you do, not after. This is one of the reasons why it is necessary to
use extended game theory rather than conventional game theory to formalize Fearful’s reasoning.
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formally, what game arises if we combine your move set under Fearful’s presump-
tion of the underlying Bayes net with your move set under Realist’s presumption,
and do the same forW? As we now how, combining move sets this way gives an
“extended game” of the sort considered in [Wolpert(2008)],with the same kind of
impossibility result as the extended game in [Wolpert(2008)].

First, if W’s move setsP(g | y), as under Fearful’s presumption, then some
of your moves under Realist’s presumption become impossible. (This is true for
almost anyP(g | y) that W might choose, and in particular even ifW does not
predict perfectly.) More precisely, ifP(g | y) is set byW, then the only way that
P(y | g) can beg-independent is if it is one of the two delta functions,δy,AB or δy,B.
(See the appendix for a formal proof.) This contradicts Realist’s presumption that
you can setP(y | g) to anyh(y) you desire.3

Similarly, if P(g | y) is fixed by W, as under Fearful’s presumption, then your
(Realist) choice ofh affectsP(g). In fact, your choice ofh fully specifiesP(g).4

This contradicts Realist’s presumption that it isW’s move that setsP(g), indepen-
dent of you.

Conversely, if you can setP(y | g) to be an arbitraryg-independent distribution
(as Realist presumes), then what you set it to may affectP(g | y) (in violation of
Fearful’s presumption thatP(g | y) is set exclusively by W). In other words, if
your having “free will” means what it does to Realist, then you have the power to
change the prediction accuracy ofW (!). As an example, if you setP(y = AB |
g) = 3/4 for all g’s such thatP(g) , 0, thenP(g | y) cannot equalδg,y.

The resolution of Newcomb’s paradox is now immediate: You can be free to
setP(y) however you want, withP(g | y) set by W, as Fearful presumes,or, as
Realist presumes, you can be free to setP(y | g) to whatever distributionh(y) you
want, withP(g) set by W. It is not possible to play both games simultaneously.5

We emphasize that this impossibility arises for almost anyP(g | y) choice
by W, i.e., no matter how accuratelyW predicts. This means that the stipulation
in Newcomb’s paradox thatW predicts perfectly is a red herring. (Interestingly,
Newcomb himself did not insist on such perfect prediction inhis formulation of

3Note that of the twoδ functions you can choose in this variant of Newcomb’s scenario, it is
better for you to chooseh(y) = δy,B, resulting in a payoff of 1, 000, 000. So your optimal response
to Newcomb’s question for this variant is the same as if you were Fearful.

4For example, if you seth(y) = δy,AB, then P(g) = δg,AB, and if you seth(y) = δy,B, then
P(g) = δg,B.

5In a variant of Newcomb’s question, you first choose one of these two presumption, and then
set the associated distribution. If the pre-fixed distribution P(g | y) arising in the first presumption
is δg,y, then your optimal responses depend on the pre-fixed distribution P(g) arising in the second
presumption— a distribution that is not specified in Newcomb’s question. IfP(g) obeysP(g =
B) > .999, then your optimal pair of choices are first to choose to set the distributionP(y | g) to
someh(y), and then to seth(y) = δy,AB. If this condition is not met, you should first choose to set
P(y), and then set it toδy,AB.
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the paradox, perhaps to avoid the time paradox problems.) The crucial impossi-
bility implicit in Newcomb’s question is the idea that at thesame time you can
arbitrarily specify “your” distributionP(y | g) and W can arbitrarily specify “his”’
distributionP(g | y). In fact, neither of you two can set your distribution without
possibly affecting the other’s distribution; you andW are inextricably coupled.

Note also that no time variable occurs in our analysis of Newcomb’s paradox.
So that analysis is time-reversal invariant. This means that both the paradox and
its resolution are unchanged if the prediction occursafter your choice rather than
before it. This is even the case if the “prediction” algorithm directly observes
your choice. See [Wolpert(2008)] for more on the equivalence of observation and
prediction and the time-reversal invariance of both.

Newcomb’s paradox has been so vexing that it has led some to resort to non-
Bayesian probability theory in their attempt to understandit [Gibbard and Harper(1978),
Hunter and Richter(1978)], some to presume that payoff must somehow depend
on your beliefs as well as what’s under the boxes [Geanakoplos(1997)], and has
even even led some to claim that quantum mechanics is crucialto understanding
the paradox [Piotrowski and Sladkowski(2002)]. This is allin addition to work on
the paradox based on now-discredited formulations of causality [Jacobi(1993)].

Our analysis shows that the resolution of Newcomb’s paradoxis in fact quite
simple. Newcomb’s paradox takes two incompatible interpretations of a question,
with two different answers, and makes it seem as though they are the same inter-
pretation. The lesson of Newcomb’s paradox is just the ancient verity that one
must carefully define all one’s terms.

ACKNOWLEDGEMENTS: We would like to thank Mark Wilber for helpful
comments.

APPENDIX:
In the text, it is claimed that ifP(g | y) is pre-fixed, then the only way thatP(y | g)
can beg-independent is if it is one of the two delta functions,δy,AB or δy,B. To see
why this is true, combine Eq.’s 1 and 2 of the text to get

P(y | g)P(g) = P(g | y)P(y).

If for all g such thatP(g) , 0, P(y | g) = h(y) for some distributionh, then we can
sum both sides over the two values ofg, gettingP(y) = h(y). Plugging this back in
shows that for anyy such thath(y) , 0, P(g | y) must equalP(g). If there were two
suchy’s in the support ofh, thenP(g | y) would have to be the same distribution
overg for both of thosey’s. This is not the case for a perfectly accurateP(g | y)
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though (for whichP(g | y) = δg,y), nor is it the case for almost all otherP(g | y)’s.
The only way to avoid this contradiction is for you to seth(y) so that it equals 0
for one of the twoy’s. QED.
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Choose AB Choose B

Predict AB: 1000 0

Predict B: 1, 001, 000 1, 000, 000

Table 1: The payoff to you for the four combinations of your choice and W’s
prediction.
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Short title: Newcomb’s paradox resolved
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