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Abstract

Newcomb’s paradox highlights an apparent conflict invajvihe ax-
ioms of game theory. It concerns a game in which you choosakdither
one or both of two closed boxes. However before you choosesdigbion
algorithm deduces your choice, and fills the two boxes basdtai deduc-
tion. The paradox is that game theory appears to provide twdlicting
recommendations for what choice you should make in thiesito. Here
we analyze Newcomb’s paradox using a recently introduceéension of
game theory in which the players set conditional probahdlistributions in
a Bayes net. Using this extended game theory, we show thatvthgame
theory recommendations in Newcomb’s scenario impliciiguane dferent
Bayes nets relating the random variables of your choice lamdlgorithm'’s
prediction. We resolve the paradox by proving that theseasgnmed Bayes
nets are incompatible, i.e., the associated assumptiaribotoln doing this
we show that the accuracy of the algorithm’s prediction,clihivas the focus
of much previous work on Newcomb’s paradox, is irrelevane 860 show
that Newcomb'’s paradox is time-reversal invariant; bothghradox and its
resolution are unchanged if the algorithm makes its “ptemh¢ after you
make your choice rather than before.
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1 Introduction

Suppose you meet a Wise beingy)(who tells you it has put $1,000 in box A,
and either $1 million or nothing in box B. This being tells ytu either take

the contents of box B only, or to take the contents of both A Bn&uppose

further that the being had put the $1 million in box B only ifr@giction algorithm

designed by the being had said that you would take only B.dfalgorithm had

predicted you would take both boxes, then the being put ngtim box B.

Presume that due to determinism, there exists a perfeatiyraie prediction
algorithm. AssumingV uses that algorithm, what choice should you make? In
Table 1 we present this question as a game theory matrixuimgpW's predic-
tion and your choice. Two seemingly logical answers comttaghch other. The
Realist answer is that you should take both boxes, becauskax® free will, and
your choice occurs aftélv has already made its prediction. More precisely, if
W predicted you would take A along with B, then taking both giyeu $1,000
rather than nothing. If instead predicted you would take only B, then taking
both boxes yields $1,001,000, which again is $1000 bettn thking only B.
The Fearful answer, though, is thatdesigned a prediction algorithm whose an-
swer will match what you do. So you can get $1,000 by takindp hatxes or get
$1 million by taking only box B. Therefore you should take B!

This is Newcomb’s Paradox, a famous logical riddle statetMdliam New-
comb in 1960 [Nozick(1969), Gardner(1974), Bar-Hillel dfdrgalit(1972), Campbell and Lanning
Levi(1982)/ Collins(2001)]. Newcomb never published tlaegulox, but had long
conversations about it with with philosophers and physasich as Robert Noz-
ick and Martin Kruskal, along with Scientific American’s Miar Gardner. Gard-
ner said after his second Scientific American column on Nemxs paradox ap-
peared that it generated more mail than any other column.

One of us (Benford) worked with Newcomb, publishing seveabers to-
gether, and was a friend until Newcomb died in 1999. We ofteou$sed the
paradox, which Newcomb thought would be his best remembseietific ac-
complishment. Newcomb invented his paradox to test his aeas, as a lapsed
Catholic: How much faith do we place in the wise being’s pcade power?
Newcomb’s said that he would just take B; why fight a God-lilenly? How-
ever Nozick said, “To almost everyone, it is perfectly claad obvious what
should be done. The fliculty is that these people seem to divide almost evenly
on the problem, with large numbers thinking that the oppmp$ialf is just being
silly” [Nozick(1969)].

Nozick also pointed out that two accepted principles of gdraery conflict in
Newcomb’s problem. The expected-utility principle, predag from the prob-
ability of each outcome, says you should take box B only. Betdominance
principle argues that if one strategy is always better, nttenavhat the circum-
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stances, then you should pick it. No matter what box B costajiou are $1000
richer if you take both boxes than if you take B only.

Is there really a contradiction? Some philosophers argaieatperfect predic-
tor implies a time machine, since with such a machine caysalreversed, i.e.,
the future causes past events, allowing predictions to eqig Faced with New-
comb’s seemingly logical paradox, the conclusion must begkrfect prediction
is impossible.

But Nozick stated the problem specifically to exclude bagkiweausation
(and so time travel), because his formulation demands dwaithe predictions
be of high accuracy, not certain. So this line of reasonimgoaresolve the is-
sue. Worse still, Nozick’s reformulation seems to implytttiee (in)fallibility of
W's prediction provides yet another conundrum, in additmthie one underlying
Newcomb'’s paradox.

2 Gametheory over Bayesnets

Central to Newcomb’s scenario is a prediction process, @n@h)fallibility. Re-
cent work has revealed deep formal connections betweencpiogdand observa-
tion. Amongst other things, this work proves that any givesdpgction algorithm
must fail on at least one prediction task [Binder(2008), éol(2008)]. Unfor-
tunately, that result doesn’t directly resolve Newcomlesaulox. However its
proof requires an extension of game theory. And as we demadedielow, that
extension can be used to resolve Newcomb'’s paradox.

In game theory there are several “players”, each with theim preferences
over the values of an underlying set of game varialjeg, Every player has their
own “move set”, where each move is a probability distribatielating some of the
variablegX;}. To play the game, the players allindependently choose @@,
choose a distribution) from their respective move sets. mMbees sets are care-
fully designed so that every such joint move by the playergualy specifies a le-
gal joint probability distribution relating the game’s ialrles [Fudenberg and Tirole(1991),
Myerson(1991), Osborne and Rubenstein(1994), Koller aichi{2003)].

A richer mathematics arises if we expand the move sets of ldneers, so
that some joint moves would violate the laws of probabildagpd therefore are
impossible. It is this mathematics that is used to provedhibility of prediction
in [Binder(2008), Wolpert(2008)].

lnterestingly, near when Newcomb devised the paradox, $® @authored a paper prov-
ing that a tachyonic time machine could not be reinterpretealway that precludes such para-
doxes [[Benford et al.(1970)Benford, Book, and Newcbmb].e 1¥sues of time travel and para-
doxes are intertwined.



What happens if we apply this mathematics to Newcomb'’s meradThere
are two game variables that are central to Newcomb'’s pardatexGod-like being
W’s prediction,g, and the choice you actually make,So the player moves will
involve the distribution relating those variables. Sirtwere are only two variables,
there are two ways to decompose that joint probability. €he® decompositions
turn out to correspond to the two recommendations for howsovaer Newcomb’s
guestion, one matching the reasoning of Realist and onenmat€&earful.

The first way to decompose the joint probability is

P(y.9) = P(gly)P(y) (1)

(where we define the right-hand side to equal O foryasych thaP(y) = 0). Such
a decomposition is known as a “Bayes net” having two “nod&&4arl(2000)].
The unconditioned distributiorR(y) is identified with the first, “parent” node,
and the conditional distributiorR(g | y), is identified with the second, “child”
node.

This Bayes net can be used to express Fearful's reasonirgfuFmterprets
the statement that “W designed a perfectly accurate piediatgorithm” to imply
that W has the power to set the conditional distribution in thecthibde of the
Bayes netP(g | y), to anything it wants (for ally such thatP(y) # 0). More
precisely, since the algorithm is “perfectly accurate’afel presumes thatv
chooses to sé¥(g | y) = dgy, the distribution that equals 1gf=y, zero otherwise.
So Fearful presumes that there is nothing you can do thatféact ¢he values of
P(g | y) (for all y such thaP(y) # 0). Instead, you get to choose the unconditioned
distribution in the parent node of the Bayes nefy). Intuitively, this choice
constitutes your “free will”.

Fearful's interpretation of Newcomb’s paradox specifieatdspect oP(y, g)
you can choose, and what aspect is instead chosen by W. Thoees —P(y)
and P(g | y), respectively — are the “moves” that you aWd make. It is im-
portant to note that these moves by you aNdlo not directly specify the two
variablesy and g. Rather the moves you and/ make specify two dferent
distributions which, taken together, specify the full jothstribution overy and
g [Koller and Milch(2003)]. This kind of move contrasts withet kind considered
in decision theory| [Berger(1985)] or causal néts [Peafl(@]) where the moves
are direct specifications of the variables (which heregaaady).

In game theory, your task is to make the move that maximizes gepected
paydt under the associated joint distribution. For Fearful, thisans choosing
the P(y) that maximizes your expected pdlyonder theP(y, g) associated with
that choice. Given Fearful's presumption that the Baye®hEf.[1 underlies the
game and that you get to set the distribution at the first ndd8gou to maximize
expected payd you should choos®(y) = ¢y, i.e., you should make choice
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B with probability 1. Your doing so results in the joint distution P(y,g) =
0gy0y8 = Oggdys, With paydt 1,000 000. This is the formal justification of
Fearful's recommendation.

The second way to decompose the joint probability is

P(y.9) = P(ylg)P(9) (2)

(where we define the right-hand side to equal O for gisych thatP(g) = 0). In
the Bayes net of Ed.l 2, the unconditioned distribution idiext with the parent
node isP(g), and the conditioned distribution identified with the chilode is
P(y | g). This Bayes net can be used to express Realist’s reasoiitieglist
interprets the statement that “your choice occurs afehas already made its
prediction” to mean that you can choose any distribukigf and then se(y | g)

to equalh(y) (for all g such thatP(g) # 0). This is how Realist interprets your
having “free will”. (Note that this is a dlierent interpretation of “free will” from
the one made by Fearful.) Under this interpretatidhhas no power to féect
P(y | g). RatheW gets to set the parent node in the Bayes Ré). For Realist,
this is the distribution that you cannadf@act. (In contrast, in Fearful's reasoning,
you set a non-conditional distribution, and it is the comdial distribution that
you cannot ffect.)

Realist’s interpretation of Newcomb’s paradox specifieatwhis you can fix
concerningP(y, g), and what is fixed by W. Just like under Fearful's reasoning,
under Realist’s reasoning the “moves” you admake do not directly specify
the variablegy andy. Rather the moves by you ani specify two distributions
which, taken together, specify the full joint distributioAs before, your task is
to choose your move — which now Iigy) — to maximize your expected paffo
under the associatd®(y, g). Given Realist’'s presumption that the Bayes net of
Eq.[2 underlies the game and that you get tcdhsgbu should choosk(y) = P(y |
g) = dyas, I.€., you should make choigeB with probability 1. Doing this results
in the expected paybl, 000 P(g = AB) + 1,001,000 P(g = B), which is your
maximum expected pagtono matter what the values &g = AB) andP(g = B)
are. This is the formal justification of Realist’'s recommatich

What happens if we try to merge the Bayes net that Fearfulpres to under-
lie the game with the Bayes net that Realist presumes to ietlee game? More

2In Realist’s Bayes net, given the associated restrictediplesform of P(y | g), g andy are
“causally independent”, to use the language of causal iRar[(2000)]. This is consistent with
interpreting Newcomb’s scenario as the game in Table 1. hirast, in Fearful's Bayes ney,
“causally influencesd. To cast this kind of causal influence in terms of conventigaae theory,
we would have to replace the game in Table 1 with an extensive §ame in which you first set
y, andthen Wmoves, having observed This alternative game is incompatible with Newcomb’s
stipulation thatW moves before you do, not after. This is one of the reasons tnhyecessary to
use extended game theory rather than conventional gamey ttosformalize Fearful's reasoning.
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formally, what game arises if we combine your move set undarfel’s presump-
tion of the underlying Bayes net with your move set under Respresumption,
and do the same falV? As we now how, combining move sets this way gives an
“extended game” of the sort considered in [Wolpert(2008)ih the same kind of
impossibility result as the extended game in [Wolpert(2D08

First, if W's move set(g | y), as under Fearful's presumption, then some
of your moves under Realist’s presumption become impassi@lhis is true for
almost anyP(g | y) that W might choose, and in particular evenW does not
predict perfectly.) More precisely, B(g | y) is set byW, then the only way that
P(y | g) can beg-independent is if it is one of the two delta functiofigag or 6y s.
(See the appendix for a formal proof.) This contradicts Réslpresumption that
you can seP(y | g) to anyh(y) you desirél

Similarly, if P(g | y) is fixed by W, as under Fearful’'s presumption, then your
(Realist) choice oh affectsP(g). In fact, your choice oh fully specifiesP(g)

This contradicts Realist’'s presumption that itN& move that set®(g), indepen-
dent of you.

Conversely, if you can s&(y | g) to be an arbitrarg-independent distribution
(as Realist presumes), then what you set it to nfégcaP(g | y) (in violation of
Fearful’'s presumption tha®(g | y) is set exclusively by W). In other words, if
your having “free will” means what it does to Realist, themywve the power to
change the prediction accuracy W (). As an example, if you se®(y = AB |
g) = 3/4 for all g's such thatP(g) # O, thenP(g | y) cannot equad.

The resolution of Newcomb’s paradox is now immediate: Yoo loa free to
setP(y) however you want, withP(g | y) set by W, as Fearful presumes, as
Realist presumes, you can be free toR@t| g) to whatever distributiom(y) you
want, withP(g) set by W. It is not possible to play both games simultaneyﬁjsl

We emphasize that this impossibility arises for almost By | y) choice
by W, i.e., no matter how accurately predicts. This means that the stipulation
in Newcomb'’s paradox tha predicts perfectly is a red herring. (Interestingly,
Newcomb himself did not insist on such perfect predictiomigformulation of

3Note that of the twa functions you can choose in this variant of Newcomb’s sdenitris
better for you to choosk(y) = dyg, resulting in a payfh of 1,000 000. So your optimal response
to Newcomb’s question for this variant is the same as if yorevirearful.

4For example, if you seb(y) = dyas, thenP(g) = dgas, and if you seth(y) = 6y, then
P(9) = g8

5In a variant of Newcomb’s question, you first choose one aféftevo presumption, and then
set the associated distribution. If the pre-fixed distitnuP(g | y) arising in the first presumption
is dgy, then your optimal responses depend on the pre-fixed disioitP(g) arising in the second
presumption— a distribution that is not specified in Newc@ngjuestion. IfP(g) obeysP(g =
B) > .999, then your optimal pair of choices are first to choose tahgedistributionP(y | g) to
someh(y), and then to set(y) = dy ae. If this condition is not met, you should first choose to set
P(y), and then set it téy ag.



the paradox, perhaps to avoid the time paradox problems)circial impossi-
bility implicit in Newcomb’s question is the idea that at tkeme time you can
arbitrarily specify “your” distributiorP(y | g) and W can arbitrarily specify “his™
distributionP(g | y). In fact, neither of you two can set your distribution withio
possibly dfecting the other’s distribution; you al are inextricably coupled.

Note also that no time variable occurs in our analysis of Newlz's paradox.
So that analysis is time-reversal invariant. This meanshbth the paradox and
its resolution are unchanged if the prediction ocaiftsr your choice rather than
before it. This is even the case if the “prediction” algamitldirectly observes
your choice. See [Wolpert(2008)] for more on the equivadenfcobservation and
prediction and the time-reversal invariance of both.

Newcomb’s paradox has been so vexing that it has led somsaot it®e non-
Bayesian probability theory in their attempt to understiéf@ibbard and Harper(1978),
Hunter and Richter(1978)], some to presume that ffaymist somehow depend
on your beliefs as well as what’'s under the boxes [Geanak(p¥®7)], and has
even even led some to claim that quantum mechanics is ctiociadderstanding
the paradox [Piotrowski and Sladkowski(2002)]. This israkddition to work on
the paradox based on now-discredited formulations of ¢éyfdacobi(1993)].

Our analysis shows that the resolution of Newcomb’s parasloxfact quite
simple. Newcomb’s paradox takes two incompatible integtirens of a question,
with two different answers, and makes it seem as though they are the dame in
pretation. The lesson of Newcomb’s paradox is just the amaierity that one
must carefully define all one’s terms.

ACKNOWLEDGEMENTS: We would like to thank Mark Wilber for helpful
comments.

APPENDI X:

In the text, it is claimed that iP(g | y) is pre-fixed, then the only way th(y | g)
can beg-independent is if it is one of the two delta functiofgag or dyg. To see
why this is true, combine Eq.'s 1 and 2 of the text to get

Pyl gP(@) = P@ly)P(y).

If for all g such that(g) # 0, P(y | g) = h(y) for some distributiorn, then we can
sum both sides over the two valuesgpfettingP(y) = h(y). Plugging this back in
shows that for any such thah(y) # 0, P(g | y) must equaP(g). If there were two
suchy’s in the support oh, thenP(g | y) would have to be the same distribution
overg for both of thosey’s. This is not the case for a perfectly accur(g | y)



though (for whichP(g | y) = d4y), nor is it the case for almost all othB(g | y)’s.
The only way to avoid this contradiction is for you to $€y) so that it equals O
for one of the twoy's. QED.
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Choose AB Choose B

Predict AB: 1000 0

Predict B: 1,001,000 1000 000

Table 1. The payoff to you for the four combinations of your choice and W's
prediction.
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Short title: Newcomb'’s paradox resolved
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