STATIC AND KINETIC FRICTION PROBLEMS

• Remember: If you pull (**F**) on an object, **F** must overcome <u>STATIC</u> friction ($f_{,s}$) for the object to accelerate (and if $v_0 = 0$, for the object to begin moving):

- If $F \le f_{s,MAX} \rightarrow a _ 0$ and $f_{actual} = _$. - If $F > f_{s,MAX} \rightarrow a _ 0$ and $f_{actual} = _$.

 $f_{,\kappa} = \mu_{,\kappa} N$

 $f_{s,MAX} = \mu_{s} N$

 $0 \le \mu \le 1$

 $\mu_{K} \leq \mu_{S}$

<u>EXAMPLE 1</u>: A 10 kg block is at rest. The coefficients of friction between the block and the floor are $\mu_{,K} = 0.4$, $\mu_{,S} = 0.6$. Use g=10 m/s². Find the: (a) max. static friction that can act on the block; (b) friction on the block if it was moving.

<u>PRACTICE 1</u>: A 5 kg block is on the floor. You figure out that it takes a horizontal force of 35 N to <u>get it moving</u>, and 25 N to <u>keep it moving</u>. Use g=10 m/s². Find the coefficients of static & kinetic friction between the block and the surface.

EXAMPLE 2: You pull on the block in EXAMPLE 1 with various horizontal forces F. For each value of F, fill the cells below:

FORCE	Moves?	Friction Type	f ,actual	Acceleration
F = 0				
F = 30 N				
F = 50 N				
F = 70 N				

 \rightarrow If ONE coefficient of friction is given: μ ,s ____ μ , κ . \rightarrow If TWO coefficients are given, but not identified: μ ,s ____ μ , κ

<u>PRACTICE 2</u>: You push horizontally on a 10-kg box so that it moves on a flat surface with a constant 2 m/s. The coefficients of friction between the box and the surface are 0.5 and 0.6. (a) What force is needed to keep the box at 2 m/s? (b) If you stop pushing, what will be the acceleration of the box?