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STATISTICALLY CONVERGENT MULTIPLE SEQUENCES IN

PROBABILISTIC NORMED SPACES

Binod Chandra Tripathy1, Rupanjali Goswami2

In this paper we define concepts of statistically convergent and statistically
Cauchy multiple sequences in probabilistic normed spaces. We prove a useful character-

ization for statistically convergent multiple sequences. We will introduce the statistical
limit points, statistical cluster points in probabilistic normed spaces. Moreover we will
give the relation between them and limit points of multiple sequences in probabilistic
normed spaces.
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1. Introduction

The notion of sequence spaces was extended to double sequences in the beginning
of nineteenth century by Pringsheim [14]. Initial works on double sequence is found in
Browmich [2]. Hardy [6] introduced the notion of regular convergence for double sequences.
Moricz[12] studied some properties of double sequences of real and complex numbers. Re-
cently different types of double sequences have been introduced and investigated from differ-
ent aspects by Basarir, and Sonalcan [1], Moricz and Rhoades [13], Tripathy [19], Tripathy
and Sarma [25, 27] and many others.

In the recent past sequence spaces have been investigated from different aspects. From
fuzzy set theory point of view by Tripathy and Baruah [20, 21], Tripathy and Borgohain
[22, 23], Tripathy and Dutta [24], Tripathy and Sarma [26], Tripathy, Sen and Nath [28] and
many others.

Metric spaces are sets in which there is defined a notion of distance between pair
of points. The concept of an abstract metric space was formulated in 1906 by Frechet
[5], which furnishes a common idealization of a large number of mathematical, physical
and other scientific constructs in which the notion of distance appears. The object under
consideration may be points, functions, sets, and the subjective experiences of sensations.
There is the possibility of associating a non-negative real number with each ordered pair
of elements of a certain set and numbers associated with each pair of elements satisfying
certain conditions. But in reality, the instances in which the theory of metric spaces has
been applied is an over idealization. Therefore in such situations it is appropriate to look
upon the distance concept as a statistical rather than a deterministic one. More precisely,
instead of associating a number calledthe distance d(p, q)-with every pair of elementp, q, one
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should associate a distribution function Fpq and for any positive number x, interpret Fpq(x)
as the probability that the distance from p to q be less than x. This generalizes the concept
of a metric space. This generalization which was introduced by Menger [9] and named as
statistical metric space.

Menger [9] gave postulates for the distribution functions Fpq. These include a gener-
alized triangle inequality. In addition, he constructed a theory of betweeness and indicated
possible fields of application. In 1943, after Wald [29] improved Mengers notion and intro-
duced the notion of generalized triangle inequality and proposed an alternative definition.
On the basis of this new inequality, Wald [29] constructed a theory of betweeness having
certain advantages over Mengers theory. Later on Menger [10], considered Walds version
of triangle inequality for his investigations in Probalistic normed space. For some detailed
account one may refer to Constantin and Istratescu [3], Menger [11] and Sklar [17, 18].
Statistical convergence of single and double sequences in probabilistic normed spaces has
been introduced and studied by Karakus [7, 8]. In this paper we extend this notion to
multiple sequences.

2. Statistical Convergence of Multiple Sequences in Probabilistic Normed
Spaces

Definition 1. A function f : R+ → R+
0 is called a distribution function if it is a non-

decreasing, left continuous on its domain with inft∈R f(t) = 0 and supt∈R f(t) = 1.
Throughout D denotes the set of all distribution functions.
Definition 2. A triangular norm or a t-norm is a binary operation on [0, 1] which is
continuous, commutative, associative, non-decreasing and has 1 as neutral element, i.e., it
is the continuous mapping ∗ : [0, 1]× [0, 1] → [0, 1] such that for all a, b, c ∈ [0, 1]
1)a ∗ 1 = a,
2)a ∗ b = b ∗ a,
3)c ∗ d ≥ a ∗ b if c ≥ a and d ∗ b,
4)(a ∗ b) ∗ c = a ∗ (b ∗ c).
Example 1. Consider the ∗ operation a∗b = max a+ b− 1, 0. Then ∗ is a t-norm. Similarly
one can consider a ∗ b = ab, a ∗ b = min{a, b} on [0, 1] and verify that these are also t-norms.

Definition 3. A triplet (X,N, ∗) is called a probabilistic normed space (in short
PN-space), if X is a real vector space, N : X → D (for x ∈ X, the distribution function
N(x) is denoted by Nx and Nx(t) is the value of Nx at t ∈ R) and ∗, a t-norm satisfying
the following conditions:
(i) Nx(0) = 0,
(ii) Nx(t) = 1, for all t > 0 if and only if x = 0,

(iii)Nαx(t) = Nx

(
t
|α|

)
, for all α ∈ R− {0},

(iv) Nx+y(s+ t) ≥ Nx(s) ∗Ny(t), for all x, y ∈ X and s, t ∈ R+.
Example 2. Let (X, ∥.∥) be a normed linear space and µ ∈ D with µ(0) = 0 and µ ̸= h
where

h(t) =

{
0, for all t ≤ 0;

1, for all t > 0
. Define Nx(t) =

{
h(t), if x = 0

µ( t
∥x∥ ) if x ̸= 0

where x ∈ X and t ∈ R.

Then (X,N, ∗) is a PN space.

We define a function µ on R by µ(x) =

{
0, x ≤ 0
x

1+x , x > 0
.

Then we obtain the following PN

Nx(t) =

{
h(t), x = 0

t
t+∥x∥ , x ̸= 0
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Definition 4. A multiple sequence x = (xn1n2....nk
) is said to be convergent to L ∈ X with

respect to N if for every ε > 0 and β ∈ (0, 1), there exists a positive integer m0 such that

Nxn1n2....nk
−L(ε) > 1− β, whenever ni ≥ m0, for all i = 1, 2, 3,...,k.

It is denoted by N − limxn1n2....nk
= L.

Definition 5. A multiple sequence x = (xn1n2....nk
), is said to be a Cauchy sequence with

respect to N if for every ε > 0 and β ∈ (0, 1), there exists a positive integer m0 such that

Nxn1n2....nk−xl1l2....lk
(ε) > 1− β, whenever ni ≥ m0, li ≥ m0 for all i = 1, 2, 3,..., k.

The notion of statistical convergence was studied by Fast[4] and Schoenberg [16] indepen-
dently in 1950s. Later on it was studied by Salat [15]. The notion of statistically convergent
double sequences was introduced by Tripathy [7]. In this article we introduce the notion of
asymptotic density for subsets of Nk.

Definition 6. A subset E ⊂ Nk is said to have asymptotic density δk(E) if

lim
n1,n2,....,nk

1
n1n2...nk

n1∑
i1=1

n2∑
i2=1

......
nk∑

ik=1

χE(i1, i2, ...., ik) exists.

For example if we consider the set
K = {(n1, n2, ..., nk) ∈ Nk : n1, n2, ..., nk = i2, i ∈ N} then,

δk(K) = lim
n1,n2,...,nk

√
n1

√
n2...

√
nk

n1n2...nk
= 0.

Note: For i = 1, it is the usual asymptotic density of subsets of N. For i = 2, it is the
double asymptotic density of subsets of N×N. For i = 3, it is the triple asymptotic density.
Definition 7. A subset K ⊂ Nk is said to have upper asymptotic density δ̄k(K) if

δ̄k(K) = lim
n1,n2,...,nk

sup 1
n1n2...nk

nk∑
ik=1

...
n2∑

i2=1

nk∑
i1=1

χK(i1, i2, ..., ik) exists,

where χK is the characteristic function of K.
Definition 8. A multiple sequence x = (xn1n2....nk

) is said to be statistically convergent to
L if for a given ε > 0,

δk
({(

n1, n2, ..., nk

)
∈ Nk : |xn1n2....nk

− L| ≥ ε
})

= 0

and we write st− limxn1n2....nk
= L.

Definition 9. A multiple sequence x = (xn1n2....nk
) is said to be statistically null if for a

given ε > 0,

δk
({(

n1, n2, ..., nk

)
∈ Nk : |xn1n2....nk

| ≥ ε
})

= 0.

Definition 10. A multiple sequence x = (xn1n2....nk
) is said to be statistically bounded if

there exists a positive integer M such that,

δk
({(

n1, n2, ..., nk

)
∈ Nk : |xn1n2....nk

| > M
})

= 0.

Definition 11. A multiple sequence x = (xn1n2....nk
) is said to be statistically convergent

to L ∈ X with respect to N if for every ε > 0 and β ∈ (0, 1),

δk

({(
n1, n2, ..., nk

)
∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
})

= 0.

We write it as stN − limxn1n2....nk
= L.

Definition 12. A multiple sequence x = (xn1n2....nk
) is statistically Cauchy with respect

to N if for every ε > 0 and β ∈ (0, 1) there is a positive integer m0 such that

δk

({(
n1, n2, ..., nk

)
∈ Nk : Nxn1n2....nk

−xm1m2....mk
(ε) ≤ 1− β

})
= 0.

Definition 13. Let (X,N, ∗) be a probabilistic normed space. For x ∈ X, t > 0 and
0 < r < 1, the ball centred at x with radius r is defined by

B(x, r, t) =
{
y ∈ X : Nx−y(t) > 1− r

}
.
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Definition 14. A subset Y of (X,N, ∗) is said to be bounded if for every r ∈ (0, 1) there
exists t0 > 0 such that

Nx(t0) > 1− r for all x ∈ Y .

Definition 15. In a PN-space (X,N, ∗), L ∈ X is called a limit point of the multiple
sequence x = (xn1n2....nk

) with respect to N if there is a subsequence of x that converges to
L with respect to N . Let us denote the set of all limit points of the sequence x by ΩN (x).
If (xn1(j1),n2(j2),...,nk(jk)) is a subsequence of x = (xn1n2....nk

) and

K =
{(

n1(j1), n2(j2),...,nk(jk)
)
∈ Nk : j1, j2,...,jk ∈ N

}
, then{

xn1(j1),n2(j2),...,nk(jk)

}
is abbreviated by

{
x
}
K
. If δk(K) = 0 then

{
x
}
K

is called a sub

sequence of density zero or thin sub sequence. Also if δk(K) ̸= 0 then
{
x
}
K

is called a

non-thin subsequence of x.

Definition 16. In a PN-space (X,N, ∗), ξ ∈ X is called a statistical limit point of the
multiple sequence x = (xn1n2....nk

) with respect to N if there is a non-thin subsequence of
x that converges to ξ ∈ X with respect to N . ξ is called an stN − limit point of sequence
x = (xn1n2....nk

). Let the set of all stN−limit points of the sequence x be denoted by ΛN (x).

Definition 17. In a PN-space (X,N, ∗), γ ∈ X is called a statistical cluster point of the
sequence x = (xn1n2....nk

) with respect to N if for ε > 0 and β ∈ (0, 1),

δ̄k

({(
n1, n2,...,nk

)
∈ Nk : Nxn1n2....nk

−γ(ε) > 1− β
})

> 0.

γ is called an stN − cluster point of the sequence x = (xn1n2....nk
). Let the set of all

stN − cluster points of the sequence x be denoted by ΓN (x).

Definition 18. A probabilistic normed space (X,N, ∗) is said to be complete if every
Cauchy sequence is convergent in X with respect to the probabilistic norm N .

Theorem 1. In a PN-space (X,N, ∗), for every ε > 0 and β ∈ (0, 1), the following state-
ments are equivalent.
(i) stN − limxn1n2....nk

= L.

(ii) δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
})

= 0.

(iii) δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) > 1− β
})

= 1.

(iv) st− limNxn1n2....nk
−L(ε) = 1.

Proof. (i) ⇒ (ii)
Suppose stN − limxn1n2....nk

= L. Then by definition, for every ε > 0 and β ∈ (0, 1), we
have
δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
})

= 0.

(ii) ⇒ (iii)
Let ε > 0 and β ∈ (0, 1), then we have

δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) > 1− β
})

.

= 1− δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
})

.

= 1 by (ii).
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(iii) ⇒ (iv)
Let ε > 0 and β ∈ (0, 1), then{

(n1, n2, ...., nk) ∈ Nk : |Nxn1n2....nk
−L(ε)− 1| ≥ β

}
=

{
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
}

∪
{
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≥ 1 + β
}
.

Therefore we have from the finite additivity property of density,

δk

({
(n1, n2, ...., nk) ∈ Nk : |Nxn1n2....nk

−L(ε)− 1| ≥ β
})

= δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
})

+δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≥ 1 + β
})

.

Since, δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
})

= 0

and
δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≥ 1 + β
})

= 0.

Hence
δk

({
(n1, n2, ...., nk) ∈ Nk : |Nxn1n2....nk

−L(ε)− 1| ≥ β
})

= 0.

Hence st− limNxn1n2....nk
−L(ε) = 1.

(iv) ⇒ (i)
By hypothesis for a given ε > 0 and β ∈ (0, 1), we have

δk

({
(n1, n2, ...., nk) ∈ Nk : |Nxn1n2....nk

−L(ε)− 1| ≥ β
})

= 0.

i.e., δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
})

+δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≥ 1 + β
})

= 0.

⇒ δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
})

= 0,
as
δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≥ 1 + β
})

= 0.

�

Theorem 2. In a PN-space (X,N, ∗), if a sequence x = (xn1n2....nk
) is statistically conver-

gent with respect to the probabilistic norm N , then stN − limit is unique.

Proof. We assume that stN − limxn1n2....nk
= M1 and stN − limxn1n2....nk

= M2

where x = (xn1n2....nk
) is a multiple sequence.

For a given λ > 0 we take β ∈ (0, 1) such that (1− β) ∗ (1− β) > 1− λ.
Then for given ε > 0, we define the following sets:

KN,1(β, ε) =
{
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−M1(ε) ≤ 1− β
}
,

KN,2(β, ε) =
{
(n1, n2, ..., nk) ∈ Nk : Nxn1n2....nk

−M2(ε) ≤ 1− β
}
.

Since stN − limxn1n2....nk
= M1, δk ({KN,1(β, ε)}) = 0, for all ε > 0.

Also, as stN − limxn1n2....nk
= M2, we get δk ({KN,2(β, ε)}) = 0, for all ε > 0.
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Let KN (β, ε) = KN,1(β, ε) ∩KN,2(β, ε).

Then δk ({KN (β, ε)}) = 0 which implies that δk

({
Nk/KN (β, ε)

})
= 1.

If (n1, n2, ...., nk) ∈
{
Nk/KN (β, ε)

}
, then

NM1−M2(ε) ≥ Nxn1n2....nk
−M1(

ε

2
) ∗Nxn1,n2,....,nk

−M2(
ε

2
) > (1− β) ∗ (1− β)

> 1− λ.

Since λ > 0 is arbitrary, NM1−M2(ε) = 1 for all ε > 0. ThusM1 = M2. Therefore stN−limit
of multiple sequence is unique.

�

Theorem 3. In a PN-space (X,N, ∗), if N − limxn1n2....nk
= M , then st− limxn1n2....nk

=
M , but the converse is not true.

Proof. By hypothesis x = (xn1n2....nk
), converges to M with respect to N . Therefore for

every β ∈ (0, 1) and ε > 0 there is a positive integer m0 such that
Nxn1n2...nk

−M (ε) > 1− β for all ni ≥ m0, i = 1, 2, 3, ..., k.

Thus the set
{
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−M (ε) ≤ 1− β
}
has finitely many terms.

Since every finite subset of Nk has density zero, we observe that

δk

({
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−M (ε) ≤ 1− β
})

= 0.

�

The following example shows that the converse of Theorem 3 is not true.

Example 3. Let (R, |.|) denote the space of real numbers with usual norm. Let a ∗ b = ab
and Nx(t) = t

t+|x| where x ∈ X and t ≥ 0. Then (R, N, ∗) is a PN -space. We define a

sequence x = (xn1n2...nk
) whose terms are given by

xn1n2...nk
=

{
1, if n1, n2, ..., nk are squares;

0, otherwise.
(2.1)

Then for every β ∈ (0, 1) and for any ε > 0,
let KN (β, ε) = {(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

(ε) ≤ 1− β}.
Since

KN (β, ε) = {(n1, n2, ..., nk) ∈ Nk : t
t+|xn1n2...nk

| ≤ 1− β}
= {(n1, n2, ..., nk) ∈ Nk : |xn1n2...nk

| ≥ βt
1−β > 0}

= {(n1, n2, ..., nk) ∈ Nk : xn1n2...nk
= 1}

= {(n1, n2, ..., nk) ∈ Nk : n1, n2, ..., nk are squares},
we get

1
n1n2...nk

n1∑
i1=1

n2∑
i2=1

...
nk∑

ik=1

χK (i1, i2, ..., ik) ≤
√
n1

√
n2...

√
nk

n1n2...nk

which implies that

lim
n1,n2,...,nk

1
n1n2....nk

n1∑
i1=1

n2∑
i2=1

...
nk∑

ik=1

χK (i1, i2, ..., ik) = 0. But the sequence x = (xn1n2...nk
) is

not convergent in (R, |.|) with respect to the probabilistic norm N .
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Following the technique applied by Salat [15] for establishing the decomposition result for
statistical convergence for single sequences, we formulate the following result.

Theorem 4. In a PN-space (X,N, ∗) and for a multiple sequence x = (xn1n2....nk
),

stN−limxn1n2....nk
= L if and only if there exists an index subsetK =

{(
mn1 ,mn2 , ...,mnk

)
: mnk

∈

N
}
of Nk such that δk(K) = 1 and N − lim

(n1,n2,...,nk)∈K xn1n2...nk
= L.

Proof. Suppose that stN − limxn1n2...nk
= L.

Now for every ε > 0 and r ∈ N, let

K(r, ε) =
{
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−L(ε) ≤ 1− 1

r

}
(2.2)

M(r, ε) =
{
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−L(ε) > 1− 1
r

}
Then δk

({
K(r, ε)

})
= 0 and

M(1, ε) ⊃ M(2, ε) ⊃ M(3, ε) ⊃ .... ⊃ M(i, ε) ⊃ M(i+ 1, ε) ⊃ .... (2.3)

δk

({
M(r, ε)

})
= 1 for r = 1, 2, 3, .... (2.4)

Now we have to show that for (n1, n2, ..., nk) ∈ M(r, ε), the sequence x = (xn1n2...nk
) is N−

convergent to L.

Suppose that x = (xn1n2...nk
) is not N -convergent to L. Therefore there exists β > 0 such

that the set{
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−L(ε) ≤ 1− β
}
has infinitely many terms.

Let M(β, ε) =
{
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−L(ε) > 1− β
}
, β > 1

r , (r = 1, 2, 3, ...).

Then δk

({
M(β, ε)

})
= 0 and by (2.3) we have M(r, ε) ⊂ M(β, ε).

Hence δk
(
{M(r, ε)}

)
= 0 which contradicts (2.4).

Therefore x = (xn1n2...nk
) is N -convergent to L.

Conversely let us suppose that there is a subset

K =
{
(n1, n2, ..., nk) : ni = 1, 2, 3, 4, ..., i ∈ N

}
⊂ Nk such that δk(K) = 1 and

N − lim
(n1,n2,...,nk)∈K
n1,n2,...,nk→∞

xn1n2...nk
= L. Then there exists k0 ∈ N, such that for every β ∈ (0, 1)

and ε > 0,
Nxn1n2...nk

−L(ε) > 1− β for ni ≥ k0 , i = 1, 2, 3, ...k.

Now,{
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−L(ε) ≤ 1− β
}

⊂ Nk −
{(

n1(k0+1), n2(k0+1)..., nk(k0+1)

)
,
(
n1(k0+2), n2(k0+2), ..., nk(k0+2)

)
,(

n1(k0+3), n2(k0+3), ....., nk(k0+3)

)
, ...

}
.

Therefore
δk

({
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−L(ε) ≤ 1− β
})

≤ 1− 1 = 0.

Hence stN − limxn1n2...nk
= L.
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�

Theorem 5. In a PN-space (X,N, ∗) and for a multiple sequence x = (xn1n2....nk
) whose

terms are in the vector space X, the following conditions are equivalent.
(a) X is statistically Cauchy sequence with respect to the probabilistic norm N .

(b) There exists an index subset K =
{
(mn1 ,mn2 , ...,mnk

)
}
of Nk such that δk(K) = 1 and

the subsequence
{(

xmn1mn2 ...mnk

)}
(mn1 ,mn2 ,...,mnk)∈K

is a Cauchy sequence with respect

to the probabilistic norm N .

Proof. The proof is similar to proof of Theorem 4 and thus omitted. �

Theorem 6. Let (X,N, ∗) be a PN-space.Then
(i) If stN − limxn1n2....nk

= ξ and stN − lim yn1n2....nk
= η, then

stN − lim(xn1n2....nk
+ yn1n2....nk

) = ξ + η.
(ii) If stN − limxn1n2....nk

= ξ and α ∈ R, then
stN − limαxn1n2....nk

= αξ.
(iii) If stN − limxn1n2....nk

= ξ and stN − lim yn1n2....nk
= η, then

stN − lim(xn1n2....nk
− yn1n2....nk

) = ξ − η.

Proof. (i) Let stN − limxn1n2...nk
= ξ and stN − lim yn1n2...nk

= η.
For a given ε > 0 and λ ∈ (0, 1) we take β ∈ (0, 1) such that (1− β) ∗ (1− β) > 1− λ. We
define the following sets.

KN,1(β, ε) =
{
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−ξ(ε) ≤ 1− β
}
,

KN,2(β, ε) =
{
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−η(ε) ≤ 1− β
}
.

Since stN − limxn1n2...nk
= ξ, δk

(
{KN,1(β, ε)}

)
= 0, for all ε > 0.

Also as stN − limxn1n2...nk
= η we get δk

(
{KN,2(β, ε)}

)
= 0, for all ε > 0.

Now let KN (β, ε) = KN,1(β, ε) ∩KN,2(β, ε).
Then δk ({KN (β, ε)}) = 0, which gives δk

( {
Nk/KN (β, ε)

} )
= 1.

If (n1, n2, ...., nk) ∈
{
Nk/KN (β, ε)

}
, then

N(xn1n2...nk
−ξ)+(yn1n2...nk

−η)(ε) ≥ Nxn1n2...nk
−ξ

(
ε
2

)
∗Nxn1n2...nk

−η

(
ε
2

)
> (1− β) ∗ (1− β) > 1− λ.

Thus,

δk

({
(n1, n2, ..., nk) ∈ Nk : N(xn1n2...nk

−ξ)+(yn1n2...nk
−η)(ε) ≤ 1− λ

})
= 0.

So, stN − lim
(
xn1n2...nk

+ yn1n2...nk

)
= ξ + η.

(ii) Let stN − limxn1n2...nk
= η, β ∈ (0, 1) and ε > 0. Let us take α = 0.

Then,
N0xn1n2...nk

−0ξ(ε) = N0(ε) = 1 > 1− β.
So, N − lim 0xn1n2...nk

= 0.



Statistically convergent multiple sequences in probabilistic normed spaces 91

Then from Theorem 3 we have, stN − lim 0xn1n2...nk
= 0.

Now let α ∈ R(α ̸= 0). As stN − limxn1n2...nk
= η, we define the following set

KN (β, ε) =
{
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−ξ(ε) ≤ 1− β
}
then

δk ({KN (β, ε)}) = 0 for all ε > 0.

We have, δk

({
Nk/KN (β, ε)

})
= 1.

If (n1, n2, ..., nk) ∈
({

Nk/KN (β, ε)
})

, then

Nαxn1n2...nk
−αξ(ε) = Nxn1n2...nk

−ξ

(
ε
|α|

)
≥ Nxn1n2....nk

−ξ(ε) ∗N0

(
ε
|α| − ε

)
= Nxn1n2....nk

−ξ(ε) ∗ 1

= Nxn1n2...nk
−ξ(ε) > 1− β, for α ∈ R(α ̸= 0).

Then, δk

({
(n1, n2, ...., nk) ∈ Nk : Nαxn1n2...nk

−αξ(ε) ≤ 1− β
})

= 0.

Thus stN − limαxn1n2...nk
= αξ.

(iii) Follows from (i) and (ii) by putting α = −1.
�

Theorem 7. In a PN-space (X,N, ∗), for any multiple sequence
x = (xn1n2....nk

) ∈ X, ΛN (x) ⊂ ΓN (x).

Proof. Let ξ ∈ ΛN (x), then there is a non-thin subsequence
(
xn1(j1)n2(j2),...,nk(jk)

)
of

x = (xn1n2....nk
) that converges to ξ with respect to N , i.e.,

δk

({(
n1(j1), n2(j2), ..., nk(jk)

)
∈ Nk : Nxn1(j1)n2(j2)....nk(jk)−ξ(ε) > 1− β

})
= d > 0.

Since{
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−ξ(ε) > 1− β
}

⊃
{
(n1(j1), n2(j2), ..., nk(jk)) ∈ Nk : Nxn1(j1)n2(j2)....nk(jk)−ξ(ε) > 1− β

}
for every ε > 0, we get{
(n1, n2, ..., nk) ∈ Nk : Nxn1n2....nk

−ξ(ε) > 1− β
}

⊇
{(

n1(j1), n2(j2), ..., nk(jk)
)
∈ Nk : j1, j2, ..., jk ∈ N

}
−
{(

n1(j1), n2(j2), ...nk(jk)
)
∈ Nk : Nxn1(j1)n2(j2)...nk(jk)−ξ(ε) ≤ 1− β

}
.

As
(
xn1(j1)n2(j2)...nk(jk)

)
converges to ξ with respect to N , the set{

(n1(j1), n2(j2), ....nk(jk)) ∈ Nk : Nxn1(j1)n2(j2)...nk(jk)−ξ(ε) ≤ 1− β
}
is finite, for any ε > 0,

therefore
δ̄k

({
(n1, n2, ...nk) ∈ Nk : Nxn1n2...nk

−ξ(ε) > 1− β
})

≥ δ̄k

({
(n1(j1), n2(j2), ..., nk(jk)) ∈ Nk : j1, j2, ...., jk ∈ N

})
−δ̄k

({
(n1(j1), n2(j2), ..., nk(jk)) ∈ Nk : Nxn1(j1)n2(j2)...nk(jk)−ξ(ε) ≤ 1− β

})
.
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Hence δ̄k

({
(n1, n2, ..., nk) ∈ Nk : Nxn1n2....nk

−ξ(ε) > 1− β
})

> 0. This proves that

ξ ∈ ΓN (x).
Thus ΛN (x) ⊂ ΓN (x). �

Theorem 8. In a PN-space (X,N, ∗), for any multiple sequence
x = (xn1n2....nk

) ∈ X, ΓN (x) ⊂ ΩN (x).

Proof. Let γ ∈ ΓN (x), then for every ε > 0 and β ∈ (0, 1),

δk

({
(n1, n2, ..., nk) ∈ Nk : Nxn1n2...nk

−γ(ε) > 1− β
})

> 0.

We set
{
x
}
K

be a non-thin subsequence of x such that

K =
{(

n1(j1), n2(j2), ..., nk(jk)
)
∈ Nk : Nxn1(j1)n2(j2)...nk(jk)−γ(ε) > 1− β

}
for every

ε > 0 and δk(K) ̸= 0.
Since K has infinitely many elements, so γ ∈ ΩN (x).
Thus ΓN∆(x) ⊂ ΩN∆(x).

�

Theorem 9. In a PN-space (X,N, ∗), for any multiple sequence
x = (xn1n2....nk

) ∈ X, stN − limx = L, implies ΛN (x) = ΓN (x) = {L}.

Proof. First we prove that ΛN (x) = {L}.
Let ΛN (x) = {L,M} such that L ̸= M . Then there are non-thin sub sequences(
xn1(j1)n2(j2)...nk(jk)

)
and

(
xm1(j1)m2(j2)...mk(jk)

)
of x = (xn1n2...nk

) that converges to L and
M respectively with respect to N .

As
(
xm1(j1)m2(j2)...mk(jk)

)
converges to M with respect to N , so for every ε > 0 and

β ∈ (0, 1), the set

K =
{(

m1(j1),m2(j2), ....,mk(jk)
)
∈ Nk : Nxm1(j1)m2(j2)....mk(jk)−M (ε) ≤ 1− β

}
is a finite

set. Thus δk(K) = 0.
Then{(

m1(j1),m2(j2), ....,mk(jk)
)
∈ Nk : j1, j2, ..., jk ∈ N

}
=

{(
m1(j1),m2(j2), ....,mk(jk)

)
∈ Nk : Nxm1(j1)m2(j2)....mk(jk)−M (ε) > 1− β

}
∪
{(

m1(j1),m2(j2), ....,mk(jk)
)
∈ Nk : Nxm1(j1)m2(j2)....mk(jk)−M (ε) ≤ 1− β

}
which shows that

δk

({(
m1(j1),m2(j2), ....,mk(jk)

)
∈ Nk : Nxm1(j1)m2(j2)....mk(jk)−M (ε) > 1− β

})
̸= 0. (2.5)

Since stN − limx = L,

δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
})

= 0 for every ε > 0. (2.6)

Therefore δk

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) > 1− β
})

̸= 0.

For every L ̸= M ,{(
m1(j1),m2(j2), ....,mk(jk)

)
∈ Nk : Nxm1(j1)m2(j2)....mk(jk)−M (ε) > 1− β

}
∩
{
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) > 1− β
}
= ∅.
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Hence{(
m1(j1),m2(j2), ....,mk(jk)

)
∈ Nk : Nxm1(j1)m2(j2)....mk(jk)−M (ε) > 1− β

}
⊆

{
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
}
.

Therefore
δ̄k

({(
m1(j1),m2(j2), ....,mk(jk)

)
∈ Nk : Nxm1(j1)m2(j2)....mk(jk)−M (ε) > 1− β

})
≤ δ̄k

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
})

= 0.

This contradicts (2.5) Hence ΛN (x) = {L}.

Next we show that ΓN (x) = {L}.
If possible let ΓN (x) = {L,Q} such that L ̸= Q. Then

δ̄k

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−Q(ε) > 1− β
})

̸= 0. (2.7)

Since
{
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) > 1− β
}

∩
{
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−Q(ε) > 1− β
}
= ∅, for every L ̸= Q, so{

(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk
−L(ε) ≤ 1− β

}
⊇

{
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−Q(ε) > 1− β
}
.

Therefore

δ̄k

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−L(ε) ≤ 1− β
})

≥ δ̄k

({
(n1, n2, ...., nk) ∈ Nk : Nxn1n2....nk

−Q(ε) > 1− β
})

. (2.8)

From (2.7), the right hand side of (2.8) is greater than zero. Also from (2.6) the left hand
side of (2.8) equals zero which is a contradiction. Hence ΓN (x) = {L}.

�
Theorem 10. In a PN-space (X,N, ∗), the set ΓN is closed in X for each multiple sequence
x = (xn1n2....nk

) of elements of X.

Proof. Let y ∈ ΓN (x). Let 0 < r < 1 and t > 0. There exists
γ ∈ ΓN (x) ∩B(y, r, t) such that

B(y, r, t) =
{
x ∈ X : Ny−x(t) > 1− r

}
.

Choose η > 0 such that B(γ, η, t) ⊂ B(y, r, t), then we have{
(n1, n2, ..., nk) ∈ Nk : Ny−xn1n2...nk

(t) > 1− r
}

⊃
{
(n1, n2, .., nk) ∈ Nk : Nγ−xn1n2....nk

(t) > 1− η
}
.

Since γ ∈ ΓN (x) so,

δ̄k

({
(n1, n2, .., nk) ∈ Nk : Nγ−xn1n2....nk

(t) > 1− η
})

> 0.

Hence
δ̄k

({
(n1, n2, ..., nk) ∈ Nk : Ny−xn1n2...nk

(t) > 1− r
})

> 0.

�
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