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Abstract

We present a quantitative approach for IT portfolio management. This is an approach that
CMM level 1 organizations can use to obtain a corporate wide impression of the state of their
total IT portfolio, how IT costs spent today project into the budgets of tomorrow, how to
assess important risks residing in an IT portfolio, and to explore what-if scenarios for future
IT investments. Our quantitative approach enables assessments of proposals from business units,
risk calculations, cost comparisons, estimations of TCO of entire IT portfolios, and more. Our
approach has been applied to several organizations with annual multibillion dollar IT budgets
each, and has been instrumental for executives in coming to grips with the largest production
factor in their organizations: information technology.
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1. Introduction

It is known from extensive research being conducted by the former CIO of the US
Department of Defense, Paul A. Strassmann [119,120,123,124], that there is no relation
between information management per employee and return on shareholder equity. Also
there is no relation between proCts and annual IT spending. So he shows that there
is no direct relation between spending on computers, proCts or productivity. Indeed,
there are companies—in the same industry—each spending about the same on IT of
which the one makes high proCts, and the other makes huge losses [125]. This leads to
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shotgun patterns showing the absence of correlations between any kind of return and
the intensity of IT investments. The only vague correlation that Strassmann ever found
was that when from two comparable enterprises one is spending slightly less than the
other, the less spending organization is doing slightly better. This loose correlation
leads one to suspect that governance of IT investments aids in creating value with IT
instead of destroying proCts. Indeed a continuous stream of reports on value destruction
eventually led to the so-called Clinger Cohen Act [46], explicitly stating that the CIO’s
job is critical to ensure that the mandates of the Clinger Cohen Act are implemented.
This includes that IT investments (we quote from [46]):

ReIect a portfolio management approach where decisions on whether to invest in
IT are based on potential return, and decisions to terminate or make additional
investments are based on performance much like an investment broker is measured
and rewarded based on managing risk and achieving results

The US Government has to come to grips with IT portfolio management: any
acquisition program for a mission critical or mission essential IT system for the US
Government must be developed in accordance with the Clinger Cohen Act of 1996.
To that end, the US General Accounting OJce proposed a framework for initiat-
ing and maturing IT investment management [90]. But also outside the public sector
there is increasing interest in deploying IT portfolio management. In a 2002 survey
among 400+ top IT executives 60% reported an increase in the level of pressure to
prove ROI on IT investments. But 70% believe their metrics do not fully capture the
value of IT, and nearly half lack conCdence in their ability to accurately calculate
ROI on IT investments [71]. The Federal CIO Council summarized in 2002 the Crst
lessons learned for IT portfolio management. The report does not mention quantitative
approaches to manage IT portfolios [24]. This report should be seen complimentary
to our work: the lessons learned provide a Crst insight in implementing qualitative
aspects of IT portfolio management in organizations. This paper deals with quantitative
IT portfolio management. In particular, we consider quantitative aspects of IT devel-
opment, operations, maintenance, enhancement, and renovation for bespoke software
systems. For other possible contents of an IT portfolio, such as license management
for COTS systems, processing hardware infrastructure, network equipment, and so on,
tools and techniques are available to deal with them. For instance, several companies
are specialized in license management, and hardware=network infrastructure investment
issues are better understood than software cost issues. In addition, Strassmann indicates
that the focus on hardware costs is wrong: on the average this accounts for 5% of the
life-cycle cost for information management so hardware is not the dominating factor
[122, p. 409]. Bespoke software is our main focus. To the best of our knowledge
quantitative IT portfolio management—the subject of this paper—is a terra incognita.

Executives of large organizations with substantial IT budgets learned the hard way
that spending more is not the winning strategy. Some of them realized that after a long
string of staggering IT investments plus their challenges, they must start to control
their IT portfolios. Most executives consider IT spending as a black hole: no matter
how much resources are thrown at IT, there is no clear justiCcation of returns—IT
is on top of the executives. We consulted executives about a variety of investment
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Table 1
Distribution of organizations over CMM levels

CMM level Meaning Frequency of
occurrence (%)

1 = Initial Chaotic 75.0
2 = Repeatable Marginal 15.0
3 = DeCned Adequate 8.0
4 = Managed Good to excellent 1.5
5 = Optimizing State of the art 0.5

related issues. For obvious reasons this consultancy was done under nondisclosure
agreements. To give you an idea of the work, think of company-wide IT portfolio
analyses, assessing current IT investments, projecting probable consequences of major
IT investments for the IT budget in the coming years, quantifying IT portfolio risks
(failure risks, cost overruns, underbudgeting risks), assessing the likelihood of added
value of IT investments, assessing the IT portfolio of a potential target for a merge or
acquisition, calculating minimal ROI threshold for an IT portfolio, etc. Based on these
experiences, we developed and used formulas that form a mathematical underpinning
of quantitative IT portfolio management. In other words: formulas that help in getting
on top of IT. The examples we treat to explain these formulas are composed for that
purpose, and do not relate to speciCc companies.

The bad news for many executives is that the area of software development is
fairly immature. The failure rates of software projects are high: about 30% of software
projects fail, 50% are twice as expensive, take twice as much time, and deliver half
the functionality, and only 20% of the software projects is on time, within budget, and
with the desired functionality [59,47–49]. In absolute Cgures, Standish group estimated
in 1995 that this costed in the USA $81 billion on failed projects, and another $59
billion on serious cost overruns. Immaturity is further illustrated by the fact that 75%
of the organizations worldwide are still at the lowest level of the capability maturity
model (CMM), a Cve point scale developed by the SEI [93] indicating the maturity of
an organization’s software process.

In Table 1, taken from [66, p. 30], we show a recent distribution of organizations
over CMM levels. As you can see, the majority of the organizations have chaotic
processes to build and maintain software. Level 1 means that no repeatable process is
in place, in particular, there is no overall metrics and measurement program. In a 2001
survey 200 CIOs from Global 2000 companies were asked about their measurement
program. More than half (56%) said they did high-level reporting on IT Cnancials and
key initiatives. Only 11% said to have a full program of metrics used to represent
IT eJciency and eOectiveness, the rest (33%) said they had no measurement program
at all [109]. This shows that the number of organizations without a proper metrics
program is huge.

This implies that there is no substantial IT-related historical data to build a corpo-
rate governance structure on. No wonder that it is hard to detect relations between IT
spending and return on investment. Imagine the consequences for an enterprise whose
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Cnancial department is anarchic. The problem for executives of level 1 organizations
who want to get in control of their software portfolios now, becomes then very com-
pelling. For, how to measure anything at the corporate level if there is no relevant data
available to accumulate management information from?

Our approach to quantitative IT portfolio management provides you with insight
in an IT portfolio, even in the case of level 1 organizations. A level 1 organization
has to compensate for the lack of historical information by utilizing and deploying
benchmark information. We developed a set of mathematical formulas based on public
benchmark information to quantitatively manage IT portfolios. When you have histor-
ical data and can establish internal benchmarks, you can use these to instantiate our
formulas.

The simplest formulas can be handled by spread sheets or a pocket calculator. For
the more involved analyses, a scientiCc calculator like the HP49G or the TI89 can
be used. For advanced issues, it is convenient to use statistical=mathematical packages
ranging from spread sheets with plugins, to packages like SAS [31], SPSS [114], SPlus
[129,73], Matlab [81], Maple [135], or Mathematica [132].

The set of formulas has shown to be a useful executive’s armature to analyze,
assess, and control IT portfolio issues, to counteract bombardments of jargon ridden
empty promises by the trade press, software vendors, consultants, or proposals from
their own internal IT departments. These formulas comprise relevant benchmarked IT-
project information, which is often not provided to the executives, if only since the
IT jargoneers have no clue how to come up with the information themselves. To use
these formulas successfully you do not need to acquire extensive IT knowledge: we
have completely hidden this aspect (but it is incorporated via benchmark informa-
tion). The typical academic qualiCcations of the executive staO that we dealt with has
an MBA combined with an M.Sc. or Ph.D. in an exact science. Think of economy,
econometrics, astrophysics, experimental and theoretical physics, chemistry, biochem-
istry, mathematics, Cnancial mathematics, business mathematics, statistics, biostatistics,
electrical engineering, and so on. We encountered hardly ever educational backgrounds
with a strong focus on IT, and when executives had such a background, they were
combined with degrees in other exact sciences. Executive staO who were exposed to
our formulas could understand them, could work with them, and were helped by them
in that they lost their naivity with respect to IT decision making.

Does IT portfolio management pay oO? In one organization the initial investment
in research and development, plus the inevitable errors made during this
endeavor, were about $250 000 dollar. An additional $120 000 dollar were needed
for training. In this organization, the eOort to keep the IT portfolio database up to
date costs about $50 000 dollar. The return is depending on the size of the IT port-
folio measured in dollars. For a 500 million dollar IT portfolio direct cost savings
per annum of 3–5% of the total portfolio value were established by better
decision making: killing bad performing projects, mitigating risks, abandoning nega-
tive ROI investments, removing system redundancies, etc. As reported in CIO
Magazine: just compiling an IT portfolio database saved one company $3 million and
another company $4:5 million because the holistic IT portfolio view enabled them to
spot redundancies [5]. Those redundancies could be eliminated, reaping the beneCts.
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For organizations above level 1, the accuracy of the underlying benchmarks can be
signiCcantly improved, and the underlying mathematics as presented in this paper can
be instantiated accordingly. So, the principles of quantitative IT portfolio management
remain unchanged. We will for the rest of this paper assume the level 1 situation so
that the majority of current organizations can apply our results, yet when appropriate
point out how our work applies to CMM 2+ levels.

2. How to tell a program from a security

In the 1970s, it was hard for many to grasp the diOerence between hardware and
software maintenance, and Leslie Lamport explained this in a short note [74] entitled
How to tell a program from an automobile. We borrowed this title to explain that
you cannot simply apply security portfolio management to IT portfolios.

As far as we know there is no related work reported on in the realm of quantitative
IT portfolio management, although many of us think that security portfolio management
is strongly related. The reason is that the goals of both security portfolio management
and IT portfolio management are largely identical. We will show that the means to
reach this common goal do not coincide.

A lot of important work has been done in quantitative security portfolio manage-
ment. And at Crst sight it seems a promising idea to support the quantitative part of
IT portfolio management with the theory that 1990 Nobel Laureate Harry Markowitz
developed on security portfolio management [80]. We heard this from several exec-
utives who were exposed to his work, but also the US Federal CIO council seems
to play with this idea [24]. Moreover, the trade-press quotes people who think that
applying this so-called modern portfolio theory is the noble endgame in IT port-
folio management [5]. But what is this theory about? In the words of Markowitz
[80, p. 205]:

Thus, in large part, this monograph is a discussion of the relationships and proce-
dures by which information about securities is transformed into conclusions about
portfolios.

The current paper is also a discussion of the relationships and procedures by
which information about IT systems is transformed into conclusions about IT
portfolios.

Markowitz investigated the available information about securities, the questions that
need an answer and found the appropriate mathematical techniques to provide sen-
sible answers to the problems. In the current paper we do exactly the same: we
gather and investigate the data that is commonly available on IT projects, we in-
vestigated the questions that need an answer, and by working on the answers, we
related the problems to the appropriate mathematical techniques to provide sensible
answers.

Given these parallels, it may be hard for the Cnancial expert, who might never
have been exposed to information technology, (by building, maintaining, operating,
enhancing, or retiring IT) to tell the diOerence between a program and a security.
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Likewise, for the IT expert, who might never have been exposed to the nature of
securities (by selling them, buying them, comprising them into portfolios, or advising
others about these issues), it might be hard to tell the diOerence as well. As one
executive put it [5]:

The cancellation rate of the largest IT projects exceeds the default rate on the worst
junk bonds. And the junk bonds have lots of [portfolio management tools] applied
to them. IT investments are huge, risky investments. It’s time we do [Markowitz’s
portfolio management].

So they both are high risk investments, and another seeming parallel is implied. In
the same article an IT portfolio manager said she had learned that some people argue
against using modern portfolio theory since it cannot be overlaid exactly, and that the
math is too diJcult [5]. But what kind of math is being used in Markowitz’s book
[80]? As Markowitz states it [80, p. 186]:

The problem of maximizing expected return subject to linear constraints, [..] is
a linear programming problem. [..] the problem of Cnding the portfolio whose
smallest [return at time t] is as large as possible can be formulated as a linear
programming problem.

The nature of securities is that you can select them, you can calculate their historical
return, and based on these data you can use linear programming to calculate the optimal
selection that maximizes expected return while minimizing variance by diversiCcation.
The underlying mathematics is elementary linear algebra, plus elementary statistics, and
the use of standard linear programming techniques such as the simplex method. While
this is not immediately digestible for the uninitiated, the math is not inherently complex.
So, we agree that the complexity of the math should not be an argument against using
modern portfolio theory as proposed by Markowitz. This is obviously also supported
by the author of [5] given the supportive title of the article: Do the MATH.

But what about this overlay? The nature of securities is that you can invest and
disinvest in them and implement a decision without prohibitively large costs, and often
in a matter of seconds. Modern portfolio theory essentially asserts that investing and
disinvesting at all times is enabled. The heart of security portfolio management is to
monitor, control, and optimize the security selection process.

The Y2K problem and Euro conversion problem have clearly shown that you cannot
simply junk IT systems, as is possible with underperforming securities. If you would
have applied modern portfolio theory to IT systems that were suOering from the Y2K
problem, you should have sold them, and bought better performing ones. For a start,
to whom would you sell an IT system, especially, an IT system whose best-before-date
is due? Maybe the competitor wants to buy them, if only to reverse engineer them to
reveal your successful business rules, or the features that you cannot implement, so
they can get ahead of you. Obviously, this is not an option, but even throwing them
away, and restarting from scratch with new systems is not an option. For, IT is com-
prising business knowledge, often accumulations of it for many years. And converting
such business knowledge into IT is a laborious, error-prone, and painful process, so
abandoning all that valuable knowledge is like burning an entire proCtable security
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portfolio. Moreover, implementing such IT systems takes years of time. So the whole
idea that there would be a free selection process, that companies are totally free to
choose in which IT they want to invest, that organizations can abandon systems like
junking bonds, is not in accord with the realities of large software portfolios.

Let us give a typical example showing the nature of IT investments, and the free-
dom to choose. Suppose you have a good idea, like a credit card, or an ATM. Both
inventions are IT intensive, and both ideas were implemented by leading Cnancial cor-
porations with deep pockets. In the beginning, they created value for both themselves,
and their customers. But then the competitors united and answered with commodi-
tized shared credit cards and a shared ATM network—not sharing with the initiator of
course. While still creating value for the customers, this competitive answer destroyed
not only the proCts for the initiators, but also the margins for the entire market. The
discretionary IT investment, thus turned into a commodity, and now you cannot operate
a Cnancial corporation without credit cards, or ATMs. They have become must-have’s
while the proCt margins are gone—in some cases you even make a loss because of
them. So, you are not free to disinvest in credit cards or ATMs anymore, since the
innovation set oO within the industry and customers insist on these services. This is
sometimes called: creating value while destroying pro7ts as explained in detail for the
banking sector in [118]. But according to Markowitz’s portfolio theory, these are port-
folios to disinvest in: they cost money and do not deliver any positive return. Again,
Markowitz’s theory is here a bad advisor, because these types of projects are really
non-discretionary.

Let us give another example to make this apparent. Once you opted for a particular
operating system and accompanying languages it is no longer the case that you can
easily switch. Once you select a technology for your IT, you cannot easily abandon
it. In the words of Michael Porter: there are low entry barriers, but high exit barriers
[97, p. 22]. IT systems often make essential use of the underlying operating system
idiosyncrasies, clarifying the prohibitively high switching costs. This is not the case
with securities. Also, people work with IT systems and they have to learn a new IT
system, which is not the case for a security. So also the switching costs for users
of the IT systems are high. Moreover, switching to a diOerent computer language
or even another dialect is hardly possible for existing software assets [126]. When
attempting to convert to another language, you also need to convert your IT personnel
successfully. A 2001 Gartner report shows that converting a Cobol developer to a
professional Java developer has a chance of failure of about 60% [37, p. 22]. Also
a change of technology implies often a change in business process. This has shown
to be a challenge in itself, with a high failure rate [113]. So, information technology
becomes illiquid after a Crst selection as opposed to securities or other Cnancial assets
that do have liquidity. Changing information technology bears large risks, is virtually
impossible both technically and organizationally, and takes huge amounts of time. So
again in this situation, Markowitz’s portfolio theory is not an adequate tool to support
IT decision making.

Also the issue of diversiCcation is not simply transposed to the IT situation. In order
to mitigate risks, and stabilize expected portfolio return, a diverse security portfolio is
a good idea, and Markowitz gives the underlying mathematical tools to optimize this
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situation. What does diversiCcation mean in the realm of IT? Should we refrain from
many similar systems and make the IT systems more diOerent? For instance, by using
more languages, diOerent operating systems, a host of development and maintenance
tools? For IT you often try to do the opposite: consolidate diOerent but similar sys-
tems into a single overall system: a product line that deals with the variation points
of the similar systems successfully [10,22]. Also standardization is a keyword in the
IT branch: use only a few languages, a limited number of operating systems, and
a few support tools. So it is not a good idea to diversify in a technical sense, be-
cause of knowledge investment, transfer, complexity, etc. Apart from these technical
aspects, there is also a business aspect. If you are a company building integrated
radar systems for warships, then you are building those, and not enterprise resource
planning systems for the automotive industry. To implement both types of systems,
you need a lot of domain knowledge of both areas, e.g., for the warships you need to
know about developing software under military regulations, whereas for the automotive
industry entirely diOerent issues are at stake. It is simply not very productive to com-
bine uncorrelated IT domains. So also here, you see that the notions that are natural
and relevant for security portfolio management are without rhyme or reason for IT
portfolio management.

Another aspect is that for securities there is a rich body of historical information.
In contrast, many IT systems lack all historical information, and an entire branch
in software engineering—reverse engineering—is devoted to cope with this problem
[20]. The information that is around, is out of date, since deployed IT systems are
in continuous Iux, and IT developers are not stars in writing documentation. While
the value of a security may Iuctuate on the stock exchange, the object itself does
not change a bit. So the nature of the available information is diOerent, the na-
ture of the objects is totally diOerent, but also the relevant questions are diOerent.
Markowitz’s modern portfolio theory focuses on selection as a tool to minimize risk,
and maximize return, while IT portfolio management is not at all about
selecting and abandoning. So modern portfolio theory as proposed by Markowitz is
not applicable at all to IT portfolio management. Therefore, we are not surprised to
read in the same article that advocates the use of Modern Portfolio Theory (MPT) [5]:

Who’s using Markowitz’s Modern Portfolio Theory in IT? Not many.

Simply, because it is not applicable. Also in paper [3] it was observed that there are
problems with applying Markowitz’s modern portfolio theory:

However, we have not yet seen any example of a substantial software project actu-
ally using these techniques to help in their decision making process. We attribute
this to the fact that obtaining economic data in software projects is much harder
than in Cnancial markets from where these techniques have been borrowed.

The idea that the data is the problem is erroneous, as we will see later on. The
reason is that the nature of software does not resemble the nature of a security.

Not only at the portfolio level but also at the single system level, people are think-
ing of using modern portfolio theory. As an example, we quote a paper [16] inves-
tigating the potential of using modern portfolio theory to guide decisions in software
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engineering:

We view each software activity as an investment opportunity (or security), the
beneCt from the activity as the return on investment, and the allocation problem
as one of selecting the “optimal” portfolio of securities.

The paper claims that many decisions are ad hoc, and that portfolio selection could
improve that situation. But then the subjects of selection should comply with modern
portfolio theory. According to modern portfolio theory, you can lower risks with large
numbers of uncorrelated securities. We quote Markowitz [80, p. 102]:

We see that diversiCcation is extremely powerful when outcomes are uncorre-
lated. [..] To understand the general properties of large portfolios we must con-
sider the averaging together of large numbers of highly correlated outcomes. We
Cnd that diversiCcation is much less powerful in this case. Only a limited reduc-
tion in variability can be achieved by increasing the number of securities in a
portfolio.

This leaves us to answer two questions: Is the amount of activities large? And, are
these activities uncorrelated? According to the activity-based cost estimation literature,
there are at most 25 main activities in software development and deployment [66].
Moreover, many of these activities are correlated, and if they are not correlated, there
is no free choice. Analysis, design, coding, testing, and operations: they are all strongly
correlated. While you can drop analysis and design, it is already well-known that this
is not leading to the best possible IT systems. You do not need MPT to decide on
these issues. So MPT does not transpose that easily to the software world. The authors
of paper [16] admit that applying MPT did not work out in a subsequent paper [17]:

We have been attempting to apply Cnancial portfolio analysis techniques to the
task of selecting an application-appropriate suite of security technologies from the
technologies available in the marketplace. The problem structures are suJciently
similar that the intuitive guidance is encouraging. However, the analysis techniques
of portfolio analysis assume precise quantitative data of a sort that we cannot
realistically expect to obtain for the security applications. This will be a com-
mon challenge in applying quantitative economic models to software engineering
problems, and we consider ways to address the mismatch.

The authors seem to think that MPT is the solution, and the problem is missing data.
This is not true. 1 But their Cndings are conCrming the fact that 75% of the organi-
zations is not mature with respect to their software development and deployment [66].

1 Apart from the arguments that we give in this paragraph, there is also a fundamental argument indicating
that the premises for applying MPT are not fulClled. This argument may be less easy to comprehend upon
Crst reading this paper. In [41, p. 293] it is stated that if the number of activities in a software project is
large, and if these activities are uncorrelated, then according to the central limit theorem, the cost allocation
distribution will approach the Gaussian distribution. Empirical evidence indicates that cost allocation func-
tions for R&D projects, software projects, and IT portfolios are not normally distributed. This is shown in
[87–89,101–104,98] and in this paper.
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The number of main activities is so low and their correlation so high, that applying
MPT is senseless. Moreover, there are alternative approaches to select activities or
technologies. For instance, in [82] an extensive list of best practices is presented. Each
with an indication of entry barriers, and the risk of applying the technology. Also in
[65] a table is presented providing the approximate return on investment of deploying
certain software technologies. In [63,66] an elaborate treatise of success and failure
factors for development and deployment of software in various categories is discussed,
backed with quantitative data.

There are many more diOerences that come to mind, but we hope you get the idea
by now: a program is not a security, it will never become one, and better data is not
going to help. The goal of this paper is not to argue that security portfolio management
does not correspond in a simple one-to-one manner to IT portfolio management, but
to provide you with the mathematical underpinning that does enable quantitative IT
portfolio management. It all starts with collecting the available information, and the
hope that this information can be used to answer questions relevant for quantitative IT
portfolio management.

3. Gathering information

Since level 1 organizations have chaotic software development and deployment, not
a lot of relevant IT portfolio information is readily available, let alone uniformly
accessible. We give a few possibilities of information availability ranging from the
ideal situation to the worst possible case.

• All the information needed for quantitative IT portfolio management is uniformly
accessible via an IT portfolio database, which is continuously updated. Examples of
important project information are initiation date, delivery date, staO build-up, staO
size, various IT speciCc indicators, total development costs, annual costs of operation,
total cost of ownership, risk of failure, net present value, return on investment,
internal rate of return, pay back period, risk adjusted return on capital, and so on.

• Initiation date, delivery date, staO size, and total project development costs are
available.

• Initiation date, delivery date, and total project development costs are available.
• Project duration and total project costs are available.
• Total costs are available.
• No management information is available.
• Source code of the system is available.
• Source code is not available.

Except for the ideal situation, we have experienced all of the above cases—or com-
binations of them—in every substantial IT portfolio. Mostly, we were able to somehow
derive the single most important IT speciCc key indicator underlying quantitative IT
portfolio management formulas. It is the number of function points [1] for each appli-
cation in the IT portfolio. We will indicate shortly how we do this.
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3.1. Function points

A function point is a synthetic measure expressing the amount of functionality of a
software system. It is programming language independent, and it is very well suited
for cost estimation, comparisons, benchmarking, and therefore also a suitable tool for
developing quantitative methods to manage IT portfolios [108,66]. In a textbook on
function point analysis [40, p. xvii, 28] we can read:

As this book points out, almost all of the international software benchmark studies
published over the past 10 years utilize function point analysis. The pragmatic
reason for this is that among all known software metrics, only function points can
actually measure economic productivity or measure defect volumes in software
requirements, design, and user documentation as well as measuring coding defects.
[..] Function points are an eOective, and the best available, unit-of-work measure.
They meet the acceptable criteria of being a normalized metric that can be used
consistently and with an acceptable degree of accuracy.

Function points have proven to be a widely accepted metric both by practitioners
and academic researchers [70, p. 1011]. For executives it is important to know how
reliable these metrics are. In [33, p. 132] an accuracy of 15–20% is mentioned, as well
as a 2300% variance in productivity when other metrics were used. This was due only
to extremely wide variations in 7 deCnitions of the number of source lines of code
(SLOC) of a computer program. In addition, you need to know what the so-called
interrater reliability of accredited function point analysts is. Interrater reliability is the
consistency between raters. If the variation is high, then the method is not as good as
when the variation between raters is low. Moreover, since there are more methods to
count function points, what is the intermethod reliability? Empirical research reports
that the median diOerence in function point counts from pairs of raters using Albrecht’s
function point counting method was about 12%. The correlation across two diOerent
methods that were used in this Celd study was 0:95 [69, p. 88]. So function points
can be seen as an objective measure and the intermethod reliability is suJciently
high as to consider comparing function point totals that resulted from more than one
counting method. Apart from people, you can also use tools to count function points for
existing software assets. One method called backCring has an accuracy of about 20%
[66, p. 79]. One of our students developed for a large Cnancial enterprise a function
point counting tool that automatically counts function points with a maximal deviation
of 3% of manually counted function points by accredited function point analysts [86].
This is a language speciCc tool and only counts function points for information systems
in Cobol with SQL and=or CICS on a mainframe.

To reassure you at this point: there is no need to understand the details of func-
tion points in order to use our results. We use them for several purposes: to recover
missing management information, to derive some of our formulas, and to check our
projections against the actual amount of function points of an application (if the func-
tion point totals are known already). In this paper we mostly encapsulate the IT spe-
ciCc function point metric and derive formulas solely expressed in the language of
management: cost, project duration, staO size, risk, return, etc. What is important for
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now to know is that function points are a suitable basis for quantitative IT portfolio
management.

3.2. Recovering management information

For some systems, neither management information nor up-to-date documentation is
available. In that case we have to resort to the IT artifacts themselves to infer the
management information that we minimally need for quantitative IT portfolio manage-
ment. For the majority of these systems, the source code is available. The number
of function points can be estimated using backCring [62]: with a tool we count the
number of logical computer statements, and depending on the used language, the num-
ber of function points can be estimated via a conversion table. For instance, a system
with 100 000 Cobol statements, is 937 function points according to benchmark. 2 Via
extensive benchmarks it has been empirically found that 1 function point of software
is equivalent to 106.7 Cobol statements. For the about 500 languages in use worldwide
there is a list with such conversion factors and there are tools available that implement
backCring. BackCring has a somewhat larger margin of error than other techniques,
nevertheless it suJces for recovery of function point totals for the often small part of
the IT portfolio lacking all management information. If the amount of systems without
any kind of management information is large, we need to resort to more accurate tools
that scan the source code to calculate the amount of function points (e.g., the tools in
[86]).

Usually about 5% of an IT portfolio lacks not only all management information but
also the source code itself [65, p. 129]. Then we use a tool called a disassembler that
turns the binary code into a list of assembler instructions. For assembler instructions we
can use the backCring approach: for a variety of assembly languages conversion factors
are available. So, e.g., a load module on an IBM mainframe lacking the sources, that
consists of 300 000 assembler instructions after disassembly, is also about 937 function
points (the conversion factor for IBM mainframe assembler=3X0 is 320). If the amount
of lost sources is substantial, then you need more sophisticated tools. They are available,
in case you wondered [21,38]. But when you are missing the majority of the source
code, you have other priorities than quantitative IT portfolio management. For example,
in one case an enterprise-wide inventory to set up quantitative IT portfolio management
revealed a huge exposure: we detected a business unit where more than half of the IT
systems could no longer be recompiled, due to lacking source code. The exposure was
unacceptable since the systems needed a Y2K update, which was almost impossible
without source code. Executive management immediately acted to mitigate the risks.

So if there is only source code or an executable we can recover function point
information, and from that we can infer management information as we will show
later on. As an aside, you can already see why function points are so well-suited
for IT portfolio management. We can compare assembler projects to Cobol projects
without any problem. The conversion factors 106.7 and 320 are in fact expressing that

2 We will use the phrase according to benchmark in this paper to indicate that the quantitative data is in
accord with public benchmarks, but not necessarily exactly accurate for a single instance.
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a Cobol statement is about 2.99 Assembler instructions. Just imagine function points
to be a universal IT-currency converter between diOerent projects.

3.3. Enriching management information

Suppose that the burdened daily compensation rate of IT personnel is $1000, with
200 working days per year. If only the total development costs are known, then we
can infer more information using our formulas (we discuss them shortly). Namely, for
a 5 million dollar IT project it is likely that this project took 20 calendar months with
about 15 people involved. Of course, we cannot be sure about this: this is derived
using public benchmarks. We can check this with an additional function point count.
For instance, if we counted about 3000 function points, we can check that this should
have cost 22 calendar months, for 15 people. But if it was only a 1000 function point
project, the costs were probably too high. It would be ideal to have function point
totals for the entire IT portfolio, but since this implies physical access to source code
this is not a short-term viable option for globally operating companies to jump start
quantitative IT portfolio management. In the long term, collecting function point totals
for large parts of the IT portfolio is feasible.

In most organizations we have encountered the following situation: both project
duration and development costs are accessible without too much trouble. With this
information we can calculate the costs according to benchmark and compare this with
the actual costs. As a rule of thumb, you need to cross check in a few cases:

• only a very long project duration is mentioned (this presumably implies high costs);
• only a very large cost is mentioned (this implies a potentially large project);
• a very long project duration is mentioned and very low costs;
• a very large cost is mentioned accompanied by a very short project duration.

Of course, the more management information is available, the less information you
have to infer, the more you can use the formulas to validate the provided data, and
infer company-speciCc internal benchmarks and formulas. The more accurate the data
underlying our mathematics becomes, the more accurate your quantitative IT portfolio
management, up to the point where you can continuously control and monitor past,
present, and future IT costs and beneCts in your IT portfolio.

Discounting costs. If the cost of a project was 100 000 US dollar 20 years ago, then
this project is completely diOerent from a $100 000 project today. Obviously, inIation
is a factor that should be taken into account when dealing with costs over time. As a
side-remark, also deIation is a factor that should be taken into account. For instance,
in South-American countries depending on the age of a project you may have to divide
the numbers by 1000, due to a currency reform.

Current-dollars, than-dollars, future-dollars, currency conversions, and notions
like (risk adjusted) discounted cash Iows are well-known issues within the area of
economy. They deal with correcting the diOerence in dollars over time. If you elim-
inate this aspect by converting all our formulas to eOort-time analyses—formulas in
terms of staO instead of costs—you exchange discounting IT dollars for discounting
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IT productivity. This is more accurate than discounting cash Iows. But, CMM level 1
organizations do not know their own productivity, do not have historical data on past
productivity, and cannot predict future productivity, so they cannot discount eOort using
IT productivity. Higher-level CMM organizations can discount in this way, and have
the potential to eliminate the additional problem of discounting cash Iows. For CMM
level 1 organizations you can use as a surrogate the appropriate corrective transfor-
mations that are known from economy. In this paper we abstract from doing these
conversions, although they are necessary for practical long-term estimates. The reason
for this is that we want to unravel and expose the unknown territory of IT portfolio
management. Once this is unraveled, we can apply the known economic tools and
techniques to discount the cash Iows.

For large global IT portfolios you sometimes use a mix: for those countries where
the discounted cash Iows are well-known, with larger accuracy than IT producti-
vity, it is better to discount cash Iows. But if it is problematic to discount the cash
Iows, then taking IT productivity constant over time is a viable alternative: given
Brook’s law that there is no single technology that can boost programmer produc-
tivity by an order of magnitude [13], and given a constant stream of data, program-
mer productivity is not wildly changing from one year to another in CMM level 1
organizations.

3.4. Compiling an IT portfolio database

We showed a few methods to recover function points from software projects lacking
all or almost all management information. Now we show how with often recoverable,
but still rather limited management information you can compile and check a corporate
wide IT portfolio database. It is very useful to collect the following information in a
simple database for IT projects in the entire organization:

• initiation date;
• delivery date;
• total project costs.

This is not much as a source of information, but it will be the best you can do
in a level 1 organization for the majority of the completed and proposed projects. Of
course, in some cases more data is available such as staO size. Needless to say that all
additional relevant information is welcome: staO size, how many internal and external
staO, how many working hours, and so on. You can use this information to cross check
the data, and obtain an impression of its accuracy. However, rich project information
will often lack. So we show how to proceed with the above three pieces of information
only.

Often large enterprises are not transparently web-enabled so that software project
information is mostly paper-based [125]. It is not possible to study all these project
documents, but it is mandatory to collect as many as possible. Since this easily tops
thousands of documents it is unavoidable that non-experts enter the abovementioned
data. We know they make errors. We also experienced that the project information
itself contains irregularities, and is far from uniform. The Crst step after compilation
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of the database is to thoroughly validate its contents. For, it will be the source of
information to base your IT portfolio management strategy on. We use quantitative
methods to check the database.

4. Relating cost, duration, and sta size

For the compiled IT portfolio database containing data for project duration and total
development cost we want to check whether the entries make sense at all. To do
this, we will derive in this section the Crst eight formulas for quantitative IT portfolio
management.

We explained that for CMM level 1 organizations we have to somehow compensate
for the lack of historical data and the lack of an overall metrics program, and in this
section you will see how we do this. We use benchmarked relations between cost,
duration, and staO size to develop our formulas. Consider the benchmark taken from
[64, p. 202]:

f0:39 = d

Here f stands for the number of function points [1] and d is project duration in
calendar months (that is, elapsed time measured in months). Recall that it suJces to
imagine f to be a universal IT-currency converter. The power 0:39 is speciCc for MIS
software projects that are part of all businesses and omnipresent in Cnancial services
and insurance industry.

How much belief should we have in such a benchmark? There is no established
tradition in software benchmarking and therefore the amount of projects subject to
benchmarking is relatively low. For instance, the latest benchmark release of the ISBSG
(International Software Benchmarking Standards Group) is based on the 789 projects
that were submitted to their repository in early 2000. We base our work mostly on
Jones’ database who has probably the largest knowledge base on software projects in
the world: in 1996 it contained 6753 projects [62, p. 161]. In 1999 this has grown
to more than 9000 projects. We provide the distribution of the projects over size
and type in Table 2. The database contains data regarding software comprising over
10 million function points. To compare, a large international bank approximately owns
450 000 function points of software, and a large life insurance company possesses
550 000 function points [62, p. 51]. Jones partitioned his project database also over
age range, partitioned it into new, enhancement, and maintenance projects, partitioned
it over selected programming languages, and over a number of technologies used;
see [62, pp. 162–164] for details. The overall set of projects used in producing the
benchmarks is biased: the database contains presumably more large projects than in
reality [62, pp. 159–160]. But a CMM level 1 organization has no historical data to
derive its own internal benchmarks, so we resort to Jones’ work as a surrogate for
lack of historical information. Note that the schedule powers vary for diOerent code
sizes, and for diOerent industries. We give you a few of such benchmarked powers
that you can use depending on the industry you are in, or depending on the type of
project. Table 3 contains a few of them and is taken from [64, pp. 202]. For ease of
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Table 2
Distribution of Jones’ project database around 1999

Size (FP) End user MIS Out source Commercial Systems Military Total

1 50 50 50 35 50 20 255
10 75 225 135 200 300 50 985

100 5 1600 550 225 1500 150 4030
1 000 0 1250 475 125 1350 125 3325

10 000 0 175 90 25 200 60 550
100 000 0 0 0 5 3 2 10

Total 130 3300 1300 615 3403 407 9155
Percent 1.42 36.05 14.20 6.72 37.17 4.45 100

Table 3
Various powers derived by benchmarking

Power Projects within range

0.36 OO Software
0.37 Client=Server Software
0.38 Outsourced Software
0.39 MIS Software
0.40 Commercial Software
0.40 Mixed Software
0.43 Military Software

explanation we will mostly use the power 0:39. See Fig. 1 to get an idea of how the
various benchmarks look like when we plot these benchmarks for the schedule powers
of Table 3.

In addition to the schedule power benchmarks, we mention two other benchmarks,
also taken from [64, pp. 202, 203]:

f
150

= n;
f

750
= n;

where n is the number of staO, necessary to do the project. These are overall bench-
marks, not speciCc for the MIS industry. The left-hand formula applies to software
development projects, and the constant 150 is speciCc for those. The right-hand for-
mula is to estimate staO for keeping an application operational, and the constant 750 is
speciCc for this type of work. This excludes large functional enhancements, for which
there are other benchmarks.

We stress that you should not use these formulas as the sole decision means for
individual software project contracting purposes, to decide on individual resources for
large software projects, or to decide on upcoming individual projects with potential
large business impact. Namely, for these applications the above estimation formulas
are not speciCc enough, and might even be harmful. But they can be used for sanity
checking on individual projects and are accurate enough for decision making for entire
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Fig. 1. Visualizing the schedule powers of Table 3.

IT portfolios. In [63] it is stated about these benchmarks (originally intended for manual
cost estimation):

Manual methods are quick and easy, but not very accurate. Accurate estimating
methods are complex and require integration of many kinds of information. When
accuracy is needed, avoid manual estimating methods.

We want to support decision making for IT portfolios and not for individual projects,
and the benchmarks plus their derived formulas have shown to be an excellent vehicle
for that purpose. Note that optimal accuracy is not feasible at level 1, since the required
data richness is simply lacking. Of course, you can use our formulas for sanity checking
as well on a per project basis.

We derive from the above benchmarks our Crst quantitative IT portfolio management
formula, that we will use to check the database. We recall that for CMM levels higher
than 1 the principles of our approach stay the same, only the benchmarks instantiating
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our formulas change. Since there is more and better data available, it becomes feasible
to infer company-speciCc benchmarks, leading to more accurate instantiations of our
Crst formula. We discuss the instantiation using public benchmarks so that level 1
organizations can use it.

We show a simple algebraic derivation to illustrate how you can derive your own
instantiation of our Crst formula in case you want to apply our results. First calculate
how many function points the application is according to benchmark.

f = d
1

0:39 = d2:564:

We made f explicit using elementary algebraic arithmetic. With the second bench-
mark, we calculate the number of people for the development project:

n =
1

150
d2:564:

So, the total number of calendar months m needed to accomplish the project is
m=d · n. This amounts to

m =
d

150
d2:564:

We assume that there are w working days in a year, and for a given daily burdened
compensation rate r we can now calculate the total cost of development tcd(d) for a
given project duration d:

tcd(d) = r · w
12

· d
150

· d2:564 =
rwd
1800

· d2:564 =
rw

1800
· d3:564

So the Crst formula for quantitative IT portfolio management is

tcd(d) =
rw

1800
· d3:564: (1)

Completely analogously, we derived a formula calculating the total cost of a main-
tenance project for a given duration d (for costs to keep a system operational you do
not know the duration per se, and we will derive other formulas for that, see formula
11). For this second one we used the 750 benchmark for maintenance staO size, every-
thing else being equal. Formula (2) for quantitative IT portfolio management then
becomes

tcm(d) =
rw

9000
· d3:564: (2)

Of course the rates will vary per organization but also per task: we have used daily
rates ranging from 500 to 4000 US dollar. Certain programmers for ERP packages
can be more expensive, but also experts in high performance transaction processing at
large banks and in the airline industry can be quite expensive (think of TPF experts
[55]). We experienced that daily burdened compensation rates for both internal staO
and external specialists were always available. Also the number of working days varies
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per organization and per country and can range from less than 200 to 230+ days per
year. You have to use your own company-speciCc rates to instantiate formulas (1) and
(2) for quantitative IT portfolio management.

If you only know the total cost of an IT project, you can calculate the project
duration according to benchmark. We can do this with the dual versions of the Crst and
second formulas. Without bothering you with the details of their (mathematically trivial)
inference, we formulate formulas (3) and (4) for quantitative IT portfolio management:

dd(c) =
(

1800c
wr

)0:28

; (3)

md(c) =
(

9000c
wr

)0:28

; (4)

where dd is development duration, md is maintenance duration and c is the known
total cost of either a development or a maintenance project.

We also experienced that actual staO size is sometimes available in a number of
business units. It is very useful to collect this information as well in the IT portfolio
database. Formulas (5) and (6) provide you with a benchmarked relation between staO
size and project duration:

nsd(d) =
d2:564

150
; (5)

nsm(d) =
d2:564

750
: (6)

where nsd is the number of staO for development, and nsm is the number of staO for
maintenance projects. With formulas (5) and (6) you can detect diOerences between
actual staO size and benchmarked staO size. In the same way, you can detect diOerences
between actual cost and benchmarked cost. Likewise, we can calculate for a given
staO size the benchmarked duration, leading to formulas (7) and (8) for quantitative
IT portfolio management (QIPM):

dd(n) = (150n)0:39; (7)

md(n) = (750n)0:39; (8)

where n is the actual staO size, dd is development duration, and md is maintenance
duration.

We already made some example calculations, and we will make some more example
calculations to illustrate the use of these formulas to support quantitative IT portfolio
management. Throughout the paper we assume for all example calculations a Cctious
company with a daily burdened rate of $1000 both for development, maintenance,
internal and externally, and 200 working days per year. This leads to the following
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instantiations of formulas (1)–(4) for QIPM:

tcd(d) =
1000

9
· d3:564;

tcm(d) =
200
9

· d3:564;

dd(c) =
(

9c
1000

)0:28

;

md(c) =
(

9c
200

)0:28

:

For example, a 36 month development project costs tcd(36) = $39:1 million accord-
ing to benchmark, and an 18 month maintenance project costs according to benchmark
tcm(18) = $0:66 million. We announced earlier that when you know the costs, you
can calculate the duration. For a $5M development project dd(5M) = 20 indicating
that such a project should take about 20 months. The number of staO nsd(20) = 15
leading to 300 calendar months, or 25 man-year, which is indeed $5M. Likewise, a
$5M maintenance project, takes md(5M) = 31:5 calendar months according to bench-
mark and takes nsm(31:5) = 9:3 maintenance staO. This is 293 calendar months, leading
to $4.9 million, which accurately approximates the actual Cnancials.

4.1. Cleaning the IT portfolio database

Using formulas (1)–(8) you can check and clean your just compiled IT portfolio
database, by carrying out the process outlined below. Note that the goal is not to
comply with our formulas as closely as possible—the goal is to spot the diOerences
so you can locate and correct erroneous IT portfolio database entries after which the
real deviations according to benchmarked management information are revealed. These
deviations need the attention of the IT portfolio manager or IPM, which can be the
CIO, a board member, or someone directly reporting to the executive board.

• Calculate the project durations from available data such as start and end dates.
• Complete the portfolio database with lacking project durations, or Cnancials of all

projects beyond some threshold. Depending on the size of the company this threshold
is higher or lower. For large organizations we experienced that 5 million dollar is an
acceptable threshold. For our Cctious organization this means that when reported costs
of development or maintenance exceed $5M, the actual project duration needs to be
recovered by inspecting the documents, or if all else fails asking the responsible IT
manager. Likewise this implies that for dd($5M) = 20 calendar month development
projects and md($5M) = 31 calendar month maintenance eOorts, the actual data needs
to be recovered. We use the following simple guidelines for that:

◦ between $5 and 10 million, contact the system owner and just ask for the lacking
actuals;

◦ between $10 and 25 million, in addition to asking for actuals also ask for the full
documentation of the IT project;
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◦ for IT investments exceeding $25M, lacking any other management information
(which is not unusual in level 1 organizations), additionally do a function point
analysis.

If instead of costs, management information comprises duration or staO size, use
one of our other formulas to calculate the appropriate thresholds. For instance, using
formula (3) we calculate that dd($5M) = 20, and dd($10M) = 24, so the Crst project
duration threshold for our Cctious company is between 20 and 24 months. The others
are inferred similarly.

• Calculate only development costs according to benchmark for all projects (using
formula (1)). Mostly, IT projects that just keep applications running are combined
with projects that add functionality to the business. In the less common case that pure
(corrective) maintenance projects are separately reported, you will see a deviation
with the formula (1). Then you can correct for this by using formula (2).

• Compare the benchmarked costs with the actual Cnancials in the database and record
obvious deviations.

• Assess the deviations, and correct errors in the database if that was the cause. We
list a few common causes: project costs can be erroneously converted from local
currencies to the chosen currency for the database, no conversion was done, no one
could Cnd the Euro sign so the local currency sign is used, with the undocumented
assumption that it should be read as Euro amounts. We also encountered the wrong
number of zeros, decimal commas in the wrong location, and so on. Also erro-
neous date information is a common cause for errors. For instance, the initiation and
delivery dates are exchanged, or a typo in the year is made leading to a huge diOer-
ence, but also date formats are not uniform. For a globally operating organization,
we experienced that the following issue was a common cause of errors: the date
02=03=04 means in Japan the 4 March 2002, in the USA it stands for the 3 of
February 2004, while in other parts of the world the 2 of March 2004 is implied.

• Assess the remaining deviations. First look at projects that are much too low com-
pared to the actuals. They may be corrective maintenance projects. Separate out these
projects and use formula (2) to carry out the process we are describing.

• When the Cnancials are much higher than expected, inspect the available project
data. It can be that large hardware costs are incorporated in the IT project’s budget,
then correct for them. It can also be the case that an expensive software package
or tool is acquired for this project. Think of ERP implementations. Then correct for
the package costs, and check whether the daily compensation rate is suJcient, since
ERP specialists can be much more expensive than other programmers. Then separate
out these projects and use an ERP instantiation of formula (1) with the appropriate
fully loaded daily compensation rate.

• When the Cnancials are much lower than expected, it may be the case that this
project was outsourced to a cheap labor country. Inspect the available project data
to correct for several things: Crst of all the power should be altered from 0:39 to
0:38 in accordance with Table 3 for outsourced software. Also check for the number
of working days per annum in the country of outsourcing, and Cnally correct for
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the daily compensation rate. Use the oO-shore outsourcing variant of formula (1) for
development projects, and a variant of formula (2) for operations projects for these
items in the IT portfolio database.

• It can also be the case that projects under the same name are clustered. This can be
a cluster of simultaneous projects. Typically, you will get a very high total cost for
a much too short time frame. Then the projects need to be separated out, and their
durations listed separately. You cannot simply add project durations, since there is
no linear relation between duration and cost. Or in an equation:

tcd(d1 + d2) �= tcd(d1) + tcd(d2):

For example take a cluster of two projects, with d1 = 12 and d2 = 5. They separately
cost tcd(12) = $0:77 resp. tcd(5) = $0:03 million, so in total $0.80 million. But a
d1 + d2 = 17 month project leads to tcd(17) = $2:69 million, so more than 3 times
the total of the two projects.

• You also see entries where the project duration is very long but the costs are very
low. Then often people accumulated several related projects into one, and added the
various project durations, e.g., the start and Cnish dates of a Gantt chart [38,104]
comprising all subprojects. Also these projects should get separate entries plus the
time spent for each project in the cluster. Like above, you cannot add costs because
of the nonlinearity of the relation, or in an equation:

dd(c1 + c2) �= dd(c1) + dd(c2):

For example, two subprojects costing c1 = 1 and c2 = 2 million dollar, respectively,
will have a duration of dd($1M) = 12:7 and dd($2M) = 15:5 months each according
to benchmark. While a c1+c2 = 3 million dollar project takes dd($3M) = 17:4 months
according to benchmark. However, the combined subprojects take 28.3 months, which
would incur a cost of tcd(28:3) = 16:7 million dollar according to benchmark.

• If the deviations can no longer be clariCed by errors, inaccuracies, linear thinking,
or special project characteristics, the error correction process is Cnished. This does
not mean that the contents is correct. It just means that most of the errors are gone,
which is good enough for starting quantitative IT portfolio management.

• Calculate all instances of formulas (1) and (2), containing the appropriate rates and
number of working days per year, for all projects.

The above process leads in a relatively short time to a reasonably accurate IT port-
folio database. Now we are ready to analyze its contents.

5. Analyzing an IT portfolio database

In Fig. 2 we composed a random excerpt of several IT portfolio databases from
organizations that went through the above process—let’s call this sample S for later
reference. We changed daily compensation rates and variations in working days per year
to the example rates: a $1000 daily rate, and 200 working days per annum. Moreover,
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Fig. 2. Sample S from an IT portfolio database.

we did not use diOerent rates for ERP, CRM, maintenance, oO-shore outsourcing, and
other deviating projects, to simplify explanations.

This Cgure represents about 200 projects, at a total cost of a little under a billion
US dollar with an average project duration of about 18 months. This excerpt contains
completed projects with actual Cnancials, and proposed IT projects with estimated cost
and duration. The curve in Fig. 2 is a plot of formula (1). There are a few outliers that
remain after the error correction process. Further analysis of these outliers is necessary.

5.1. IT projects above the line

There can be several causes for outliers. One of the most frequent causes is that the
development schedules are so crammed, that they approach the so-called impossible
region [28,102]. This is sometimes due to a sudden business opportunity, a reaction
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on a competitor that demands a full focus on speed to market, but can also be due
to lack of governance by executive management. Whatever the reason: such projects
have a high price tag, are risky, and too many of them can decrease IT performance
considerably, leading to value destruction. The project costs and failure risks drama-
tically increase when the development schedule is compressed to the impossible region.
Plotting formula (1) against the development projects in an IT portfolio gives you a
quick overview of the outliers, that are probably death march projects [136]. For these
projects you can analyze whether the need for speed was really that urgent, and if
so, whether the incurred initial costs plus the high risk of failure justiCed the projects
by a sureCre business opportunity. For, when the costs balloon due to this type of
development, the returns should be obvious, the pay back period should be relatively
short, and performance should be measurable.

You will also run into high-risk low-reward projects in the portfolio: death march
projects where the hurry is not justiCed by the potential returns. The two outliers
around the 20 million dollar and the one of 25 million dollar were non-discretionary
projects. Executive management does not consider these projects as strategic, since they
must be done irrespective the strategy. But you can do them the smart and the stupid
way. Usually, non-discretionary projects are initiated too late and therefore expose
the enterprise to high costs and unnecessary risks. Better governance of these non-
discretionary projects leads to better IT performance, by cost avoidance.

So also non-discretionary projects need timely executive attention. Especially, when
they potentially aOect large parts of the organization. Some frequent examples of unnec-
essary costly non-discretionary projects that we spotted in various IT portfolio studies
are: operating system updates, platform migrations, Y2K projects, Euro conversions,
programming language or dialect conversions, conversions to 10-digit bank account
numbers (as required by the European Central Bank), and more. The nature of these
non-discretionary projects is not special in the sense that they are of an extremely
expensive nature, but they become unnecessarily costly by negligence. Non-discretionary
projects should not be high-risk no-reward projects destroying value, but sometimes
they are. For instance, Y2K costs consumed up to 30% of the total IT budgets in
1999 [125, p. 30]. For non-discretionary projects careful timely planning utilizing as
much as automation is key, so that costs are brought to the absolute minimum. Total
costs decrease when the schedules are relaxed, that is, when the projects are planned
well-ahead of the deadline [102]. Moreover, the projects are done more rapidly and
accurately when automated tools are used. Gartner Group advised to use so-called soft-
ware renovation factories [130] when the code volume exceeds a few million lines of
code [50,66] for Y2K updates. This advise remains valid for other modiCcations that
potentially impact large parts of single systems or an unknown number of systems in
an entire IT portfolio.

Apart from these unnecessary costs, there will always be death march projects that
can be justiCed by proper business reasons. Executive management should consciously
decide on acceptable risks, and put a threshold on death march projects for an IT
portfolio. We recall that for this kind of analysis modern portfolio theory [79] is not
adequate: you cannot abandon information technology like junking bonds. You have
to live with a lot of suboptimal IT. Setting this threshold is just a way to keep the IT
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spending within borders, not to select the optimal IT portfolio. One of the additional
things that executive management can do is to rank death march projects, in potential
added value for the business.

Note that an IT portfolio database not only contains completed projects, but also
proposals for new projects and projects in progress. The management data provided
by the IT-staO are estimates. Especially discretionary projects with a visionary scent
can have gigantic budgets, while no indications on returns, net present value, pay back
period, or risks are given. The most prominent examples we encountered were e-
business initiatives, enterprise wide CRM or ERP implementations, corporate intranet
projects, and complete system overhauls. Often, executive management committed
themselves to these huge IT investments, without knowing what the consequences are
for the IT budget in the coming years. Of course, you have to explore the new in
order to innovate, and surely you will have to allocate costs for such endeavors, no
matter how risky. Therefore, you need to set a threshold on such initiatives so that
you are consciously in control of the costs, the risks, and the amount of potential loss.
Depending on the type of the enterprise and the deepness of its pockets, executives
can set thresholds to assure that the IT costs will not balloon so that the normal IT
spending is in danger. Later on we will give an example on the consequences of large
IT investments, and quantify the necessary minimal ROI and some important risks.

5.2. IT projects below the line

Also outliers in the low range are important to analyze in more detail. IT-staO is
not good in estimating software costs [28,62] and severe underestimations are common
practice [60] in level 1 organizations. A typical situation is illustrated in Fig. 2: as can
be seen, a 33 month project proposal with an actual estimated budget of $7.1 million
dollar was approved. Inspection of the available project documentation showed that this
was a cost reduction project (CR project) where savings of about $12 million dollar
in 5 years were projected. When you compare this to the expected development cost
based on formula (1), you will Cnd tcd(33) = $28:7 million, which is about 75% more
than estimated. It is not hard to realize that this project is going to cost money even
when the cost savings are fully realized. In fact, implementation of the CR project will
presumably cost more than it saves. It should not have been approved at all, and based
on our analysis it was assessed internally and aborted. So our formulas can be used
to calculate the exposure of an IT portfolio due to underbudgeting the proposed IT
investments. We will deal with diOerent kinds of IT portfolio exposure in more detail
later on.

Executives should realize that a formal approval and cancellation policy for IT
projects can be based on quantitative IT portfolio management. There is often no
oJcial cancellation process, and if it is in place, it is often not adequate, which can
be measured by the number of restarts. This situation improves when approval and
abortion are based on benchmarked thresholds so that erroneous cost saving opera-
tions can be routinely spotted, pruned when underway, and cancelled once and for
all. Obviously, such preventive measures increase IT performance, by simple cost
avoidance.
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5.3. Synonyms, homonyms, redundancies

As soon as you compile an IT portfolio database, you will Cnd multiple occurrences
of the same project under a diOerent name (synonyms) and multiple occurrences of the
same name but describing diOerent projects (homonyms). Synonyms can be removed
from the database, and homonyms should be renamed so that you can diOerentiate
between them.

In addition you will Cnd existing and proposed systems that are redundant. Recall
that in CIO Magazine, it is reported that just compiling an IT portfolio database saved
one company $3 million and another company $4.5 million because the IT portfolio
view enabled them to spot redundancies [5]. While we spotted redundancies as well,
and could prevent unnecessary spending at times, you have to be careful with being
too enthusiastic with removal of redundancies. There are two types of redundancies:
similar proposed systems and similar existing systems.

First we deal with proposals. An often seen eOect after an IT portfolio is compiled,
is that similar proposals are put together and carried out as one combined joint project.
Only if all the envisioned systems are going to be exactly the same it is likely to
reap beneCts from removing redundancies, by cancelling one but all the proposals.
If another approach is taken towards redundancy, this leads to an increase in stake-
holders, increase in necessary Iexibility, more variation points, increased organizational
complexity, multiple ownership adding to the complexity, increased feature creep, and
a larger size of the new system. Larger size implies, more time to develop, more risk.
Let us make a calculation to illustrate the possible consequences of removing seeming
redundancies. Suppose you Cnd two 12 month projects that are fairly similar. Using
formula (1), each project will cost $780 000 according to benchmark. So two of them,
cost $1.56 million. Using formula (3) we can calculate what the development time
is of a single $1.56 million project. This is 14.5 months. It is highly unlikely that
the variation points, the increased number of stakeholders, and the other issues just
mentioned will be solved in 2.5 months. So the synergy that looks good on management
charts is very unlikely to be accomplished. Moreover this synergistic strategy easily
leads to a grand IT project. Something that is strongly discouraged in the Clinger
Cohen act [45], since this is known not to be working out properly. We quote:

Reduce risk and enhance manageability by discouraging “grand” information
system projects, and encouraging incremental, phased approaches.

Now let us have a look at existing systems that seem redundant at Crst sight. While
this can be extremely frustrating, it is not uncommon that an organization has multiple
similar systems. You cannot get rid of them without signiCcant investments, if at all.
For instance, the US Department of Defense owns more than 700 payroll systems, over
a 100 personnel training systems, and myriads of intranets [121]. How easy it is to
remove such redundancies is also illustrated by the failure of GTE Corporation (then a
leading telecommunications provider) to consolidate an overall medicare system. The
US Secretary of Health and Human Services announced in 1994 that: “We’re going to
move from the era of the quill pen to the era of the superelectronic highway”. This
to provide timely payment, and reduce fraudulent claims. GTE spent $100 million
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for a uniCed medicare system and learned that they had to integrate many separate
information systems. In 1997 the project was cancelled. According to GTE this project
was far more complicated than anyone anticipated.

Solving this kind of problem is much more involved than removing redundant auto-
mobiles, buildings, or other tangible assets. The problem is that these systems look like
redundancies from the executive viewpoint, but are more like homonyms. There are
multiple variation points, and to consolidate those into one overall system takes sophis-
ticated software engineering technology. You have to migrate the similar systems to a
software product line [32]. CMM level 1 organizations are most likely not equipped to
initiate, migrate, and deploy such complex software artifacts. Apart from that, redun-
dancy in IT is not necessarily a bad thing. In [32] we call this the relativistic e<ects
of software engineering, meaning that the classical way of thinking about software
breaks down when the size increases, just like Newton’s laws of physics break down
when speed increases. For small systems, and small user communities redundancy can
be avoided entirely. But as soon as variation points are necessary, the ideal situation
is that changes only important for one user should not aOect another user. If redun-
dancy is weeded out completely, inevitably, users will have to accept new releases of
the software also when the modiCcation was not meant for them. The release eOort
for the business will then be higher than the cost of dealing with redundancy at the
development site. See [32] for quantitative data supporting our arguments in detail. So
redundancy is not necessarily a bad thing, and focusing on its removal should not be
the prime task of an IPM.

While many business assets can be truly redundant, this is hardly ever the case for
IT. In article [5] where the cost savings for redundancy are reported on, it is stated
that IT is not special, that it operates like any other part of business. With the above
arguments we have illustrated that IT is special. Apart from our arguments, the special
status of IT has been subject to discussion for decades. For provocative enlightment,
we refer to a classical paper we mentioned earlier: the note by Lamport [73] explaining
that maintaining software is entirely diOerent from maintaining an automobile.

6. The black hole: hidden costs

Apart from the high costs of death march projects, high-risk visionary projects, and
other costly eOorts, there are also hidden costs that you need to be aware of. Let us
continue with the CR project example to illustrate what we mean by this. Apart from
the fact that the total development costs of the underbudgeted CR project are in the
order of $30 million according to benchmark, there will also be an additional minimal
cost of operation during the entire deployment phase of this system, excluding separate
enhancement projects. But how to quantify such costs? In this section we develop more
formulas to calculate this according to benchmark. For instance, we can calculate with
these formulas that for the coming 5 years the costs to keep the CR project operational
are benchmarked at $10.4 million. This alone almost annihilates the projected cost
reduction of $12 million in 5 years. Moreover there will be more operational costs
if the system is not retired after 5 years of deployment. The minimal total cost of
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ownership is around $48.3 million according to benchmark, so even when the cost
savings over the Crst 5 years will more than double over the rest of the deployment
phase, to say $30 million, there is a net loss of in the order of $20 million over the
entire lifetime of the system. So, even when the project was estimated correctly, the
operational costs are high, and are prolonging the pay back period signiCcantly, making
the entire investment questionable.

It is our experience that the above calculations are not made when assessing IT
proposals. However, they show that IT investments can easily lead to proCt destruction
instead of the expected value creation, not only by underbudgeting but also by not
taking the operational costs over time into account. The accumulation of operational
costs of IT projects plus the existence of proCt destructing IT projects that were not
anticipated is giving many executives the feeling that IT is a black hole. This feeling is
supported by facts. Many large companies suOer from high operational and maintenance
costs, 60% and more of the total IT budget is no exception. The US average in 1994
was that about 45% of the total budget was spent on maintenance [60]. This implies
that almost half the annual IT budget was spent on operations and maintenance. These
costs are increasing, given the fact that more and more IT personnel is working in
maintenance [63,64]. These alarming Cgures are beginning to attract the attention of
corporate management. The Cndings are no freak accidents, but have been reported
over and over again for decades [34,8,26,77,106,6,51,63,102,81]. In those publications
percentages between 50 and 80% devoted to maintenance costs are reported.

Also the cost per unit of work diOers for development and deployment work on
software. Already in the seventies this was empirically found. In [127] a ratio of
1:50 is reported, and in one US Air Force study Barry Boehm found that the cost
per instruction was $30 while the cost per instruction for maintenance was $4000—
a ratio of 1:133 [7]. For executives it is not clear what maintainers do, since the
software was running in the Crst place to their understanding. Therefore, to obtain
control over your IT portfolio it is crucial to know about these hidden costs. Only
then it becomes possible to control your IT budget for the existing portfolio, and to
project the operational costs for future systems that are proposed to be added to your
IT portfolio. We will develop formulas that take operational costs into account.

6.1. Minimal total cost of ownership

Of course, it is hard to predict maintenance eOort, since a lot of maintenance is
not just keeping software running. It is more than that: enhancement to align systems
better with new business needs. Those costs are often in your IT portfolio database,
and are denoted as development projects (on existing systems). There are however
substantial costs connected to the operational phase of software systems that are often
not described in IT projects and therefore do not end up in your IT portfolio. For
those hidden costs we will develop more formulas supporting quantitative IT portfolio
management. Using the formulas it becomes much more clear what the real thresholds
for ROI should be (we come back to this later on). In eOect, we need to compare the
potential value creation with the potential total cost of ownership in order to decide
rationally on IT investments.
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To be able to say something about total cost of ownership, we need to know how
long the software will be operational. With the Y2K problem we have seen that this
can be much longer than expected. Or as Strassmann put it [122, p. 253]:

Software is a new form of immortality.

In level 1 organizations where no measurement history is in place, there is also no
lifetime data available, so we need to compensate for this lack of information by using
a public benchmark taken from [60, p. 419]:

f1=4 = y;

where y is the number of calendar years the software will be deployed (f stands for
function points again). From this benchmark, and the benchmark for MIS software
(f0:39 =d), we can immediately derive two new QIPM formulas (9) and (10):

y(d) = d0:641; (9)

d(y) = y1:56: (10)

Note that for other industries, you have to adapt the schedule power using Table 3.
For example, for a 34 month MIS development project we can calculate that according
to benchmark this software will be deployed y(34) = 9:6 years, we used this formula
in the previous section to see whether the cost reduction project would really save
costs.

Formula (10), which is the dual of formula (9) can be used to estimate how much
eOort is reasonable for projects of which you know how long the software will be
necessary. For instance, a company needed a conversion tool to automatically con-
vert Cobol 85 back to an older dialect Cobol 74 [15] for the coming 37 months at
most. This is a systems software project, and because of the implementation methods
that are going to be used, it is acceptable to use the power for OO software (0:36
in Table 3). So, then the instantiation of formula (10) for the power 0:36 leads to:
d(y) =y1:44. Its development time should not be longer than d(37=12) = 5:1 months.
We use the OO schedule power to instantiate formula (1) for this project, leading to:
tcd(d) = rw=1800 ·d3:7778. We keep r = $1000, and w= 200 days. We calculate that
tcd(5:1) = 50 800 dollar to develop the tool seems reasonable, given the limited time
you need the tool in the Crst place. If the costs are deviating considerably, it is time
to assess the price setting of the tool supplier.

With formula (9) we can derive another formula that for a given project duration d
measured in calendar months, gives us the minimal costs to keep the developed system
operational. We will show later on that this is indeed a lower bound, so the actual
costs could be higher, but presumably not lower than our formula calculates. We are
interested in estimating the minimal cost of operation during the entire deployment
time of a software system, based on the development time of the IT project. This is
in fact:

mco(d) = y(d) · wr · nsm(d):
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For, in one calendar year, you work w days at daily compensation rate r, with
nsm(d) people, for y(d) calendar years. Combining formulas (9) and (6) then leads
to formulas (11) and (12):

mco(d) =
wr
750

· d3:205; (11)

dd(o) =
(

750
wr

· o
)0:312

: (12)

Again, dd stands for development duration. We used formula (11) for the earlier
mentioned 33 month CR project: indeed the minimal cost of operation mco(33) = 19:6
M$, the deployment phase is according to formula (9): y(33) = 9:4 years, so after 5
years, $10.4M operational cost turns the estimated $12 million savings into $0.8 which
is easily annihilated by the 75% underestimated cost of development.

Formula (12) is useful for rough estimates for merging, acquisition, and outsourcing.
Let us give an example of the latter. You can use formula (12) as an indicator whether
outsourced operational costs make sense at all. Often you know the total contractual
operational costs o for a number of years to keep a system operational. Suppose there
is a contract with an outsourcer to keep a system running for $10 million a year for
the coming 10 years. Then, using formula (12), we can calculate that the development
time of this project was probably dd($100M) = 54:8 calendar months. And this implies
that the deployment phase is approximately y(54:8) = 13 years. So depending on the
actual development time (that could be present in your IT portfolio database) you can
get an impression whether the outsourcer is too expensive, or if the software is really
that large, you may want to rethink the contract to prolong it. The latter also depends
on the added value for the business. The same type of calculation can be done when
you want to acquire a company and you know total operational costs. Of course, this
is an indicative estimate.

We can derive from formulas (1) and (11) the minimal total cost of ownership.
Formula (13) supporting QIPM is

mtco(d) = tcd(d) + mco(d): (13)

So, for a given project duration you can calculate the minimal total cost of ownership
mtco(d) of a system over the entire life cycle according to benchmark.

Let us give an example to show that the above formula makes sense. Suppose there is
a project proposal that takes 36 calendar months. Total cost of development according
to benchmark is tcd(36) = 39:1 million dollar. The minimal cost of operation according
to benchmark is mco(36) = 25:9 million dollar. So, minimal total cost of ownership
mtco(36) of this software system is 65.0 million dollar. The Crst three years 39.1 M$
is spent, and the subsequent y(36) = 9:9 years, 25.9 $M=year is needed to keep it
running. Indeed, 60.1% is spent on development, and 39.9% is needed to keep the
system operational. Recall that our estimates use a minimal scenario: keep the systems
running without large enhancements. So, our Cndings converge with the empirical data
that are found for several decades [34,8,26,77,106,6,51,63,102,81].
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We will derive these percentages for a given project duration. To that end we need
the ratio between operational and development costs. Given formulas (1) and (11)
formula (14) for quantitative IT portfolio management is

r(d) =
12
5

· d−0:359; (14)

where r(d) is the ratio of minimal cost of operation to development cost. Using
this ratio we can easily infer two QIPM formulas (15) and (16) providing you with
the development fraction, and the operational fraction of the minimal total cost of
ownership:

df (d) =
1

1 + r(d)
; (15)

of (d) =
r(d)

r(d) + 1
: (16)

We plotted formulas (15) and (16) in Fig. 3. As can be seen, the development
fraction will slightly increase for larger projects, while the operational fraction will
decrease as slowly. This does not imply that operational costs will be smaller for larger
projects. It just means that when the initial investment is larger that the operational costs
are amortized over a longer period of time. Indeed if the project duration approaches
inCnity, the development fraction of the total costs will approach 1, and since an inCnite
length project will never Cnish, the operational fraction is indeed approaching to 0.

7. From project to portfolio level

At the executive level not only the accumulated minimal TCO per project and TCO
of an entire portfolio plays a role, but also the dimension of time is of strategic
importance. For instance, executives may want to know how much minimal opera-
tional IT costs were spent by a business unit in 1Q99, and how that compared to
other business units. Or if they decide to invest next year in new systems, what will
be the consequences for the coming years in terms of total costs? All this within
the constraints of the current IT budget and the ongoing expenses necessary to keep
the existing IT portfolio running. Maybe the plans will lead to unacceptable increases
of the total IT budget. Also what-if scenarios can be supported by quantitative data:
what if the new systems are introduced in phases? It is clear that for such projections
we need to make the step from individual IT projects to entire software portfolios.
Therefore, we should be able to superimpose IT project data. We do this by giving
our formulas an absolute time dimension. Up till now we have discussed costs in rela-
tive time, that is, in terms of durations. The absolute time dimension enables sensible
accumulation of IT project indicators. Then we can accumulate costs and beneCts of
IT projects in all phases: initial, development, deployment, enhancement, retirement
phase, and so on.

Level 1 organizations do not deploy connections between projects. Think of reusing
high-quality artifacts, such as a software architecture, or reusable requirements. So we
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Fig. 3. Development and operational fractions as a function of project duration.

can treat information for each software project independently. This is not leading to an
incorrect quantitative model: if there are connections, they are often ad hoc preventing
signiCcant cost savings over time as could be the case with software product lines.
From the IT portfolio management level it looks like two independent projects, each
with its own costs. We just need each project’s start date and delivery date. Using the
formulas we developed so far, we can easily infer additional formulas with an absolute
time dimension. We focus now on formulas that for a given set of systems in the
portfolio return the cost allocation at any given time.

7.1. Cost allocation formulas

We consider a software system s as a tuple in a database. In a level 1 organization
a realistic assumption is to base yourself on two-dimensional tuples (is; ds) where is
is the initialization date of system s, and ds the delivery date of system s. For the
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sake of explanation, we abstract from the fact that also project names, organizational
unit, and so on should be in the IT portfolio database. In case more information is
around we should extend the tuple accordingly. For instance, if the actual Cnancials for
development are present this extends the tuple to a three dimensional one. In practical
implementations of our formulas for quantitative portfolio management, this implies
adding another column in a spread sheet, extending the schema of a database, or
another column in a statistical package. For now we assume the minimal scenario and
we use the two-dimensional tuple containing only the absolute data on initialization
and delivery. The function that is relevant to lift from the project to the IT portfolio
level is cas(t): the cost allocation for system s at time t. We divide the cost allocation
in two parts. Formula (17) for quantitative IT portfolio management is as follows:

cas(t) =

{
cads(t) + caos(t) if is 6 t 6 rs;

0 otherwise:
(17)

The number rs is the retirement date of the system according to benchmark. The
retirement date of a software project that started at is and was delivered to the business
on ds can be calculated using formula (9). The absolute-time pendant of formula (9)
is formula (18):

rs = ds + 12y(ds − is): (18)

For example a software project that started in February 1993, and was delivered in
August 1994 took 18 months and will retire presumably in y(18) = 6:3 years. So its
retirement date rs is expected to be around December 2000. Note that the + in formula
(18) stands for date addition, not addition of real numbers.

In formula (17) we used two other cost allocation functions. We depicted an
example plot of formula (17) in Fig. 4. The abbreviation cad is the cost allocation
for development, and cao is cost allocation for operation. In mature organizations these
could be Rayleigh curves [6,102], but for the majority of the organizations this is wish-
ful thinking. We provide you with the level 1 versions of these functions, but we stress
that when you really have more sophisticated curves at your disposal, that the formulas
we depict below can stay the same, except that the cost allocation over time is calcu-
lated by integration instead of using external benchmarks (we will discuss this issue
later on). Formula (19) supporting quantitative IT portfolio management is

cads(t) =




tcds(ds − is)
ds − is

if is 6 t 6 ds;

0 otherwise;
(19)

So we calculate the total cost of development for the duration of the project in calendar
months, and divide that by its duration, leading to a constant monthly amount for the
duration of the entire development eOort. Before initialization and after delivery the
cost allocation is zero. This implies that for a given system and time the above function
returns the cost allocation in the month containing the time. This function is the Crst
part of the plot displayed in Fig. 4.
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Fig. 4. Example plot of formula (17).

Similarly we provide such a formula for the cost allocation calculating the minimal
operational costs (viz. Fig. 4). This is formula (20):

caos(t) =




mcos(ds − is)
12 · y(ds − is)

if ds 6 t 6 rs;

0 otherwise:
(20)

One of the ways to obtain insight in how you actually invest in IT is that you are
able to monitor IT investments over time. This reveals trends in spending, maybe trends
that you wanted to avoid if only you knew. We believe that the time dependency of IT
cost allocation is crucial for executives in order to decide on strategic IT investments in
a realistic manner. We can accumulate costs over time, which is done via integration.
Formulas (21)–(23) for QIPM express the accumulated (minimal) total costs (atc),
the accumulated development costs (adc), and the accumulated operational costs (aoc)
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over a given time interval T for a certain software system s.

atcs(T ) =
∫

t∈T
cas(t) dt; (21)

adcs(T ) =
∫

t∈T
cads(t) dt; (22)

aocs(T ) =
∫

t∈T
caos(t) dt; (23)

where cas, cads, and caos are cost allocation functions. They can be the ones that we
deCned in formulas (17), (19) and (20), but they can also be more sophisticated formu-
las, like Rayleigh curves, or more sophisticated curves (we explain them later on). Now
we can go from the project level to the portfolio level. This is done via summation,
since there are only Cnitely many systems in a portfolio. For a given portfolio P and
a given time interval T we can calculate accumulated (minimal) total costs for a port-
folio, the accumulated development costs for a portfolio, and accumulated operational
costs for a portfolio. Formulas (24)–(26) are:

atcP(T ) =
∑
s∈P

atcs(T ); (24)

adcP(T ) =
∑
s∈P

adcs(T ); (25)

aocP(T ) =
∑
s∈P

aocs(T ): (26)

We can use these formulas to answer the questions like the ones we posed earlier.
How to compare operational costs of say 5 business units in the Crst quarter of 1999?
For Cve business units BU1; : : : ;BU5 you can calculate the total minimal operational
IT cost for 1Q99 using the following simple formula:

∑
s∈BUi

∫
t∈1Q99

caos(t) dt; i = 1; : : : ; 5:

We assume that for these business units we have their systems in the IT portfolio
database, and that we have initialization and delivery dates of the projects. With this
data, we can calculate for each system the operational cost allocations for the Crst
quarter of 1999, and accumulate these Cgures for all the systems in the portfolio of a
speciCc business unit. In this way you can compare operational cost per business unit
and zoom in on diOerences, signaling trends that may need attention. For instance, if
business unit 1 is now at CMM level 2, does this lead to lower operational costs?
And if so, is it more than the costs of obtaining CMM level 2 and maintaining that
level? And if so, how much could we save if we would do this for other business units
as well? Note that it is not at all obvious whether operational costs will go down in
case of better approaches to develop systems. The costs tend to become higher [27],
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this is not too much of a problem if the systems create value. It can also be the case
that one business unit is consuming the majority of the total operational budget in the
corporate IT portfolio. Depending on the criticality and proCtability of such a business
unit, corporate executives can decide on diOerent strategies: phasing out, selling, or
reengineering and so on.

7.2. Hitting the innovation borders

Already in the early 1990s some fortune 500 companies found themselves trapped in
the situation where their entire IT budget was gobbled up with updating, repairing and
enhancing their aging legacy applications [60]. This does not need to be a dangerous
situation if you reached exactly that level of automation that you wanted. But it is more
likely that when you are in such a situation, you are exposed to unacceptable business
risks. The environment changes fast and unpredictably, so to stay competitive, you
have to innovate. This means that you must have the supporting budget. But since all
new development adds to the operational pressure, you cannot innovate without limits.
So, you need to keep track of how much of the IT budget is spent on operational costs
at all times to know in advance whether operational costs start to hinder the amount of
innovation that executive management deems appropriate for the company. This implies
that to initiate new development you probably Crst need to retire existing systems,
reduce operational costs, or increase the total IT budget. The minimal operational costs
are signiCcant as we already indicated with formula (11). We will now derive what
this means in terms of absolute time.

We calculate the ratio between operational costs and development costs per unit
of time. If you have sophisticated data available you can calculate this using actual
values, but in level 1 organizations this information is usually absent. So we use our
cost allocation formulas to calculate this ratio. Note that we in fact calculate the ratio
between the heights of both rectangulars in Fig. 4. The height of the Crst rectangular is

tcds(ds − is)
ds − is

and the height of the second rectangular is

mcos(ds − is)
12y(ds − is)

:

Division yields

mcos(ds − is)
tcds(ds − is)

· ds − is
12(ds − is)0:641 =

12
5

· (ds − is)−0:359

12(ds − is)0:359

=
1
5
;

using formula (14) for the relative ratio, and formula (9). This results in the Cxed ratio
equation (27):

caos : cads = 5 : 1: (27)
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Table 4
IT investment impulse

# tcd dd(c) y(d) rs cad cao
∑

cad
∑

cao

50 15 27 99 126 0.6 0.11 27.5 5.49
10 30 33 113 146 0.9 0.18 9.0 1.81
6 75 43 133 176 1.8 0.35 10.5 2.10
3 150 52 151 203 2.9 0.58 8.6 1.73
2 300 63 171 234 4.8 0.95 9.5 1.90
1 600 77 188 260 7.8 1.56 7.8 1.56

So the operational cost allocation per time unit is 20% of the cost allocation per
time unit for building the system. Or investing a dollar per time unit in IT development
conservatively leads to 20 cents=time unit of operational costs for an extended period of
time. This phenomenon is for many business executives counterintuitive: the operational
costs of IT are much more signiCcant than they expect from a delivered product to the
business. So again we see now in absolute time the cost magnet in the IT budget that is
attracting large amounts of hidden resources to keep the delivered systems operational.

7.3. Operational cost tsunamis

Let us give an example of the dynamics of such hidden costs over time. Sup-
pose a corporation merges with other parties, and to consolidate the merge a lot of
IT intensive projects have to be carried out, ranging from an enterprise wide CRM
system, a few large ERP systems, several enterprise integration projects, HRM over-
hauls, e-business projects, Internet related projects, and a large number of relatively
small ones. In Table 4 we summarized an impulse of $3.15 billion divided over 72
projects of varying size. We call this IT portfolio M , short for Merge. If you think
$3.15 billion is exceptional, consider this quote about IT improvements that stems
already from 1984 [53]:

Max Hopper, Armacost’s technology expert, planned to announce that Bank-
America would spend at least $5 billion to improve its computer systems over
the next few years.

But also the surveys on annual IT spending show that billion dollar investments are
not uncommon. For instance, in 1998, the hundred top IT-spending European companies
invested together 53.7 billion dollar, which is half a billion per company on the average
[125]. Furthermore, the federal government of the United States of America plans to
invest $52 billion in 2003 [24].

The Crst column in Table 4 gives the number of projects, the second the sum of their
estimated cost in millions of dollars. We used formula (3) to calculate their presumable
cost of development, for the estimated development schedules. We calculated their
deployment time, and the total life time (rs). We calculated the cost allocation for
development per month in millions of dollars using formula (19), and with Eq. (27)
we calculated its operational cost per month according to benchmark. We accumulated
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Table 5
Accumulation of cost allocation data

Development Operations

Time Cost Time Cost Time Cost

27 72.9 27 5.49 127 14.6
33 45.4 33 7.3 146 9.1
43 36.4 43 9.4 176 7.1
52 25.9 52 11.1 203 5.2
63 17.3 63 13.0 234 3.5
77 7.8 77 14.6 271 1.6

these costs for all projects leading to the last 2 columns. We supposed that all 72
projects start shortly after the merge. Some of them are outsourced, others are done
internally, the IT workforce is extended with myriads of people, and so on. It is not
hard to calculate the accumulated costs for the entire portfolio for development and
operations in absolute time as summarized in Table 5.

We visualized these data points in Fig. 5. As you can see there is a signiCcant cost
impulse in the Crst 25 months that rapidly declines after about 50 months.

Next, we use the accumulated data to derive the cost allocation function for IT
portfolio M . The accumulated cost allocation function for development is the peaky
one. We use standard parametric statistical techniques to infer a smooth curve from
these data. Using an implementation of a nonlinear least squares regression algorithm
[19,54,129,95] as implemented in the statistical system SPlus [129,72] the data points
can be Ctted to the following curve:

cadM (t) = 7:514287t1:258007e−0:07304098t :

Recall that M is the IT portfolio consisting of the 72 projects in Table 4. Before we
continue, a few words on the large amount of digits in the above formula. The data
has a certain precision, of course, but we try to Ct this data as good as possible, which
leads to the large amounts of digits. If we would round the above digits, an entirely
diOerent curve would show up. This is partly due to the exponential functions: a slight
change in its power is a huge change in the behavior of the curve. So we keep these
very precise, so that we will not deviate from the input data. Second, the outcomes
of using the formulas, are subject to the standard rounding rules. However, we will
use high precision outcomes so that readers who redo the calculations can convince
themselves that they made the right calculation. Of course, in practical applications you
have to round output of such formulas in accordance with the precision of the input
data (but not the used coeJcients in those formulas).

The other curve represents operational costs. It is a curve with a long wave length
and a 100 month lasting cost plateau. This plateau starts right after the IT investment
impulse is over. Also the accumulated operational cost allocation function can be Ctted
to a curve:

caoM (t) = 0:02643959t1:692713e−0:003407055t1:317413
:
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Fig. 5. Seismic IT costs induce an operational cost tsunami.

When the IT portfolio M is turned into reality, and most of the systems have become
operational, the IT investment should start to generate added value. But now the oper-
ational costs start to rise. They can easily annihilate returns, since the operational costs
represent a long lasting signiCcant expense. We call a sudden investment a seismic IT
investment, since it causes an operational cost tsunami, just like geographic seismic
events can cause tsunamis (a great sea wave produced by submarine earth movement
or volcanic eruption). Operational cost tsunamis are often responsible for the black
hole of IT that many executives experience, but cannot reveal. These hidden costs can
signiCcantly inIuence the pace of new development.

By quantitative IT portfolio management you can reveal existing operational tidal
waves, but also prevent new tsunamis, by astutely timing the rate of innovation. This
implies that it is useful to analyze IT investments over a long period of time to uncover
cost waves that are still dominating your IT budget. If you look at Fig. 5 again, you can
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see that many years after implementation of the $3.15 billion IT portfolio, signiCcant
operational costs of the seismic IT investment are still inIuencing the IT costs of the
business unit owning the portfolio.

With the accumulated cost allocation functions we have a potentially powerful
weapon to forecast future costs. First we calculate the accumulated development cost
function for the entire portfolio. We use formulas (25) and (22) for that:

adcM (T ) =
∑
s∈M

adcs(T ) =
∑
s∈M

∫
t∈T

cads(t) dt

=
∫

t∈T

∑
s∈M

cads(t) dt =
∫

t∈T
cadM (t) dt

=
∫

t∈T
7:514287t1:258007e−0:07304098t dt:

We take the interval T = [0; t]:

adcM (T ) =
∫ t

0
7:514287t1:258007e−0:07304098t dt

= 7:514287(419:087 − 368:192�(2:258007; 0:07304098t)):

You can use a computer algebra system like Maple [135] or Mathematica [132] for
this evaluation (but we used formula (39) that we discuss later on). The function �
is a special mathematical function called the upper incomplete gamma function. This
function satisCes the following equation:

�(a; x) =
∫ ∞

x
ta−1e−t dt:

The accumulated development cost function approximates the total IT investment
accurately: if we take T = [0;∞) we should get the total development budget of the
portfolio back. Indeed, limx→∞ �(a; x) = 0, so

adcM (0;∞) = 7:514287 · 419:087 = 3149:14

million dollars. This outcome has a 0.02% diOerence with the actual investment of
$3.15 billion. For the total minimal cost of operation we cannot do such a “regression
test”, since those costs were never envisioned in the Crst place. But let’s calculate the
accumulated operational cost for M as well. We used formula (39) that we discuss
later on, but you can also use a computer algebra system like Mathematica [132] or
Maple [135] for this.

aocM (0; t) =
∫ t

0
0:02643959t1:692713e−0:003407055t1:317413

dt

= 2262:23 − 2219:22�(2:043939903; 0:003407055t1:317413);
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so now we can see the total impact of operational costs for this portfolio over the
entire life cycle of the portfolio. We Cnd aocM (0;∞) = 2262:23 million dollar. The
total cost of ownership of this portfolio thus amounts to 5411.37 million dollar. So,
58.2% of the costs are devoted to development, and 41.8% is necessary for operations,
which is in accord with the many empirical Cndings we quoted earlier. Note that this
IT investment impulse is now $2.3 billion short. Not all this money needs to be present
from the start, but should become available sometime in the future.

When does this future start? When the initial IT investment is fully consumed by
implementing it. We can calculate when this is the case. We know that the accumulated
total cost allocation for M is as follows:

atcM (0; t) = adcM (0; t) + aocM (0; t)

= 5411:37

− 2219:22�(2:043939903; 0:003407055t1:317413)

− 2766:70�(2:258007; 0:07304098t):

We calculated this formula simply by adding the above two derived formulas. We
plot the three accumulated cost functions in Fig. 6. This is an insightful graph giving
you an indication of the probable spending situation over the forthcoming years. We
can already see that somewhere between month 50 and 60 the money will probably run
out. We use this rough estimate as an initial value for root Cnding. With the computer
algebra system Mathematica [132] we solved the root of the following equation (but
we could have used Maple [135] or Matlab [80] as well):

atcM (0; t) − 3150 = 0;

yielding t = 57:3123 months. So, the money runs out after 57 months. After that time
stamp we really need a positive return from the IT investment to subsidize the missing
2:3 billion. Not immediately, but in due time. When these returns should become
available is our next subject.

7.4. ROI threshold quavering

After about 50 months, most of the systems in the example IT portfolio have become
operational, that is, when atcM (50) = $2900 million is spent. The next hundred months,
we need another

atcM (150) − atcM (50) = 1838:87

million dollar, to Cnalize development and keep the portfolio running. Suppose that
the investment plan for our example IT portfolio projected an annual return of 10%,
starting after 50 months (which is more than 4 years), then in the Crst year after these
50 months the portfolio should add a value of 315 million. However, you have to



42 C. Verhoef / Science of Computer Programming 45 (2002) 1–96

Fig. 6. Accumulated minimal TCO over time.

spend in that year

atcM (62) − atcM (50) = 387:077

million dollar on the IT portfolio as well. So you will make a net loss of 72 million
if you just set the ROI threshold on 10%. When we take all the costs into account
we get a diOerent picture for the ROI threshold. We calculate the actual minimal ROI
threshold, abbreviated mrt, that you need in order to achieve a net 10% ROI at all.

The Crst 50 months is the investment period: no ROI is expected. From that moment
on a net 10% ROI annually over the entire investment of 3.15 billion is projected.
This amounts to 26.25 million dollar per month. The 3.15 billion is spent at time
stamp 57.3, so until that time the ROI does not need to compensate for IT portfolio
costs. But after that time stamp, the ROI should pay for the ongoing costs in addition
to the 10% bottom line. The minimal ROI threshold of our example portfolio M is
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Fig. 7. Minimal ROI threshold over time.

as follows:

mrtM (t) =




0 if 0 6 t 6 50;

10 if 50 6 t 6 57:3;

10 +
caM (t)
2:625

if t ¿ 57:3:

We plotted the minimal ROI threshold in Fig. 7. We call this curve an ROI threshold
quaver after the shape of an eight note in music notation; we sometimes use the
(somewhat awkward) term iso-net-ROI line. As soon as the IT investment budget is
consumed, you need a return of about twice as much to achieve the 10% bottom line.
This is not a short term tremble in the necessary ROI, but a long lasting one. Only
decades after the IT investment impulse, the quaver-shaped curve approaches 10%.
Obviously, when you do not take hidden costs into account, it is very likely that you
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will never have a positive return on investment, if the actual proCts of the IT investment
cannot compensate the ROI quaver.

8. IT portfolio exposure

Apart from the fact that IT spending is much more costly than many of us
envision and that projected returns are not always met (e.g., if ROI threshold qua-
vering is not taken into account) there is also another dimension to quantitative IT
portfolio management, that can seriously hinder achieving added value: IT risks. Mc-
Farlan [82], proposed already in 1981 that risks of IT projects should be assessed not
only separately, but also in the aggregate—as a portfolio. While McFarlan proposed a
risk assessment questionnaire, we quantify risk based on benchmark data. We believe
that risk assessment will beneCt from a combination of quantitative and qualitative
information.

In the introduction we already indicated that the risks of software projects are high.
As Standish group found, 50% is challenged, and 30% of the IT projects fail. But,
can you project these numbers directly on your own IT portfolio? The answer is
no. But executives need to get an indication of the ratios of successful, challenged
and failed projects. Since there is no historical data on such topics in CMM level 1
organizations, and understandably, this information is usually hidden for executives, we
need to compensate for this by using public benchmarks. In this section we show how
you can obtain an indication of the IT portfolio exposure based on project durations.
This is not necessarily the ideal method to quantify risk, but usually it is the only way
for level 1 organizations to get an indication at all.

Adding to the complexity of risks is that some executives think that you can just
overhaul IT systems, this is not true. However, it is not a surprise that people think like
this: our calculations with respect to IT portfolios revealed that even in the unlikely
case that your systems do not need enhancements, the costs to keep them operational
are huge. Moreover, enhancing these systems makes things worse: the costs increase.
So it makes sense to ask yourself, why not renew these costly systems?

Once these often costly systems are up and running their failure exposure is lower
than in a new situation, where childhood diseases, and infant mortality are not
uncommon [58,46–48,42,41,44]. You could see a deployed system as a set of exe-
cutable requirements needing continuous debugging, reCnement, and extension. While
this can be a frustrating task, cherishing existing business-critical systems is often pay-
ing oO much more than overhauling these systems by new ones. Strassmann noticed
this as well, given that he writes [122, pp. 258, 257]:

For an enterprise with a large accumulation of legacy systems—which includes all
established organizations—there are no technical strategies other than evolutionary
migration strategies. DeCning the path of such migration requires placing limited
objectives along the way. The managerial skill in coming up with such a plan and
then making it happen will be the ultimate test which only superior information
management teams will pass. [..] In the future, information political contests will
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Table 6
Information system schedule adherence (1999)

Size Early projects On-time projects Late projects Cancelled projects
(FP) (%) (%) (%) (%)

1 6.00 92.00 1.00 1.00
10 8.00 89.00 2.00 1.00

100 7.00 80.00 8.00 5.00
1 000 6.00 60.00 17.00 17.00

10 000 3.00 23.00 35.00 39.00
100 000 1.00 15.00 36.00 48.00

Average 5.17% 59.83% 16.50% 18.50%

be fought over issues that concern managing software assets. [..] Whoever accepts
that conservation of software assets is now the key to all information politics will
end up as a leader.

Indeed the software assets of an enterprise may have their moments, but the
bottom line is that they are relatively mature, and often the cash cows of the company.
Scrupulous quantitative IT portfolio management, containing calculations like the ones
we have shown thus far will support you in obtaining the appropriate justiCcations for
investing, or disinvesting in such existing assets.

8.1. Failure rates for IT projects

Benchmark data indicates a very strong correlation between the size of software
and the chance of failure. This relation is also strong when a project is challenged,
meaning huge cost and eOort overruns, while much less than the originally requested
functionality is delivered. Based on public benchmark data we inferred simple formulas
indicating risks. Like the other formulas, you should not use them to base individual IT
project contracts on, but again they are an excellent means to get an idea of IT portfolio
exposure. Table 6 summarizes schedule adherence benchmark data for information
system projects [65, p. 192].

Based on these benchmarks we Ct a curve that can be used to quantify the risk
of failure as a function of the project duration. The six observations above are based
on many projects, so we consider this a strong benchmark. We assume that IT project
failure grows logistically with increasing size. A statistical Ct based on the observations
gives us formula (28). It is the chance of failure for a given information system project
given its size in function points (we will use the subscript i to indicate information
systems industry):

cf i(f) = 0:4805538 · (1 − exp(−0:007488905 · f0:587375)) (28)

We note that formula (28) cannot be used for systems above 100 000 function points:
the asymptotic behavior of formula (28) is that the chance of failure approaches 50%
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for large sizes whereas we believe that when the size of software reaches inCnity, the
chance of failure goes to one. However, for a pragmatic indication for the majority of
the projects in your IT portfolio, formula (28) can be used. We could have Ctted a curve
with more appropriate asymptotic behavior. But such a curve is less accurate below
100 000 function points. There are two reasons for not using this alternative: Crstly,
the majority of the systems is in the range that formula (28) covers, and secondly,
for systems that exceed 100 000 function points, we recommend to do a full function
point analysis.

Recall that in CMM level 1 organizations you usually only have elapsed time and not
the function point size, so we have to make another calculation using the benchmark
taken from [64]: f0:39 =d. This leads to formula (29).

cf i(d) = 0:4805538 · (1 − exp(−0:007488905 · d1:506090)): (29)

As an example, the risk of failure for a 36 month MIS project is cf i(36) = 0:39. So
39% according to benchmark. In Fig. 8 we plotted formula (29) to indicate that the
chance of failure increases rapidly for longer project durations.

In the MIS industry it is customary to outsource certain parts of an IT portfolio. For
instance, 43% of all the outsourcers is working on MIS software [65, p. 264]. To that
end it is useful to make comparisons with respect to cost and risk (we elaborate on
make-commission decisions later on). We derive outsource software risk formulas by
using available public benchmarks. Table 7 summarizes schedule adherence benchmark
data for outsourced software projects [65, p. 275].

Similarly to the derivation of formula (28), we carried out a statistical Ct based on
the observations summarized in Table 7. This leads to formula (30) for quantitative
IT portfolio management. It is the chance of failure for a given outsourced project
as a function of its size in function points (the subscript o refers to the outsource
industry):

cfo(f) = 0:3300779 · (1 − exp(−0:003296665 · f0:6784296)): (30)

If outsourcers use the function point metric, you can use formula (30). If they do
not, you can use the productivity benchmark taken from [64] for outsourcers (that we
tabulated in Table 3): f0:38 =d. This leads to formula (31).

cfo(d) = 0:3300779 · (1 − exp(−0:003296665 · d1:7853411)): (31)

8.2. Challenge rates for IT projects

It is convenient to have formulas indicating the chance of late projects. Similarly
to the failure rate formulas, we can easily infer a curve using the benchmark for
late projects depicted in Table 6. Again we assume that the chance of late projects
grows logistically with the size of IT systems. This leads to formula (32) expressing
the chance of late projects in the information systems industry for a given function
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Fig. 8. Chance of failure as a function of project duration.

Table 7
Outsource software schedule adherence (1999)

Size (FP) Early projects On-time projects Late projects Cancelled projects
(%) (%) (%) (%)

1 5.00 93.00 1.00 1.00
10 8.00 90.00 1.00 1.00

100 7.00 85.00 6.00 2.00
1 000 8.00 67.00 15.00 10.00

10 000 1.00 38.00 34.00 27.00
100 000 1.00 26.00 40.00 33.00

Average 5.00% 66.50% 16.17% 12.33%
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Fig. 9. Chance on late projects as a function of project duration.

point size.

cl i(f) = 0:3672107 · (1 − exp(−0:01527202 · f0:5535625)): (32)

The instantiation for the MIS industry using benchmark f0:39 =d leads to formula
(33).

cl i(d) = 0:3672107 · (1 − exp(−0:01527202 · d1:4193910)): (33)

So, the risk on cost overruns for a 36 month MIS project is cl i(36) = 0:31. According
to benchmark there is a 31% chance that this project will suOer from serious cost
overruns. In Fig. 9 we plotted formula (33).

Likewise, we can do the same for outsource software. Using the data of Table 7 we
easily Cnd formula (34) for quantitative IT portfolio management:

clo(f) = 0:4018422 · (1 − exp(−0:009922029 · f0:5657454)): (34)
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If the outsourcers work with function points, you can use formula (34) immediately,
and if not, you can use formula (35):

clo(d) = 0:4018422 · (1 − exp(−0:009922029 · d1:488804)): (35)

where we used the schedule power 0:38 as listed in Table 3.

8.3. Challenge and failure rates for portfolios

Knowing how to calculate prominent exposures on a per project basis, we can make
the step from individual projects to the portfolio level. We accumulate the project
exposures to obtain the portfolio exposure. You can then answer questions like: which
business unit has the highest exposure to failed projects? For a given portfolio P the
failure exposure of P is formula (36):

fe(P) =
1
|P| ·

∑
s∈P

cf (ds); (36)

where |P| is the number of systems in the portfolio, s is a system, ds is its project
duration, and cf is some derived chance of failure function, for instance formula (29)
or (31). In this way you can calculate the average failure rate of the entire IT portfolio.
It is up to executive management to set a threshold on the overall failure exposure of
an IT portfolio.

Similarly, for a given portfolio P the late exposure of P is formula (37):

le(P) =
1
|P| ·

∑
s∈P

cl(ds) (37)

For instance, for the sample portfolio that we depicted in Fig. 2 we can calculate
both exposures: fe(S) = 0:13 and le(S) = 0:14. The sample portfolio has a chance of
failure of 13%, and a 14% chance of serious cost overruns. For our seismic IT impulse
depicted in Table 4 we can likewise calculate that fe(M) = 0:126 and le(M) = 0:135.
The percentages that Standish Group found, (30% cancelled, 50% challenged, 20%
okay), are not found in many business unit level IT portfolios. This is due to the fact
that per portfolio, only a fairly small number of very large projects are present. At
the corporate level the percentages can be a bit higher, but still not approaching the
Standish Group Cndings so closely, that you can use their benchmark to calculate your
IT portfolio exposures. This is due to the fact that large companies often have a lot
of smaller business units. When only very large business units are present, also larger
projects are undertaken, with their risks. The Standish Group Cndings are accumulated
at the country level (for the USA). Maybe only the largest projects in the surveyed
companies were taken into account.

Depending on the nature of the company and the deepness of its pockets, such IT
portfolio exposures give you an indication whether you are within the exposure zone
that you consider acceptable. If not, it is time to mitigate those risks, and identify the
carriers of large exposures; they are almost always large IT projects (as McFarlan also
pointed out [82]).
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9. Comparison with higher CMM levels

A natural question is whether the accuracy of our approach explained so far will
drastically increase when the underlying mathematics is not based on level 1 formulas,
but on formulas available to organizations with CMM levels that are higher than 1. It
is not easy to make comparisons, since there are hardly any published cost allocation
curves (which might be due to the fact that 75% of the organizations are at CMM
level 1). Apart from that, many cost estimation techniques were traditionally based on
lines of code, instead of function point-like metrics, such as the various versions of
function points [1,61], or Tom DeMarco’s bang metric [28]. It is known from the
software productivity literature that diOerent deCnitions for lines of code can lead
to an uncertainty of 500%, rendering comparisons of diOerent estimates based on
lines of code often useless [59, p. 16]. Recall that in [33, p. 132] even a 2300%
variance was found for diOerent deCnitions for lines of code. Therefore, it is not a
surprise that in a review article on software cost estimation techniques [84], huge dif-
ferences were found when about 15 cost estimation techniques were applied to a single
project.

Nevertheless we found an example curve in a textbook on software cost estimation.
With this published example we illustrate that the results might not lead to radically
diOerent decision making than in the level 1 situation. One argument why this is the
case, is that we are not using the actual relations between cost, eOort, and duration over
time, but rather their mean values, expressed by the area under cost allocation curves.
If the areas are of the same order of magnitude, all calculations based on the areas
under these curves will be of the same order of magnitude as well, and therefore the
decision making will not drastically change. Of course, CMM level 2+ organizations
have historical data, which enables the derivation of internal benchmarks. They are
more precise than the external benchmarks that we use now. So the quality of the
decisions will improve, based on the input data that you can instantiate our formulas
with, but our method can still be used.

We give an example supporting the fact that more involved cost estimation formulas
usually do not change the outcome of IT portfolio decision making. Note that in
general, it is a good idea to estimate software costs as accurately as possible.

In Boehm’s book on software engineering economics [6, p. 68] a Du Bridge
Chemical software development project is used as a running example. Its distribution
is as follows.

ead(t) =
mt
p2 · exp−

(
t2

2p2

)
:

The above function is called a Rayleigh curve; ead is the eOort allocation for
development, m is again short for man-months, and p represents the month at which
the project achieves its peak eOort. For the Du Bridge Chemical project, Boehm used
the following data points: m= 91, and p= 7 months. Boehm also gives a rule of thumb
for p: it is half the estimated development time. This implies that the total eOort for
14 months is the area under the curve plotted in Fig. 10. We integrate over the eOort



C. Verhoef / Science of Computer Programming 45 (2002) 1–96 51

Fig. 10. Rayleigh eOort curve and our cost allocation formulas.

allocation formula and Cnd:∫ 14

0
ead(t) dt = 78:7:

You can use calculus, a scientiCc calculator, Matlab [80], Maple [135], or Mathe-
matica [132] to calculate the integral (but we used formula (39) that we discuss later
on). After the 14 months, Boehm applies another model. Boehm calculated the eOort
allocation for the Crst year of maintenance. He did not use a Rayleigh curve for it, but
used a fraction of the total development eOort that is exactly the same as our inferred
ratio in Eq. (27). However, his ratio was not inferred from general arguments like
our ratio, but calculated using actual data. He calculated the so-called annual change
tra@c: he measured the exact amounts of added instructions and modiCed instructions
(but deleted code was not taken into account). Based on that a fraction of m was
found: yielding in the Crst year of maintenance 0:20 · m= 18 months. In Fig. 10 this
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is expressed by the horizontal line at a height of 1.5 from the 14th to the 26th month.
So the total eOort for the Crst 26 months of the project according to Boehm is 96.7
man-months.

Let us compare this to our calculations for the level 1 case. The described project
is an MIS project: it is a raw material inventory project. So we can use formula (5),
which is instantiated with an MIS schedule power. The number of staO necessary for
development is nsd(14) = 5:8. Since it is a 14 month project, m= 81 man-months. We
plotted our eOort allocation function in Fig. 10 with a dashed line. Using formula (6),
we can calculate the required staO for maintenance: nsm(14) = 1:16. This is the lower
horizontal line that lasts for the entire life cycle of the system.

To compare our calculation to Boehm’s work, we take only the Crst year of main-
tenance: m= 14 months. So the total eOort for development plus the Crst year of
operation is 95 man-months. This is less than 2% diOerence with Boehm’s method.
His method is clearly meant for CMM levels higher than 1. For, it is not feasible for
a level 1 organization to measure the correct staO increase and decrease over time, the
peak eOort allocation, the number of added instructions, deleted instructions, modiCed
instructions, and so on.

From one example you cannot draw far reaching conclusions, but our approach
makes sense. Let’s have a second look at the general Rayleigh curve from Boehm’s
book. The area under a Rayleigh curve [102, p. 46] is exactly the total number of
man-months (we use formula (39) for this):∫ ∞

0
ead(t) dt =

∫ ∞

0

mt
p2 · e(−t2=2p2) dt

= m:

In our formulas, we abstract immediately from the staO variations, and treat the
number of man-months for development as a constant over time. So the above deriva-
tion shows that in general CMM level 2+ organizations will have more accurate data
over shorter time frames: with the Rayleigh curve you can predict for each moment in
time, the exact eOort. While in our case, we use the average from the start, which co-
incides with the area under the Rayleigh curve. The beneCt of having Rayleigh curves
is that you then Cnd a better average: not based on an external benchmark, but on
actuals.

10. Towards full transparency

When you have the accumulated cost allocation curves for development and deploy-
ment both for groups of projects and individual projects, you know the how, the when,
and the how many of your IT-dollar expenditure. This adds to the badly needed trans-
parency in IT performance and investments. In the previous section we have seen a
few such curves already: a seismic IT impulse and an operational cost tsunami at the
portfolio level. In all portfolios we analyzed, we encountered these two extremes plus
curves in between these extremes.
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10.1. Cost allocation equation

We note that our experience is limited to large companies: it may be the case that
diOerent models are necessary in other cases. Based on our experience, we found that
IT portfolio costs over time can be accurately approximated by the following cost-
time function c(t) returning for a given time t the corresponding cost. We conjecture
that this will also hold for IT portfolios that we have not assessed. Formula (38) for
QIPM is

c(t) = a · t� · e−b·t� : (38)

In our formula a; �; b; � are constants idiosyncratic for the environment in which the
work is carried out. Useful relations for the coeJcients can be inferred, as we will see
later on. Cost could be seen either as eOort, its corresponding Cnancial remuneration,
or another cost dimension (see Fig. 11 for several plots of formula (38)).

It is already known for a long time that for �= 0 and �= 2 the above equation is
used to estimate eOort allocation for research and development projects as shown by
Norden [86–88]. Recall that for these � and � our cost allocation equation reduces to
the Rayleigh curve. After Norden, Putnam applied Rayleigh curves to software projects
[100,103,101]. Also Boehm based his COCOMO model in part on Rayleigh curves.
However, he noted that [6, p. 68]:

It is evident that the shape of the Rayleigh distribution in Fig. 5–5 is not a
close approximation to the shape of the labor distribution curves for any of the
organic-mode software projects shown in Fig. 5–4. This is largely because an
organic-mode software project generally starts with a good many of the project
members at work right away, instead of the slower buildup indicated by the
Rayleigh distribution. However, the central portion of the Rayleigh distribution
provides a good approximation to the labor curves of organic-mode software
projects.

Boehm thought that Rayleigh curves were not in accord with the actual cost
allocation of a certain type of project. So, Boehm used Rayleigh curves only around
the peak eOort p: between 0:3p and 1:7p. He could have used the so-called decen-
tralized Rayleigh curve. If you need non-zero man power at the start of the project,
you should use an additional location parameter, to shift the Rayleigh curve to the
left (use t − � instead of t). It is not necessary to invent another distribution for that.
So by removing such a constraint it is possible to approximate reality much better.
We did not display a decentralized version of our cost allocation function, but when
we need it, this does not add any diJculty to using our results. Parr invented an al-
ternative distribution for the same reason: a non-zero man power at the start of the
project [90]. Again, a decentralized Rayleigh distribution would have solved Parr’s
issue satisfactorily (we discuss his distribution later on).

There are also cases where a Rayleigh curve is really not a good Ct for the given
data, including a decentralized version. Then the limitations of Rayleigh curves should
not function as a procrustean bed preventing accurate modeling of reality—when that
reality is just no Rayleigh curve. Indeed this was also found in a 2001 US Air Force
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Fig. 11. Varying the four coeJcients of formula (38): (a) 0¡a66:8; (b) 0:000476b60:0102;
(c) 06�61:8; (d) 16�63.

study, where a generalization of a Rayleigh curve was necessary to model funding
curtailment to R&D programs [97]:

The Rayleigh function has the shape parameter set to a constant of 2. This makes
the model somewhat rigid in its ability to model programs. The Rayleigh func-
tion forces a proportionate tail using the peak expenditure point as the start.
In actuality there are programs where a proportionate tail is not derived from
the point of peak expenditures. For example, a program may have a peak
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expenditure during one time period and a very short tails—program expendi-
tures stop shortly thereafter. The Rayleigh function would not provide an accurate
model of reality in this case because of its rigidity tied to the constant shape
parameter.

So Rayleigh curves are not the universal solution to the eOort allocation problem.
More Iexibility is necessary especially when you lift from the project to the portfolio
level. To give you an idea of the drastic variation you can achieve by varying the
four coeJcients of formula (38), we plotted several variations of Boehm’s example
Rayleigh curve:

91t
49

· exp−
(
t2

98

)
:

The original Rayleigh curve plus variants is plotted in each quadrant of Fig. 11. The
variation that is possible with formula (38) is richer than those of a Rayleigh curve,
and it is essentially needed for the purpose of quantitative IT portfolio management.
Fig. 11(a) and (b) are all Rayleigh curves, whereas in 11(c) and (d) we relax the Cxed
powers characterizing the Rayleigh curve: we vary both powers.

If we look back at the statistically Ctted seismic IT impulse to characterize the
development cost allocation for our example portfolio M , we see that it is an instanti-
ation of formula (38). It has an �= 1:25, which is larger than allowed for a Rayleigh
curve. There is a much faster eOort buildup than a Rayleigh curve can accommo-
date. Indeed �= 1, which is small compared to a Rayleigh curve (where �= 2). And a
smaller � leads to smaller wave lengths. This instantiation of formula (38) corresponds
to a rapid staO build-up that cannot be Ctted into a Rayleigh curve. Looking at the op-
erational cost tsunami, it is obvious that this is also an instance of formula (38). While
�= 1:69 is large, the small a= 1

41 is functioning as a shock absorber that dampens the
peak. While �= 1:32 is relatively small, the tiny b= 1

294 smooths the decay of the wave
considerably. The good news is therefore, that you can Ct more realistically IT portfo-
lio costs using our cost allocation equation. The bad news is that with more degrees
of freedom the curve Ctting becomes more involved (more on tools and techniques to
support the mathematics later on).

10.2. Cumulative cost allocation equation

It is insightful to partition a portfolio P into sets of IT projects that are somehow
related. This relation could be a business unit, or the set of corporate wide systems, or
systems in a similar phase: operations, development, retirement, outsourced, dormant,
and so on. In this way, accumulating the individual projects does not lead to infor-
mation loss about the type of investment. Moreover, P is then divided into sensible
IT investment chunks just like an asset portfolio is partitioned into sensible categories.
You can obtain the corporate view, by adding all these parts into one large function
that describes the accumulated costs of the enterprise. In order to do so, we need
accumulated cost functions for these groups of systems. From formula (38) we can
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infer formula (39):

a(t) =
∫ t

0
c(t) dt =

∫ t

0
a · t� · e−b·t� dt

=
ab−(�+1)=�

�

(
�
(
� + 1
�

)
− �

(
� + 1
�

; b · t�
))

; (39)

where �(x) is the � function extending the factorial on natural numbers to real (and
complex) numbers. The function name a stands for accumulated cost function. In our
case, we can express � using Euler’s identity:

�(x) =
∫ ∞

0
tx−1e−t dt:

An interesting property of Euler’s � is that �(n + 1) = n! for all n¿0. The 2-adic
�(a; x) is the upper incomplete � function we already introduced to calculate the
accumulated costs for the seismic IT impulse and the operational cost tsunami. We
note that for (� + 1)=�= 0;−1;−2;−3; : : : the � function is not deCned, and therefore
also formula (39) is not deCned.

10.3. Change in cost equation

Although at CMM level 1 organizations staO buildup on a per project basis is not a
feasible metric to collect corporate wide, we can use formula (38) to project staO size
globally. We simply take the derivative of formula (38), which leads to formula (40)
for quantitative IT portfolio management:

cc(t) = (�− b�t�)at�−1e−bt� : (40)

The function name cc stands for change in cost function. We can calculate the
peak time for the entire IT investment by solving the equation cc(t) = 0. This leads to
formula (41):

pt =
(

�
b�

)1=�

: (41)

In Fig. 5, we depicted the seismic IT impulse, and the resulting operational cost
tsunami. With formula (41) we can calculate that the development peak load is at
17.2233 months, whereas the peak load for operations is at 90.30533 months—more
than a factor 5 later than the development peak load. We can also calculate the peak
costs, by simply calculating c(pt). This leads to formula (42):

pc = a
(

�
b�e

)�=�

: (42)

For our example portfolio, we Cnd peak eOorts of 76.66294 million dollar for
development, and 14.95207 million dollar top cost for operations—a factor 5 less
than the development peak costs.
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10.4. Putting it all together

The abstract formulas (38)–(40) can be used to obtain a corporate view of your
IT portfolio. For a start, we can calculate total cost of ownership for the class of
cost allocation functions we deCned in formula (38). Formula (43) for quantitative
management of IT portfolios is

tco =
ab−(�+1)=�

�
�
(
� + 1
�

)
: (43)

For our example portfolio, we summarized the development and operations coeJ-
cients in Table 8. These coeJcients are used to calculate total cost of ownership with
formula (43).

So, using formula (43) we Cnd 3149.142 million dollar for development and 2262.23
million dollar for minimal cost of operation. If you look closer at formula (39), you
can easily see that tco is the Crst part of the formula which is indeed independent of
time. So, you could see the formula as follows: the Crst term is the price you will
eventually have to pay for that part of the IT portfolio that is described by the cost
equation. The second term is time dependent: it is the repayment rate ensuring that
the IT portfolio is developed and deployed. Compare this to building and living in a
house: the bank pays the sum that you cannot aOord to pay instantly. The mortgage
is the time dependent part that tells you when and how much installment is due to
ensure that you can build and inhabit the house. So in fact, formula (39) gives you
the TCO plus your debt to build and deploy the IT portfolio over time. This leads to
the repayment factor expressed by formula (44):

rf (t) =
ab−(�+1)=�

�
�
(
� + 1
�

; b · t�
)
: (44)

Given an IT portfolio P, that is partitioned in P1; : : : ; Pn, for which cost functions of
the class deCned in formula (38) are known, then the corporate cost of ownership for
the portfolio at a given time t is given by formula (45):

cco(t) =
n∑

i=1

tcoi −
n∑

i=1

rf i(t): (45)

In Fig. 12, we superimposed for the example portfolio M the accumulated cost
equation, the current cost equation, and the change in cost equation for the seismic IT

Table 8
Statistically Ctted constants for development and minimal cost of operation for the IT
portfolio M .

Constants Development Deployment

a 7.514287 0.02643959
� 1.258007 1.692713
b 0.07304098 0.003407055
� 1 1.317413
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Fig. 12. Superposition of various functions for our example portfolio M .

impulse and the ensuing operational cost tsunami. This gives you a graphical view of
the corporate cost of ownership of IT portfolio M . The accumulation of cost functions
for many business units does not look as regular as Fig. 12, so in Fig. 13 we plot
an accumulation of a variety of IT investments over time. These plots show typical
patterns you can expect to Cnd.

Total IT spending comprises IT investments started on various time stamps, with
varying intensity, and varying start times of development within such investments.
The current situation in many organizations is that they only have insight in the an-
nual total IT spending cost, but not in how these costs are partitioned in related IT
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Fig. 13. Typical patterns when you accumulate IT investment costs over time.

investments. By grouping the IT investments over time, and analyzing these partitions,
you can try to recover the cost allocation functions for major development, opera-
tions, and enhancement eOorts. An IT portfolio database is a necessary—but not a
suJcient—condition for this. In Fig. 13 we composed an example to illustrate this:
we superimposed a number of major IT investments of our Cctious company, their
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ensuing operational costs plus their enhancement costs. Some of them can be rec-
ognized by their peaks, others are faded out by the more dominating waves. The
left-hand plot in the upper row of Fig. 13 shows the accumulation of all the develop-
ment costs over time for the IT investments. The middle plot represents accumulated
operational costs over time, and the right-hand plot is their sum: the total accumu-
lated costs. The lower row plots the cost allocations for the IT investments. They
are the cost allocation for development, operational and enhancement costs, and their
sum. These accumulations give less insight in how the costs are build-up than if you
would have had the cost allocation functions from the onset. The challenge is to un-
cover the cost allocation formulas from the data that is collected in the IT portfolio
database. This is not an easy task, and there is no guarantee that you can completely
recover the actual cost allocation formulas that belong to the IT investments of the
past. The major investments leave so many traces that their recovery is often within
reach. They are the cost waves from the past that are still dominating the current
budgets.

11. Quantitative support for decision making

Next we turn our attention to how quantitative information can support decision
making. Of course, the entire decision making process comprises of many factors, of
which quantitative input is one aspect. Currently, not much quantitative data supports
strategic decisions on IT investments. We agree with Strassmann who writes on this
topic [122, p. 261]:

Credible Cnancial analyses are necessary before top management can act with an
understanding of the consequences of any decision.

We elaborate on quantitative support for a decision that many executives face when
IT investments are due: outsourcing or not? For many organizations owning serious
sized IT portfolios it is not possible to construct and maintain all the software in-
house. So this is partly an in-house matter, and partly taken care of externally. At the
executive level, decisions should be made to that end, and quantitative support will
help in making the most eOective decisions. There are the following possibilities for
IT systems or IT portfolios:

• Make. This implies that you start (or restart) to make the software from scratch,
and you are going to do this within the organization.

• Buy. This implies that the functionality can be bought oO-the-shelf from an inde-
pendent software vendor.

• Commission. This implies that you commission an outsourcer to build the desired
functionality.

• Renovate. This implies that there is an existing software asset within your
organization and that you want to renovate this to develop the desired func-
tionality.

• Wait. This means that you postpone to decide on any of the above.
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You can obtain quantitative information to support decision making by using various
instantiations of formula (1), and if entire portfolios are considered for outsourcing,
these formulas suJce to support decision making. As we noted earlier, these formulas
have the proviso that you should not use them as the only means for single system
decisions for contracting purposes. Since make-commission decisions are not only taken
at the portfolio level, but also at the project level, we will develop some new formulas
supporting decision making for contracting purposes. For these formulas we need richer
information than estimated development time (or estimated total cost).

The smaller the amount of systems that are subject to make-commission decisions,
the more realistic it becomes that you have to know the amount of function points
involved. This amount can be obtained by carrying out a function point analysis. So
we assume for the moment that for the part of the IT portfolio that is subject to
make-commission decisions we know for each IT project its size in function points.
We recall it is not necessary to know exactly what function points are except that it
is a synthetic measure indicating the size of IT systems.

11.1. In-house development

First we need to obtain an idea of the productivity for in-house development of
MIS systems. In CMM level 1 organizations there is no historical data around to infer
productivity rates, so we use benchmarks to compensate for that. In [65, p. 184,189]
six MIS development benchmarks are present that illustrate the relation between the
productivity and size (based on many projects). Five of the benchmarks are derived by
us from a graph (using a ruler), and one of them was stated in a table. Based on this,
we Ct a curve through these benchmarks. Formula (46) for quantitative IT portfolio
management, expressing the productivity for MIS development (measured in number
of function points per staO month) for a given size in function points, is as follows:

pi(f) = 1:627 − 38:373 · e−0:06222733f0:424459
: (46)

In Fig. 14, the six dots are representing the benchmarks taken from [65] and
the plot through the benchmarks is formula (46). Recall that the subscript i stands
for information systems development. As an example, the productivity for in-house
staO doing a 1000 function point MIS project is 13.6 function points per staO month
(according to benchmark). We note that the asymptotic behavior of formula (46) is not
in accord with reality: pi(∞) = 1:627. But for projects approaching inCnite size, the
productivity approaches zero. So formula (46) should not be used for projects larger
than 100 000 function points.

Using formula (46), we derive alternative formulas of earlier derived formulas
supporting quantitative IT portfolio management. But we can also infer an alterna-
tive for the benchmark f0:39 =d. For this we use another benchmark taken from
[65, p. 185] that is called the assignment scope for in-house MIS development. An
assignment scope for a certain activity is the amount of software (measured in function
points) that you can assign to one person for doing that particular task. Note that the
assignment scope is relatively size independent. We have seen two such assignment
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Fig. 14. Productivity for MIS development projects.

scopes: 150 as the assignment scope for average development over all sorts of IT
systems and 750 for average operational costs. Indeed, depending on the task, the
assignment scope can be diOerent. For all activities that are usually done while devel-
oping MIS systems, the average assignment scope is 175 function points. Formula (47)
for quantitative IT portfolio management calculates the amount of calendar months an
in-house MIS development project takes.

di(f) =
175
pi(f)

=
175

1:627 − 38:373 · e−0:06222733f0:424459 : (47)

For example, a 1000 function point development project takes di(1000) = 12:9
calendar months. We plotted the earlier used benchmark (d=f0:39) against its alter-
native formula (47) to give you an idea of the deviations (viz. Fig. 15). According to
the earlier used benchmark, development takes 14.8 months. The plot with an asymptote
around the horizontal line at 107.6 is formula (47), the dotted curve is Jones’
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Fig. 15. Comparing two diOerent benchmarks for in-house MIS development.

benchmark d=f0:39. As you can see there are deviations so there is no single correct
formula in CMM level 1 organizations. Fortunately, the formulas for quantitative IT
portfolio management often provide enough quantitative data to help in deciding on
portfolio investments.

We derive a formula similar to formula (1) calculating total cost of development for
MIS projects using the just derived formula (47). Formula (48) calculates total cost of
development for MIS projects for a given function point size.

tcdi(f) =
rw
12

· f
pi(f)

=
rw
12

· f
1:627 − 38:373 · e−0:06222733f0:424459 : (48)

As before, r is the fully loaded compensation rate and w is the number of working
days in a calendar year. We derived formula (48) as follows. Using formula (47), we
know the schedule in months. Then using the assignment scope, we know that the staO
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necessary to do this project must be f=175. So the total eOort is f=175 · 175=pi(f)
which amounts to f=pi(f) calendar months. The monthly compensation for this is
rw=12, thus their product yields formula (48). So a 1000 function point project will
cost in our Cctious company tcdi(1000) = $1:3M (r = $1000; w= 200).

11.2. Outsourced development

As in the previous section, we derive the same formulas but then speciCc for the
outsource industry. We distinguish them from the in-house formulas by using the sub-
script o for outsourcing. We start with the productivity for outsourced software projects.

Analogously to the in-house situation we found in [65, p. 267,271] six outsource
development productivity benchmarks. Again, Cve of the benchmarks stem from a
graph, and one of them was stated in a table. We Ct a curve through the benchmarks.
Formula (49), expressing the productivity for outsource development (measured in
number of function points per staO month) for a given size function points, is as
follows:

po(f) = 2:63431 − 21:36569 · e−0:01805819f0:5248877
: (49)

As an example the productivity of a 1000 function point project done by outsourcers
is benchmarked on po(1000) = 13:8 which is a bit higher than in-house development
productivity for 1000 function point projects (pi(1000) = 13:6). The asymptotic behav-
ior of formula (49) is not in accord with our experience. Very large projects do not
have a lower bound of po(∞) = 2:63431 for productivity. So formula (49) should not
be used for projects larger than 100.000 function points.

In Fig. 16, the six dots represent the benchmarks taken from [65] and the plot through
the benchmarks is formula (49). We use a benchmark taken from [65, p. 269]: the
assignment scope for outsource development. For all activities that are common in the
outsource industry, the average assignment scope is 165 function points. Using this
we can infer formula (50) expressing the amount of calendar months for an outsource
development project, given its size in function points.

do(f) =
165

po(f)
=

165
2:63431 − 21:36569 · e−0:01805819f0:5248877 : (50)

Also for outsourcing there is an earlier benchmark that relates function point size
to project duration in calendar months: d=f0:38. We plotted this benchmark against
formula (50) to indicate the deviations (viz. Fig. 17). The solid plot is formula (50),
the dotted curve is Jones’ benchmark d=f0:38.

Now we can derive total cost of development, similarly to formula (48). Formula
(51) calculates total cost of development for outsource projects for a given function
point size.

tcdo(f) =
rw
12

· f
po(f)

=
rw
12

· f
2:63431 − 21:36569 · e−0:01805819f0:5248877 : (51)
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Fig. 16. Productivity for outsource development projects.

So, a 1000 function point system costs tcdo(1000) = 1:2 million dollars (we took
r = $1000; w= 200).

11.3. Quantitative comparison

With the just derived formulas, we can compare development costs of IT systems
done in-house with outsourcing such systems. Of course, there will be diOerent daily
rates, and in case of oO-shore outsourcing also diOerent working days per year. These
diOerent numbers are not hard to obtain when you are discussing contracts with an
outsourcer.

As an example, suppose you need a 10 000 function point information system and
you want to explore the possibilities for outsourcing. Of course, competitive issues play
a role in such decisions. For a start, externals tend to share their knowledge obtained in
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Fig. 17. Comparing two diOerent benchmarks for outsourcing.

your project by doing similar jobs for others. By way of anecdotal evidence consider
a quote taken from [44, p. 61], clearly showing that your trade secrets are not always
safe when you ask others to implement a discretionary eOort:

He showed Michalik a technology that an engineering friend had built for the
Swiss bank UBS; [he] told Michalik that he had a killer app on his hands.

So when the IT system is a discretionary eOort, you may not want to outsource it,
even if the development cost are markedly lower. For instance, the expected return in
combination with being the Crst in your branch, could potentially reap more beneCts
than lower costs, and the danger of being imitated as soon as returns are apparent for
the competitors. Or, if there is no other option than to outsource, consider to protect
vital parts of the innovation by one or more patents. Such considerations are outside
the scope of this paper. We solely provide the decision maker with quantitative data
forming one ingredient of the decision making process.
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Table 9
Several indicators to compare in-house development with outsourcing

Indicator Dimension Make Commission

r $ 666 1000
w days 200 200
p(f) FP=SM 3.35 4.84
d(f) CM 52.24 34.10
tcd(f) M$ 33.13 34.43
cf (f) % 39.0 27.0
cl(f) % 33.7 33.7

Let ri = $666 be the fully loaded daily rate for in-house MIS development. We
assume wi =wo =w= 200 working days=year. This leads to a burdened monthly com-
pensation of 11100 dollar. Let ro = $1000 be the daily rate of an outsourcer, which
leads to a monthly compensation of 16 666 dollar. The monthly compensation we took
is not a contrived diOerence, but in accordance with 2002 compensation rates.

In Table 9 we summarized some important indicators to support decision making.
We used some abbreviations as well: FP=SM stands for function points per staO month,
CM is short for calendar months, M$ stands for a million dollar US. In both cases
the initial development costs are equal, since the outsourcers are faster with larger
projects (according to benchmark). They both have a 33+% chance of being late.
Note that schedule slips of in-house development is less expensive than schedule slips
of outsourcers. The chance of failure is 12% lower, though. If speed to market is
important, and information leaks to the competitor are not too much of a problem,
then the quantitative data supports an outsourcing decision. If you expect the system
to be mission-critical during its 10+ years of deployment, then it may be better to
maintain and enhance it in-house. If the system is planned well in advance, the longer
development schedule is not too much of a problem. As you can see, the Cnal decision
depends on more than data such as summarized in Table 9.

To get an idea of such comparisons for various software sizes, we plot Fig. 18. The
in-house productivity expressed by formula (46) is the solid curve, and the dotted curve
is formula (49) calculating the productivity of the outsource industry. The productiv-
ity of smaller projects is better for in-house projects than by outsourcers. But larger
projects are more productively done by outsourcers. One of the reasons for this higher
productivity is unvoluntary unpaid overtime (so not necessarily better skills). This also
clariCes why the chance of late delivery is not that diOerent, and that the schedule
in calendar months is much shorter. We depicted the schedule as function of size in
Fig. 19. Formula (47) is the solid curve in Fig. 19, and formula (50) is the dotted
curve. The development schedule of outsourcers is much shorter when the system-size
increases. In Fig. 20 we depict how this translates into development budgets. The solid
curve is formula (48) and the dotted curve is formula (51). The comparisons for the
1000 function point example showing that the costs are not dramatically diOerent is an
overall trend, both the solid cost curve in Fig. 20 and the dotted outsource variant are
less deviating than the development schedules might have insinuated.
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Fig. 18. Comparing MIS development to outsource development productivity.

Another interesting comparison is the risk dimension. We plot in Fig. 21 formulas
(28) (the solid curve) and (30) (the dotted curve). The chance of failure for
outsource projects is smaller than for in-house development of MIS applications. This is
not true for the exposure of being late. In Fig. 22 we depicted formulas (32) and (34)
expressing the change on late projects in-house and by an outsourcer respectively. The
dotted curve expressing late outsourced projects is above the solid curve for late MIS
projects done in-house. So although the chance of failure is smaller, the chance of
being late is larger. This might be due to the fact that when you sign a contract with
an outsourcer, not delivering is an obvious contract violation. So outsourcers deliver,
but suOer from more time=eOort overruns than the in-house case. In-house development
fails more often, but if they do not fail, they deliver less late.

This type of quantitative input supports strategic decision making, but other factors
are as important: the business goal of the system, its criticality for the business, the
deepness of the stakeholders’ pockets, the competitive landscape, etc.
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Fig. 19. Comparing MIS development to outsource development schedules.

12. Cost--time analysis and lifetime analysis

We could develop many more formulas for quantitative IT portfolio management,
supporting strategic decision making for IT portfolios and sanity checking on IT
projects. But at this point we think it is worthwhile to turn our attention to a more
fundamental issue. It is the issue whether it is possible to incorporate our empirically
found formulas within an existing body of mathematical and statistical knowledge. For,
if we are able to connect our work to established theory, we can beneCt from Cndings
in that area, and insights from these areas could lead to insights in the formulas we
developed thus far. Others have tried to connect quantitative IT portfolio management
to modern portfolio theory, and we showed that this correspondence is not as promising
as it seemed at Crst.

After a careful study of our empirically found formulas we are conCdent to have
found this existing body of knowledge. It is called lifetime analysis or failure time
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Fig. 20. Comparing MIS development to outsource development costs.

analysis as is applied to cancer research, cure rate estimation, reliability analysis, and
other areas ranging from returns on the NYSE to the physical laws that the crushing
of coal are subject to. This analysis will follow shortly, and it made us think of our
work as cost–time analysis.

In the practical software engineering area, there is no established tradition of mathe-
matically describing important phenomena in order to control the engineering process,
and the ensuing artifacts [76,43]. In part this is due to the fact that the mathematics
is not closely connected to obvious applications that are of immediate use in practice.
For Celds where this is obvious, such as software cost estimation, not many people
relate their work to common practice in mathematics or statistics. Let us illustrate this.
Recall Boehm [6] and Parr [90] who go to great length to infer alternatives to Rayleigh
distributions whereas they could have used a decentralized version. Another indication
is the ongoing discussion how useful mathematics is for the software practitioner. We
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Fig. 21. Comparing MIS development to outsource development chance of failure.

refer to Glass who in IEEE Software [43] writes:

If these mathematics-based [approaches] : : : are truly important to the Celd, then
it is in some : : : application of software that I have not yet encountered.

We assume Glass thinks of formal methods, and indeed, it is less obvious how
(and when) to apply formal methods in industry. But software cost estimation is om-
nipresent, and cannot be done without mathematical and statistical support. So the
practical software area that Glass apparently never encountered where math is staring
you in the face is software cost estimation, and the related area of quantitative IT
portfolio management—the subject of study in this paper.

Due to the traditional lack of applying mathematics successfully in practical soft-
ware engineering, the mathematics that is being used is not related to the rich body
of standard mathematics and statistics. It seems that progress in research on software
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Fig. 22. Comparing MIS development to outsource development chance of late projects.

cost estimation is bogged down by the assumption that you Crst have to theoreti-
cally justify how knowledge accumulation and problem solving processes are modeled
mathematically, in order to analytically derive software cost estimation formulas. In
other areas where mathematics and statistics are necessary, people explicitly refrain
from such practices. For, this only leads to Mickey mouse mathematics 3 lacking
general applicability, since it is based on too idiosyncratic assumptions reIected by
personal or otherwise limited experience, which is a bad advisor when it comes to
mathematics.

As another illustration, consider this: in a textbook by Londeix on cost estimation
for software development [78, p. 90] a learning function 2atn is considered in an

3 www.mathematicallycorrect.com/glossary.htm

mailto:www.mathematicallycorrect.com/glossary.htm
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exercise for which the manpower distribution and cumulative manpower cost are to
be calculated. Londeix rejects this particular distribution on the following grounds [78,
p. 195]:

We can verify that when n increases the time scale is reduced. An increase of n
gives a sharp rise of the peak manning relative to its value for n= 1. Therefore,
a non-linear learning curve would give an early more peaky model which would
not be helpful to represent the reality of software development.

This is further justiCed in the textbook by a reference to Norden’s model [88]: since
Norden is using a linear learning curve, the nonlinear learning curve cannot be correct.
Needless to say that this line of reasoning is erroneous. A learning curve can never
be inappropriate because someone else is using a diOerent curve. Irrespective of his
line or reasoning, Londeix is mistaken: we know from empirical research reported on
in [97] that nonlinear learning curves accurately model IT intensive programs. The
only limitation that Londeix should have questioned is that the assumption that n is a
natural number is too restrictive.

So the general tendency in software cost estimation is to Crst restrict one selves and
within those limitations try to model cost estimation phenomena. This is the wrong
ordering as we will argue below.

12.1. Ready, 7re, aim

In general it is not smart to Cx a speciCc (theoretical) cost–time model in
advance—and then see if this assumption Cts reality. Unless the theoretical deriva-
tion is conclusive, this should always be done the other way around: you decide on
a—hopefully general enough—family of distributions, and by curve Ctting the most
likely distribution for that particular eOort will turn up as the result of statistical
analysis.

The Cxed-model approach is not the way to go when you just want to control things
accurately, but this ready-Cre-aim approach seems the norm in software engineering.
It is much better to skip the motivational part all together, and instead do an educated
guess that the relation you wish to describe probably Cts a very general family of
distributions like our family of cost allocation functions (38) is fortuitously doing. Or
discriminate among several parametric models, to see which one should be used at
all [99]. To quote Lawless [75, p. 13], who touches upon this issue in the realm of
lifetime analysis:

Extensive motivation is not provided for the various models. To do this would
require a thorough discussion of aging and failure processes and would take
us outside the book’s intended subject area. Indeed, the motivation for using a
particular model in a given situation is often mainly empirical, it having been
found that the model satisfactorily describes the distribution of lifetimes in the
population under study. This does not imply any absolute “correctness” of the
model.
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KalbIeisch and Prentice go a step further, when they write about failure time data
analysis [67, p. 3]:

In many situations it is also important to develop nonparametric and robust pro-
cedures since there is frequently little empirical or theoretical work to support
a particular family of failure time distributions.

They even indicate that you might question the assumption that there would be an
analytic relation at all. We are in complete agreement with the observations done by
Lawless, KalbIeisch, and Prentice.

Also consider this: there can be some time between empirically found mathematical
tools and their formal underpinning. For instance, the so-called Weibull distribution
was empirically found in 1933 by Rosin and Rammler to describe the crushing of
coal [107] (it was later attributed to Weibull [131]). However, the Crst full theoretical
derivation based on physical principles stems from 1995 [14]. In the mean time, the
distribution has been very instrumental in lifetime analysis [75].

The statistical ready-Cre-aim practice is not unique to software engineering. This
issue is also noted in other areas. For instance, in the realm of cure rate estimation in
clinical trials for diseases such as lymphoma and breast cancer, similar critical remarks,
eloquently expressing the viewpoints of [67, p. 67], are made [94]:

In the last decade, mixture models under diOerent distributions, such as expo-
nential, Weibull, log-normal and Gompertz, have been discussed and used. How-
ever, these models involve stronger distributional assumptions than is desirable
and inferences may not be robust to departures from these assumptions. In this
paper, a mixture model is proposed using the generalized F distribution family. Al-
though this family is seldom used because of computational diJculties, it has the
advantage of being very Iexible and including many commonly used distributions
as special cases. The generalised F mixture model can relax the usual stronger
distributional assumptions and allow the analyst to uncover structure in the data
that might otherwise have been missed.

Indeed, using Cxed or restricted families of distributions also restricts the possibility
to Ct your data, and as the authors of [67,94] correctly observe, using a general distri-
bution, you can uncover structure in your data that with a restricted model is missed.
The generalized F distribution was originally intended as a selection process to detect
which known less general distribution Cts data most appropriately [99].

So, instead of trying to unravel why a particular curve is appropriate to model a
correlation you can better skip that part for later and readily begin to Ct curves that
are approximating the relation accurately. Any formula, satisfying your purpose is by
deCnition useful—the answer why this formula does Ct is just a nice-to-have. As you
will see shortly, it turns out to be utterly useful to relate our cost–time formulas to
established practice in statistical modeling.

12.2. The generalized � distribution

In order to do so, it is necessary to turn formula (38) into a so-called probabil-
ity density function. We normalize formula (38) so that the area under the curve
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becomes 1, by dividing formula (38) by the area under it. We use formula (39) for
this. Formula (52) is the probability density function variant of formula (38):

f(t) =
�b(�+1)=�

�(� + 1=�)
· t�e−bt� : (52)

Formula (53) is the cumulative distribution function belonging to formula (52):

F(t) = 1 − �((� + 1)=�; bt�)
�((� + 1)=�)

: (53)

Indeed normalization means that F(∞) = 1, which is not hard to check. Now we
can easily relate formulas (52) and (53) to established statistical tools.

Theorem 1. Formula (52) is equivalent to the generalized � distribution [115].

The generalized � distribution is deCned as follows:

g(t) =
�

�(k) · "
( t
"

)k�−1
e−(t=")� :

If we take � = �k − 1 and b = 1="�, we can easily Cnd that formula (52) turns into
the generalized � distribution. Vice versa, if we take k = (� + 1)=� and " = (1=b)1=�,
this reduces the generalized � distribution to formula (52). So, both distributions are
the same.

Obviously then also all the other artifacts coincide, e.g., their cumulative distribution
functions are the same.

12.3. Lifetime data analysis

So now we have related our normalized empirically found cost–time family of
relations to an existing family for which there are tools and techniques available that
we can borrow to eOectively deal with the practical side of applying the necessary
statistical analyses. This Celd is not modern portfolio theory, but lifetime data analysis.

In the 1930s functions similar to the generalized � distribution were used to the
analyze the distribution of economic income [2,25]. But also in 2001, it was shown that
stock returns on the New York Stock Exchange can be approximated by a generalized
log gamma distribution [11]. So there are relations between quantitative IT portfolio
management and the returns on stock options, but as argued, these relations are not
what you would expect, namely that security portfolio theory founded by Markowitz
corresponds in some natural way to issues relevant for IT portfolios.

A major application Celd of the generalized � distribution is in the so-called lifetime
data analysis [75]. This branch of statistics is also referred to as survival time, or failure
time analysis [67] and is widely used in engineering to support reliability analysis, and
in the biomedical sciences. While the notion of lifetime should be taken literally, e.g.,
in biomedical science, in other Celds it merely indicates a non-negative-valued variable.
Our application comprises cost–time analysis for IT portfolios. There is a one-to-one
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correspondence with concepts from lifetime analysis, and the Celd of software cost
estimation, in particular quantitative IT portfolio management.

Let us Crst review the few most basic concepts of lifetime data analysis (this infor-
mation can be found in any book on lifetime data analysis), so that we can illustrate
the strong correspondence with IT cost issues. Suppose T is a nonnegative random
variable representing a lifetime, e.g., of individuals in a population. Let f(t) be the
probability density function of T . Then the distribution function F(t) is deCned as
follows:

F(t) = P(T 6 t) =
∫ t

0
f(x) dx;

where P(T6t) denotes the chance that the lifetime T is between zero and t. The
survival function is deCned as

S(t) = P(T ¿ t) =
∫ ∞

t
f(x) dx:

As we can see, when t→∞, then the distribution function F will approach 1,
whereas the survival function will approach zero: S(∞) = 0. In other words, it becomes
harder and harder to survive when time proceeds. An important notion in lifetime
analysis is the so-called hazard function, also known as the hazard rate, the age-speciCc
failure rate, or the more poetic name: force of mortality:

h(t) =
f(t)
S(t)

:

The hazard function expresses the instantaneous death rate at time t given that there
is survival up till t. The hazard rate thus describes the way in which the instantaneous
death of an individual (or the failure of some device) changes with time. So when
you follow subjects from birth to death the hazard rate can be a bathtub curve: right
after materialization there can be childhood diseases, then a relatively constant rate,
and then the rate will go up again. The cumulative hazard function is easily deCned:

H (t) =
∫ t

0
h(x) dx:

With these basic deCnitions it is possible to derive a number of fundamental relations
between the various notions. For a start, the probability density function can be written
as a product of two intuitive functions:

f(t) = h(t) · S(t);

and since f=− S ′, it is not hard to Cnd that

S(t) = e−
∫ t

0
h(x) dx:

Combining the above two formulas:

f(t) = h(t) · e−
∫ t

0
h(x) dx:
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So, the hazard function can serve as a means to derive the probability density
function. For instance, suppose that the hazard function is constant: h(t) = %. Then
the probability density function is f(t) = %e−%t , which is the exponential or Poisson
distribution that is often used in reliability and lifetime analysis.

12.4. Correspondence to software cost estimation

Let us give a second example, to start showing the one-to-one correspondence.
Norden presupposed that the eOectiveness of a group of engineers increases progres-
sively during the life cycle of a project that he represented by a function p(t), where
the p is an abbreviation for the problem function indicating the level of skill available
to solve the problems. He assumes this function to be linear. In fact the function p
is what in lifetime analysis is called the hazard function. Norden, thus assumes a lin-
ear hazard rate. With the basic formulas for lifetime analysis, Cnding the probability
density function is obvious:

f(t) = ate−at2=2:

This is the Rayleigh distribution that Norden derived, using diOerential calculus.
In lifetime analysis, the Rayleigh distribution is also known as the linear hazard rate
distribution [4,71].

In the paper [90], Parr proposed an alternative to the Rayleigh distribution to
estimate software costs. This model is sometimes called the sech square model due
to its formulation:

V (t) = (1=4)sech2((�t + c3)=2):

We note that sech(x) = 2=(ex + e−x), and that sech stands for secans hyperbolicus.
Parr goes to great length in deriving this formula using diOerential calculus. We think
that without knowing it, he just proposes a logistic hazard rate modeling his ideas
on the rate at which problems are solved in software development. When you assume
logistic growth for problem solving, the sech square formula follows immediately using
the basic relations for lifetime analysis. The hazard function Parr actually assumes is
as follows (viz. Fig. 23):

h(t) =
�

1 + ae−�t :

Looking at Fig. 23 you can see that the hazard function Crst looks like a linear hazard
rate, so the beginning is a decentralized Rayleigh curve, and later on, the hazard rate
becomes constant so then it will approach an exponential, or Poisson, density function.
So it is just a smooth mix of linear and constant hazard rates. Maybe some IT projects
do have a problem solving curve that resembles the one of Fig. 23. Then again, maybe
others do not. For instance, in [57,56] the work of Parr is used to derive an alternative
to Parr’s work for the phasing of resources: the damped sine model. Also these authors
use diOerential calculus to theoretically derive an eOort distribution function based on
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their ideas of problem solving rates. It is the damped sine model (see Fig. 24):

f(t) = c · e−at sin(bt):

The shape of the damped sine model could very well be an eOort distribution albeit
that this function oscillates around zero, thus can be less than zero, which is not
intuitive for cost–time analysis. To improve our intuition for this model we calculated
the survival rate, and the hazard rate (see Fig. 25 for plots of f; S; h):

S(t) =
c · e−at

a2 + b2 · (b cos(bt) + a sin(bt));

h(t) =
a2 + b2

a + b cot(bt)
:
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Fig. 24. The damped sine model.

Looking at Fig. 25, the hazard rate seems Crst linear, and then it approaches asymp-
totically to inCnity. You could say that this hazard rate is roughly the inverse of the
logistic hazard rate. So this is a smooth mix of a Rayleigh distribution at the beginning
and an inCnite hazard rate at the end. The latter is rather nonintuitive, and can be due
to the following. One of the things that is modeled in [57,56] is that a project has an
endpoint, where the eOort model should be exactly zero. This can only be modeled
when at some positive point in time a zero can be produced in the model. The sine
curve has this property. This then leads to the unnatural hazard rate. We think that
trying to model this type of assumption is not helping in coming to grips with cost–
time analysis. It only complicates matters considerably. Apart from that, the assumption
that eOort should be exactly zero is not making much sense for high-momentum work.
As is reported on in [30, p. 63] it requires 15 min or more of concentration to reach
the state of Iow that is necessary to do engineering, design, development, writing, or
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Fig. 25. The survival rate S, hazard rate h, and its product f: the damped sine model.

similar work. This implies that it is not necessary to model such eOorts at a granularity
smaller than 15 min. As you can see, modeling the fact that a project ends, is leading
to problems that should better be avoided. Therefore, it is better to avoid preliminary
assumptions on how problems are solved, and Ct data using as general as possible
families of functions, so that you do not miss trends that you will most probably miss
when you are too restrictive about the family of curves to choose from. It is illustrative
that in [57,56] a more Iexible family of curves is abandoned:

The beta curve provides great Iexibility; however, a theoretical justiCcation for
use of the curve is lacking.

Although we appreciate the eOorts of the authors of [57,56] we are convinced that
it would be better to adhere to Iexible families of curves, rather than restrict yourself
to theoretically derived curves that can easily be too restrictive to model the reality.
We prefer pragmatic Iexibility over theoretical foundations that may be hard to justify
after all.
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In the next example we will see that a too restrictive model broke down, and that a
more Iexible model solved the problems. Moreover, it illustrates the strong relations
between lifetime analysis and software cost estimation. Recall the earlier cited US Air
Force study by Porter. He used the Weibull distribution for recalibrating the costs and
lifetime of R&D programs [97]. Indeed, the linear hazard rate did not give Porter
enough freedom to Ct the experimental data to Rayleigh distributions. Apparently, the
hazard rate, that he calls performance rate for R&D programs is not linear but follows
some diOerent pattern. Without realizing this, he assumes the following hazard rate:
�t�−1. Also in Porter’s paper diOerential calculus is used for inference of the cost–time
function. But again, using the basic concepts of lifetime analysis the probability density
function is obvious: �t�−1e−t� . And this is indeed the Weibull distribution that is often
used in lifetime data analysis.

As another example, recall the learning function in the earlier mentioned textbook
by Londeix [78]. In that book, a hazard rate of 2atn is considered. To derive the
distribution, the textbook also uses diOerential calculus. Again, using the lifetime data
analysis basics, it is trivial to infer the answer.

So you could say that for estimating costs of software projects, R&D programs, and
IT portfolio management, the hazard function in lifetime analysis corresponds to the
problem solving rate, that the survival function corresponds to the percent of work
remaining, that is, the residual investment, that the distribution function F corresponds
to the accumulated cost function, and the density f corresponds to the manpower
buildup function. Therefore, you can see cost–time analysis as lifetime analysis.

This is in accord with the interpretation of the Rayleigh curve: the linear part stands
for the learning curve to overcome problems one at a time, which is the hazard function,
and the quadratic exponential factor represents the velocity with which you can solve
those problems once the solutions are known, which is the survival function.

12.5. Hazard rate and survival function

The hazard and survival function provide central intuitions for a cost–time analysis—
just as they justify the use of speciCc models in lifetime analysis. For any cost–time
distribution you can calculate these functions, as we did for a number of known ones, to
better understand the distribution, and its feasibility. Vice versa, if you know for a fact
what the problem solving rate of an R&D-like project is, then you can immediately infer
the correct distribution. But knowing this rate implies that you presumably understand
the problem in the Crst place, so then it is not an R&D project anymore. This paradox
shows that trying to theoretically infer a cost–time distribution seems to be feasible
only for well-understood problems. Measuring problem solving rates seems infeasible
for CMM level 1 organizations, who are lacking an overall metrics program.

To gain insight in the empirically found formula (52) it is therefore worthwhile to
calculate the survival and hazard functions. The survival function is easily inferred
from formula (53). Formula (54) for quantitative IT portfolio management is

S(t) =
�((� + 1)=�; bt�)
�((� + 1)=�)

: (54)
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In cost–time analysis, we call the survival function sometimes the percentage of work
remaining, or the residual investment. Also hazard functions are present under diOerent
names in cost–time analyses. We have come across problem function, performance
function, skill function, etc. Using the basic concepts of lifetime analysis, it is easy to
derive the hazard function that belongs to formula (52). This is formula (55):

h(t) =
�b[(�+1)=�]t�e−bt�

�([(� + 1)=�]; bt�)
: (55)

While, constant, linear, logistic and simple power hazard rates can be found using
intuition or by modeling problem solving processes, the family of hazard rates described
in formula (55) is beyond the imaginative powers of many of us. In order to appreciate
formula (55) let’s see what happens when we take �= 1 and �= 2 in formula (55).
For the upper incomplete � function holds: �(1; x) = e−x. Using this, �(1; bt2) = e−bt2 ,
so formula (55) reduces to b�t, which is a linear hazard rate. Thus, the probability
density function for �= 1 and �= 2 becomes the well-known Rayleigh curve again.
Likewise, if you take �= � − 1, you immediately reduce formula (55) to the Weibull
hazard rate (using that �(1; x) = e−x). This implies that you can use this family of
hazard functions to Ct a large variety of diOerently shaped cost–time relations. So the
advantage is that you do not need to pick one particular model, and then see if it
Cts. If the models are general enough, whatever Cts best will come out of a statistical
analysis.

To illustrate formulas (54) and (55) further, we depicted six related plots in Fig. 26.
The left-hand column contains the hazard rate, the survival function, and their product:
it is the seismic cost impulse that we earlier discussed (and depicted in Fig. 5). Re-
call that the cost allocation function f can be found by taking the following product:
f(t) = h(t)·S(t). The right-hand column contains the hazard, survival, and cost alloca-
tion function for the operational cost tsunami that was the consequence of the seismic
IT impulse (also earlier depicted in Fig. 5). Let us compare these rates.

The Crst row of Fig. 26 shows us the hazard rates, or problem solving rates
for both development and operations of the example IT portfolio. We used the
coeJcients depicted in Table 8 to instantiate formula (55), the result forms the two
hazard rates. Although both curves stem from a single family, they both show rather
diOerent characteristics, not resembling any thus far known problem solving rate that we
know of. The seismic hazard rate is very steep and then approaches an almost constant
rate. This is achieved when most of the projects in the IT portfolio are implemented.
The tsunami hazard rate on the other hand shows a much slower growth, but not lin-
ear. As can be clearly seen, none of the theoretically inferred models (Rayleigh, Parr,
or damped sine) nor generalizations of these (think of Weibull curves), would have
approximated our cost allocation function accurately. The reason is that the hazard rate
(that determines the cost allocation function) is too far oO the known models.

The second row of Fig. 26 gives us both survival rates. Again, we used the coef-
Ccients in Table 8 and instantiated formula (54) to plot both survival rates. As can
be seen, the investment for the seismic IT impulse is spend fast: the left-hand plot
rapidly drops to zero. The spending rate for the ensuing operational cost tsunami is
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Fig. 26. The hazard rates, survival rates and their products for the seismic cost impulse and operational cost
tsunami.

much slower: after a long time it is still necessary to invest. The latter rate clearly
indicates that there will be a long period of investments that are followed by the initial
IT expense to develop the example portfolio.

Finally, in the third row we plotted the product of the Crst and second row, giving
us the cost allocation functions. Note that we normalized the total cost to 1 in both
cases, so the shape of the operational cost tsunami deviates from how it is depicted in
Fig. 5. But if you look at the scale used in both sides of the third row, you will see
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that the peak of the operational cost tsunami is approximately at the Cfth of the peak
of the seismic cost impulse, which is also the case in Fig. 5.

12.6. Inference procedures

Despite the generality of the formulas, they are not as applicable if there is no sound
inference procedure for our cost allocation function. So, there is another question that
needs attention: how easy is it to infer the coeJcients for formula (38), or equivalently
for formula (52)?

The parameterization as given in the paper so far, is relatively intuitive for human
beings, but has limited value when it comes to inference procedures. Especially when
you are uninitiated in statistical analysis. With inference procedures like maximum
likelihood estimates you can easily run into trouble.

After Stacy’s publication in 1962 on the generalized � distribution, the problems
with estimating the coeJcients were reported on by several people [91,117,52,49].
Even with fairly large samples in the hundreds of observations, convergence problems
occurred with maximum likelihood estimates. Very diOerent sets of parameters, lead
to very similar distributions. Looking back to Fig. 11 it is not hard to imagine that
for a given set of data, similar curves can be found by varying the pairs (a; �) and
(b; �), leading to totally diOerent coeJcients. This does not ease inference, and several
papers addressed these problems [116,98,35,74,133,134]. Prentice [98] reparameterized
the distribution, and took away most inference problems: now it is easy to Ct curves.
First we redisplay the generalized � distribution:

g(t) =
�

�(k) · "
( t
"

)k�−1
e−(t=")�

Prentice’s alternative parameters are:

� = log(") − 2=� · log(%); ' =
1

�
√
k
; % =

1√
k
;

where −∞¡�; %¡∞, and '¿0. The new probability density function becomes

f(t) =




|%|
�(%−2)
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
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' − 2 log(%) − e%−
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'
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
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√
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e
− 1

2

( log(t)−�
'

)2

otherwise:

This formula is not intended for human interpretation, but more appropriate for
computer manipulation. There are tools around that use the above formula to carry out
curve Ctting for the generalized � distribution. A tool called Weibull++ especially
designed for lifetime analysis contains the above formula [105]. Also SAS [31] contains
the above formula [111, Section 30.32]. For users of free software: there is a toolbox
for describing ocean wave distributions that contains the generalized � distribution
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[12]—it is not a coincidence that we associate the long operational cost waves with
tsunamis. This is GNU licensed software and the Matlab [80] sources are available,
which is handy when you want to tweak the code. Recall that we Ct the curves using
nonlinear regression as implemented in Splus [19,54,129,95]. Indeed, it is not always
trivial to Cnd good starting values, and we used techniques similar to [133,134] to Cnd
them. Using tools especially geared towards this type of analysis surely improves the
ease with which you can carry out your own cost–time analysis.

12.7. The generalized F distribution

While many people resort to using restricted families of distributions for software
cost estimation, this somewhat rigid practice breaks fully down when lifting from
the project to the portfolio level. One of the reasons is that the projects can be quite
heterogeneous. For instance, the productivity of individual programmers can vary widely.
The variation in error detection (or debugging) for small programming eOorts has been
found to be 26 to 1. Remarkably, the subjects had the same programming experience
[110]. These Cndings have been conCrmed in many studies. In another study a 20 to 1
ratio of development time for programmers with the same experience [83,29,18,9,128].
Usually there will be variation in experience. Comparing low complexity eOorts done
by capable programmers with high complexity eOorts by less capable programmers,
can lead to ratio of 1: 400 in productivity diOerences [23, p. 256]. In [23, p. 240] it
was found that for large programming eOorts, this eOect is less pronounced, although
still a variation of productivity ratios of 2–4:1 is measured. It will be clear that very
heterogeneous cost–time functions on a per project basis will not be uncommon. The
decreasing variation is in accord with Markowitz’s work on risk diversiCcation: since
the variance for productivity has an upper bound, the variance of the total productivity
of the entire programming team will approach zero if the team size approaches inCnity
[79, p. 107]. And when projects become large, you need more programmers. So for
selecting programmers for a team, in theory you could use modern portfolio theory.
But given the enormous shortage of programmers, in practice there is not much choice.

Although the generalized � family is fairly general, we like to point out in this
section, that there are even more general distributions, especially designed to deal with
heterogeneous data. They are additionally used to test which less general distribution
Cts the data best. Therefore, we sometimes use another family of distributions that
also accurately approximates cost–time data for portfolios. This family is more Iexible
than the generalized � distributions and there are described inference procedures. The
disadvantage of this family of distributions is that it is relatively unknown outside
the realm of failure time data analysis. We like to brieIy discuss the generalized F
distribution as proposed by Prentice [98]. Prentice worked on this subject supported by
a grant of a cancer research center [98, p. 614]. The primary use of his distribution
was to incorporate all the known failure time distributions, so that with a test you
could discriminate among them. You could say that he developed mathematical tools
to aim before Cring. In cancer research also heterogeneous populations occur: some
will die, some will be cured, some will not get the disease. We loosely compare this
to the heterogeny of programmer productivity: some are no programmers at all, some
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will never Cnish a program, and some will spread code like a cancerous organism. The
failure time could be seen as the time it takes to complete the IT development project.

A positive random variable T is said to have a generalized F distribution with � and
' as location and scale parameters and s1; s2 as shape parameters, if W = (log T −�)='
is the logarithm of a random variable having an F distribution with 2s1 and 2s2 degrees
of freedom. The probability density function of W , enhancing formula (52) with respect
to Iexibility is

f(w) =
(ews1=s2)s1 (1 + ews1=s2)−(s1+s2)

B(s1; s2)
; (56)

where −∞¡�¡∞, '; s1; s2¿0 and B is the beta function deCned as

B(s1; s2) =
�(s1)�(s2)
�(s1 + s2)

:

The generalized F distribution contains many other distributions: for '= 1 formula
(56) reduces to the F distribution, if si →∞, for i= 1 or 2 formula (56) becomes
the generalized � distribution, if s1 = s2 it reduces to the generalized log-logistic dis-
tribution, for s2 = 1 it reduces to the Burr type III, and for s1 = 1 to the Burr type
XII distributions. Burr distributions are used in environmetrics to estimate the con-
centrations of chemicals such that a given percentage of species will survive [112].
Furthermore, the �, ,2, Poisson, Rayleigh, Log-normal, Log logistic, Pearson type III,
Maxwell–Boltzmann and many other distributions are special cases of the generalized
F distribution.

Just as with the generalized � distribution, formula (56) is of limited interest unless
there are tools and techniques to infer the coeJcients. There is an Splus package to
Ct both the generalized � and the generalized F distributions. It is called GFCURE,
referring to cure rate estimation using the generalized F distribution, and stems from
cancer research [94,93].

12.8. Software cost estimates are censored

In clinical trials it is often desirable to analyze the data before all the individuals have
died. Therefore, it is common to work with so-called censored data. An observation is
censored (or right censored) if the exact value of the observation is not known, but only
that it is greater than or equal to this observation. For instance, when a software project
is estimated to cost half a million dollar, this can be seen as censored data: it will
most likely be at least $500 000. It seems an established idea in software engineering,
that it is not possible to say anything about estimates if the data is censored, that is,
no actual data is available [28]. But often, we do have censored data to our avail,
especially in IT portfolios, where not only Cnished IT projects, but also projects in
progress, and IT project proposals are present. Finished IT projects provide you with
life and uncensored data, ongoing and proposed ones are characterized by censored
data. Note that you cannot use censor analysis, if the deviations are arbitrary, that
is, sometimes too much, sometimes accurate, and sometimes too low. There is no
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tradition whatsoever of IT projects being too early, or less costly than anticipated in
advance [58,46–48,42,41,44]. This implies that IT portfolio data is right censored. Both
in lifetime and failure time analysis a lot of research is done to support analysis in
the presence of censored data sets, so we can deploy the results of this work to our
advantage and analyze IT portfolios more accurately, even in the case where IT projects
are not Cnished. We have not yet applied censor analysis in practice, since for that you
need uncensored data as well. This would imply access to a body of historical data,
which is hardly present in CMM level 1 organizations.

12.9. Estimating an empirical survival function

Something that is easily measurable is the spending rate for a set of correlated IT
investments over time. This is used in cost uncertainty analysis for systems engineering
[40] (containing a software component) to capture the cost distribution over time at an
early stage. In that book [40] it is found that in many cases the total cost distribution of
a systems engineering project comprises large numbers of uncorrelated cost items, so
their accumulation approaches the normal distribution. This assumption enables you to
estimate the accumulated cost function at an early stage. As mentioned earlier, empirical
evidence shows that cost allocation functions for R&D projects, software projects, and
IT portfolios are not normally distributed. This is shown in [86–88,100–103,97] and
by us. So you have to do something diOerent.

If you measure accumulated costs, you equivalently have the residual investment,
which is the survival function. In lifetime data analysis, it is also not hard to measure
how the survival of a population over time develops. Techniques are available to esti-
mate from these observations the empirical survival function. If you have the survival
function, you can infer the hazard rate and the cost allocation function. Product-limit
estimates, also known as Kaplan–Meier estimates, are used in lifetime analysis to esti-
mate empirical survival functions. Since you do not always want to wait until the entire
investment is made, your data will be censored. This implies that you need to estimate
the empirical survival function with censored data. For details on these methods we
refer the interested reader to [67,75]. If there is enough accounting data, and other IT
related management data lacks, you can use the residual investment rate to estimate the
survival function. Also if quantitative IT portfolio management is consolidated within
your organization, you can track the residual investment rate to check whether the
survival function that was originally proposed for the IT investment is consistent with
the real spending rate. This type of analysis can then signal at an early stage possible
problems. In this stage, you are really getting on top of IT.

13. Conclusions

The Clinger Cohen Act of 1996 enforced the use of IT portfolio management but did
not explain how this should be done in operational terms. As far as we know, this paper
is the Crst one to describe quantitative IT portfolio management in depth. We hope that
organizations in general, and in particular, the ones subject to the Clinger Cohen Act
will beneCt from the material presented in this paper. Most organizations are CMM
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level 1 organizations. We argued that CMM level 1 organizations—who need such
tools probably most urgently—can jump start quantitative IT portfolio management by
compensating their lack of historical data with external benchmarks. With examples
composed from actual quantitative IT portfolio management projects we illustrated our
approach. Based on our Cndings, we were able to relate our work to an existing body of
knowledge, from which we could borrow methods, insights, techniques, and tools to our
advantage to solve relevant problems in quantitative IT portfolio management. Com-
paring the advancements made in these other areas with the gap in the software Celd
we feel that much work, some of which has been outlined in this paper, is necessary
to nurture and mature quantitative IT portfolio management. When better benchmarks
and more historical data becomes available, the numerical values in our formulas will
change, but presumably not their generic form. In our opinion, we developed the Crst
iteration of a collection of formulas that form a useful basis for getting started with
quantitative IT portfolio management.

Abbreviations

Below we give a lexicographical listing of the used abbreviations plus a brief clar-
iCcation. Moreover we refer to formulas, tables, Cgures whenever appropriate. In the
list you will Cnd all but one formula. The exception is the Cxed ratio equation (27)
for which no abbreviation was introduced. It is expressing that the operational cost
allocation per time unit is 20% of the cost allocation per time unit for building the
system.
a: accumulated cost function. This is the integral of formula (38). See formula (39)

for details.
adc: accumulated development costs. The formula for adcs calculates the accumulated

development costs, for a given system s over a given time frame. See formula (22).
Likewise, the formula for adcP calculates the accumulated development costs for a
given IT portfolio P over a given time frame. See formula (25).
aoc: accumulated operational costs. The formula for aocs calculates the accumulated

(minimal) operational costs, for a given system s over a given time frame. See formula
(23). Likewise, the formula for aocP calculates the accumulated (minimal) operational
costs for a given IT portfolio P over a given time frame. See formula (26).
atc: accumulated total costs. The formula for atcs calculates the accumulated (min-

imal) total costs, for a given system s over a given time frame. See formula (21).
Likewise, the formula for atcP calculates the accumulated (minimal) total costs for a
given IT portfolio P over a given time frame. See formula (24).
c: this symbol is overloaded. It stands for an amount of money, that is cost, but it

is also a function name. It is the name we gave to the cost allocation function that
generalizes all known cost allocation functions, and that we mainly use to base our
cost–time analyses on. See formula (38) for elaborations.
ca: cost allocation. This formula calculates the cost allocation for a system for a

given time. It consists of the operational and development cost allocations (see cad
and cao below). See formula (17).
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cad: cost allocation for development. This formula calculates for a given time, the
cost allocation that you minimally need to develop a system. Typically you can calcu-
late the monthly costs for development. See formula (19).
cao: cost allocation of operations. This formula calculates for a given time, the cost

allocation that you minimally need to keep a system operational. You typically use this
formula to calculate monthly operational costs. See formula (20).
cc: change in cost. The change in cost equation is the derivative of our proposed

cost allocation equation (which is formula (38)). See formula (40).
cco: corporate cost of ownership. This formula gives you for a given IT portfolio

and a given time, the corporate cost that you need to spend to own the portfolio. See
formula (45).
cf: chance on failing projects. There are several related formulas. We have cfi:

the chance on late projects in the information systems industry. See formula (28)
for this chance when a given amount of function points is known, and formula (29)
if its development time in calendar months is known. We also have cfo, where the
subscript now denotes the outsource industry. Analogously, we have a formula for a
given amount of function points: formula (30), and one if the development time is
known: formula (31).
cl: chance on late projects. There are several related formulas. We have cl i: the

chance on late projects in the information systems industry. See formula (32) for this
chance when a given amount of function points is known, and formula (33) if its devel-
opment time in calendar months is known. We also have clo, where the subscript now
denotes the outsource industry. Analogously, we have a formula for a given amount of
function points: formula (34), and one if the development time is known: formula (35).
d: duration. This symbol is overloaded. First it stands for the duration of a project,

but it is also a function, that returns the duration for development given a deployment
time of a system in years. See formula (10). When subscripted it stands for the amount
of calendar months expressing the amount of calendar months for an information sys-
tems project (di) or an outsource development project (do), given its size in function
points. See formulas (47) and (50), respectively.
dd: development duration. This formula calculates the duration in calendar months

of a development project given its cost. See formula (3). It also calculates the duration
in calendar months of a development project given its staO, see formula (7). Finally,
it returns the duration of a development project given a known amount of operational
costs, see formula (12) for that version.
df: development fraction. This formula gives you the fraction of the total cost of

ownership that is devoted to development. See formula (15).
ead: eOort allocation for development. This is not a generic formula but is a speciCc

formula tailored to an example. We calculated the eOort allocation of an IT project
described in the literature. The formula ead is depicted in Fig. 10.
f: this symbol is overloaded. First it stands for a given amount of function points.

But is also a function. It is the probability distribution function f(t) that belongs to
our proposed cost allocation function (deCned in formula (38)). See formula (52). It
also stands for the probability density function known as the generalized F distribution,
as stated in formula (56).
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F : this is the cumulative distribution function belonging to function f. See formula
(53) for details.
fe: failure exposure. This formula accumulates the failure chances of all the individual

projects in a portfolio. All you need to know are the (estimated) durations of all the
projects in the portfolio. See formula (36).
h: hazard rate. Formula (55) is the hazard rate that belongs to the probability density

function that we deCned in formula (38).
le: late exposure. This formula accumulates the chances of all the individual projects

in a portfolio on being late. All you need to know are the (estimated) durations of all
the projects in the portfolio. See formula (37).
mco: minimal cost of operation. This formula predicts the minimal cost to keep a

system running given its development duration. See formula (11).
md: maintenance duration. This formula calculates the maintenance duration for a

given cost. See formula (4). It also calculates the maintenance duration for a given
staO size, see formula (8).
mrt: minimal ROI threshold. This is not a generic formula but is a speciCc formula

that calculates minimal ROI threshold of an IT investment example. This example is
summarized in Table 4. The mrt formula is depicted in Fig. 7.
mtco: minimal total cost of ownership. This formula calculates for a given devel-

opment duration the minimal total cost of ownership over the entire life-cycle of the
system. Minimal means here without functional changes. See formula (13).
nsd: number of staO for development. This formula calculates for a given duration

of a development project, the number of staO needed. See formula (5).
nsm: number of staO for maintenance. This formula calculates for a given duration

of a maintenance project, the number of staO needed. See formula (6).
of: operational fraction. This formula gives you the fraction of the total cost of

ownership that is devoted to maintenance. See formula (16).
p: productivity. We have several formulas for diOerent industries. We have pi giving

the productivity for developing information systems in function points per staO month
for a given amount of function points. See formula (46). Analogously, formula (49)
returns for a given amount of function points the productivity of outsourcers in function
points per staO month.
pt: peak time. With formula (41) we can calculate the time when the peak cost

needs to be allocated to a portfolio that satisCes a cost allocation function with the
shape of formula (38).
pc: peak cost. This formula calculates the peak cost for a given cost allocation

function of the shape proposed by formula (38). See formula (42).
r: the ratio of minimal cost of operation to development cost. See formula (14).
rs: retirement of system s. This formula is the absolute-time variant of formula (9):

given an initiation time and a delivery time, it calculates the retirement time for a
given system. See formula (18).
rf: repayment factor. This formula calculates for a given cost allocation function of

the shape as proposed by formula (38), and a given time, the amount of money that
you still have to invest to develop and operate the portfolio described by the given
cost allocation function. See formula (44).
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S: survival function. Formula (54) is the survival function that belongs to the prob-
ability density function (52) that we derived from our cost allocation function (38).
tcd: total cost of development. We have several of these. First there is a formula,

that for a given development time calculates the cost. See formula (1). Then there
are several formulas that are based on function points, and diversiCed to industry. We
have tcd i that for a given amount of function points gives the development costs of an
information systems project, see formula (48). Analogously, we have tcdo that returns
for a given amount of function points, the development costs of a project done by
outsourcers, see formula (51) for details.
tcm: total cost of maintenance. This formula calculates the total cost of a maintenance

project for a given duration. See formula (2).
tco: total cost of ownership. This formula calculates the total cost of ownership for

an IT portfolio that is described by an instantiation of formula (38). See formula (43).
y(d): years that a system is in its deployment phase. With formula (9) we can

calculate for a given development time, the number of calendar years that a system is
in deployment.
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