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In memoriam Péter Kiss
ABSTRACT
A positive integer n is called a balancing number if
1+24+---+(n—-1)=Mn+1)+n+2)+---+(n+r)
for some natural number r. We prove that there is no Fibonacci balancing number except 1.
1. INTRODUCTION

The sequence {R,,}52, = R(A, B, Ry, Ry) is called a second order linear recurrence if the
recurrence relation
R, =AR,_1+ BR,,_» (n>1)

holds for its terms, where A, B # 0, Ry and R; are fixed rational integers and |Rg|+ |R1| > 0.
The polynomial 22 — Az — B is called the companion polynomial of the second order linear
recurrence sequence R = R(A, B, Ry, R1). The zeros of the companion polynomial will be
denoted by « and . Using this notation, as it is well known, we get

aa™ — bB"™
n= (% 1
Ro= 2 1)
where a = Ry — Rof3 and b = Ry — Ro« (see [6]).
A positive integer n is called a balancing number [3] if
1424+ (n-1)=n+1)+n+2)+---+(n+7)

for some r € Z... Here r is called the balancer corresponding to the balancing number n. For
example 6 and 35 are balancing numbers with balancers 2 and 14. In a joint paper A. Behera
and G. K. Panda [3] proved that the balancing numbers fulfil the following recurrence relation

B,+1 =68, — B, (’I’L > 1) (2)

where By =1 and By = 6.
We call a balancing number a Fibonacci balancing number if it is a Fibonacci number,
too. In the next section we prove that there are no Fibonacci balancing numbers.

2. FIBONACCI BALANCING NUMBERS

The equation 22 — Dy? = N with given integers D and N and variables = and y, is called
Pell’s equation. First we prove that the balancing numbers are solutions of a Pell’s equation.
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Theorem 1: The terms of the second order linear recurrence B(6,—1,1,6) are the solutions
of the equation
22 -8y =1 (3)

for some integer z.

Proof: Let B(6,—1,1,6) be a second order linear recurrence and denote by « and (3 the
zeros of their companion polynomials and D the discriminant of the companion polynomial.
Using (1) and the definition of o and 5 we get

(3+2v2)a" — (3 —2v/2)3"

B, =
42

and af =1,
therefore, with y = B,,, we have

8
1+8y2:1+833:1+3—2((3+2\/§)2a2”

—2(3+2v2)(3 — 2v2)a" 3" + (3 — 2&)252”)

_ (3 4+ 2v2)a” ’
() (0

(=)

1
2

(B+2v2ar | (3-2v2)5\
5 + 5 = z“.

Using that a = 3+ 2v/2, 8 = 3 — 2v/2 and the binomial formula it can be proved that z is a
rational integer.
To prove our main result we need the following theorem of P. E. Ferguson [4].

Theorem 2: The only solutions of the equation
x? —5y? = +4 (4)

are v = +L,,y = £F, (n=0,1,2,...), where L,, and F), are the n'" terms of the Lucas and
Fibonacci sequences, respectively.

Using the method of A. Baker and H. Davenport we prove that there are finitely many
common solutions of the Pell’s equations (3) and (4). We remark that this result follows from
a theorem of P. Kiss [5], too. In the process we show that there are no Fibonacci balancing
numbers. In the proof we use the following theorem of A. Baker and H. Wiistholz [2].

Theorem 3: Let a1, ... ,a, be algebraic numbers not 0 or 1, and let
A=bjlogay + -+ b, logay,,

where by, ... ,b, are rational integers not all zeros.
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We suppose that B = max(|b1],...,|bk|,e) and A; = max{(H(e;),e} (i =1,2,...n).
Assume that the field K generated by a1, s, ... ,«a, over the rationals has degree at most d.
If A # 0 then

log |A| > —(16nd)*™*2) 1og A log A, .. . log A,, log B.

(H () is equal to the maximum of absolute values of the coefficients of the minimal defining
polynomial of a.)
The following theorem is the main result of this paper.

Theorem 4: There is no Fibonacci balancing number except 1.

Proof: First we show that there are finitely many common solutions of the equations (5),
(6) and (5'), (6")

522 + 4 = o (5) 5x2 — 4 =y (5")
8% 4+ 1 = 2* (6) 8% + 1 = 22 (6")

The equations (5) and (5") can be written as
(y +av5)(y —avb) =4 (7)

and

(y+2V5)(y — =V5) = —4. (8)

If we put

y+ V5 = (yo + x0V5)(9 + 4V5)™

where m > 0, it is easily verified (by combining this equation with its conjugate) that yq is
always positive but x( is negative if m is large. Hence we can choose m so that zoy > 0; but if
x1 is defined by

Yo + 20V5 = (y1 + 21V5)(9 + 4V5)

then z; < 0. Since
Yo + 20V5 = (9y1 + 20x1) + (921 + 4y1)V/5

we have yg = 9y1 + 2021 and xg = 921 + 4y1. From the previous equations we have x1 =

9xy — 4y and xg < 4%. Using equation (5) we have

80

2 2 2
—4 =bx; < —yj.
yO 5 0 = 81y0

Hence yo = 3,7,18 and 2y = 1, 3,8, respectively. Thus the general solution of equation (5) is
given by

y+ V5= (3+V5)(9+4V5)" (9)
y 4 2v5 = (74 3V5)(9 + 4/5)™ (10)
y+2v5 = (18 + 8V5)(9 + 4v5)™ (11)

where m=0,1,2...
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Using the same method as before with (5'), we find that y; = 9y — 2029 < 0 (in this case
zo is always positive), whence y3 = 5zg — 4 < 400 -2

<1 To, 80 that g = 1,2,5 and yo = 1,4, 11,
respectively. Thus the general solution of equation (5') is given by

y+av5=(1+V5)(9+4V5)™

(12)
y+2vV5 = (44 2v5)(9 + 4V/5)™ (13)
y+xvV5 = (11 + 5V5)(9 4 4v/5)™ (14)
where m =0,1,2,...

The general solution of equations (6) and (6’) is given by

z+ 8z = (3+V8)" (15)

where n = 0,1,2,... We are looking for the common solutions of the equation (9), (10), (11),
(12), (13), (14) with the equations (15). Using (9), (15) and their conjugates we have

B+ B-VB)" 3+V5 m 3—V5,. m
2 = 7 N - (94 4V/5) NG (9 — 4V/5)
and so
1 n BV
%(34—\/5) —T—
(16)
V5+3 V5 -3

7 (94 4v5)™ +

9+ 4v5)"™.
Putting

1 n p_ Vb3 m
Q= 8(3+¢§), P= NG (9 + 4v/5)™,

=

in equation (16) we obtain

—= . (17)
Since
1 4 AP-Q
S > —1__P—1 = —1 P—l .2
Q @ P <@ ) =5 0P
and plainly P > 1 and Q > 1, we have Q < P. Also P—Q = 2P~ ' — {Q7! < 2P~! and
P > 20.
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It follows that

P P— 4 4 2
0<logé = —log <1—TQ) < EP*Q—{— <5P2> =

4 16 0.15
—_Pp 2?24 _pHt<c08P < —— |
5 25 (9 + 4\/5)2m

Using the previous inequality and the definitions of P and @), we get

(3+V5)V8 _ 0.15
V5 (9+4v/5)2m

0 < mlog(9 4+ 4v5) — nlog(3 + V8) + log (18)

We apply Theorem 3 with n = 3 and

a1:9+4\/5 &2:3+\/g agzw.

We use that 0.15((9 4+ 4v/5)2)™™ < e=>7"™, The equations satisfied by a1, oo, a3 are
ai —18a;+1=0 a3—6az+1=0  25a3 — 112003 + 1024 = 0.
Hence Ay = 18, A3 = 6, A3 = 1120 and d = 4. Using Theorem 3 and the previous inequality

we have

1
m < ﬁ(16 x 3 x 4)1%1og 181og 6log 1120log m < 10** log m.

Thus we have
m < 1026,

Using the same method we investigate the equations (10) and (15). We have

3BT m T=3V5 m_ BV (3-VB)"
zx_T(wMﬁ) — (9 —4VB)™ = NG NG
that is
3Vh+ 7 m T—3V5 o B+VR)T BB
T(9+4\/5) —T(9+4\/5) ="z 5 (19)
If we put
_7+3V56 . L .
P1_7(9+4\/5) , Q—\/§(3+\/§) (20)
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using (19) and (20) we have

1 4
Q—gQ 1=P1—g L
Using the previous method we have
P .022
0 <log = < 0.81P2 < 0022
Q (9 + 4V/5)2m

Substituting from (20), we obtain

(74 3v5)V8 _ 002
VB (9 + 4+/5)2m’

0 < mlog(9+ 4v5) — nlog(3 4+ V8) + log (21)

We apply Theorem 3 with n = 3 and

(Jé1:9+4\/5 Oé2:3+\/§ 043:%.

The equation
2505 — 752003 + 1024 = 0

is satisfied by as, that is A3 = 7520. Using Theorem 3 as above we have

1
m < ﬁ(16 x 3 x 4)1%1og 1810g 6 log 7520 log m < 10** log m.

It follows that
m < 1026,

From the equations (11) and (15) we have

18 — 8v/5
NG

m_ B+VE"  (3-VE)"
(9—4V5)™ = % NG

_ 18+8V5

NG (9+4V5)™ —

2z

that is
18 +8v/5 . 18-85 .
T(9 +4V/5)™ — T(9+4x/3)
B+ve)" (3+\/§>—”‘

8 V8 22)

If we put

m _B+V8)"
9+ 4V5)™, Q= N (23)

_18+8V5

P
: V5
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Using (22) and (23) we have

1 _
Q—gQ_1=P2——P2 h

As before we obtain

P. P, — 0.004
0<loga2:—log<1— 2 Q)<

P, (9 + 4v/5)2m”

Substituting from (23) we have

(18 + 8v/5)V/8 _ 0004
V5 (9 +4V5)2m

0 < mlog(9+ 4v5) — nlog(3 + V8) + log

We apply Theorem 3 as above with n = 3 and

Oé1:9+4\/5 a2:3+\/§ agzw.

The equation
25a* — 515200” + 1024 = 0
is satisfied by a3 and so A3 = 51520.
1
m < ﬁ(m x 3 x 4)'%log 181og 61og 51520 log m < 10%* log m.

It follows that
m < 1026,

JFrom the equations (12) and (15) we have

1++5 -5 m_ BV (3-VR)"

1
2= —7 (9+4V5)™ — 7 (9—4V5)™ = 7 NG
that is
1+5 S RV BB B+VR)TT
NG (94 4V5)™ — 7 (94+4V5)™™ = 7 N
If we put
145 . _ (3+VR)"
Py = 7 (9 +4V5)™, Q_7¢g .
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Using (25) and (26) we have

- = =P34+ — .
Q SQ 3 + 5 3
From the previous equation we have
4 1
—Pa=-P'+-Q'>0
Q 3 5 3 + SQ
that is @) > P3 and
4 1 37
—Py<-Ply-pl="_p
@b gl gl =0

It follows that

e 37
0<log%:log<1+QP 3) < 2ip2
3 3

37 ?
+ (—P3—2) < 0.926P; % < 0.443

40 (9 + 4y/5)2m

and so

V5 0.443

0 < mlog(9+ 4v5) — nlog(3 + V8) + log

Using the previous method and that the equation

1024a* — 48002 +25 =0

is satisfied by as = and so Az = 1024. It follows that

V5
(1+v5)V8
1
m < ﬁ(IG x 3 x 4)1%1og 1810g 6 log 1024 log m < 10** log m.
It follows that
m < 10%°.

JFrom the equations (13) and (15) we have

4425

NG (94 4V5)™ —

V5 V8 V8
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If we put
4425 (3+V8)"
Py = —5(9+4V5)™, =
we get similar inequalities as before. We have
Q 2 1
0 <log = < 0.926P, © < 0.065 ——F=——
5P, 4 (9 + 4/5)2m

and

V5 065—————— (28)

1
0<m10g(9—|—4\/g)—nlog(3+\/§)+logm<0. 014V

The equation
62464a* — 28800 +5 =0

is satisfied by az = ﬁ and so A3 = 62464. We use the Theorem of A. Baker and G.

Wiistholz again and we have

1
m < ﬁ(16 x 3 x 4)1%1og 181og 6 log 62464 log m < 10%** logm.

It follows that
m < 107,

Finally let’s consider the equations (14) and (15). We have

11+ 5v/5 11 -5v/5 B+ BV

7 (94 4V5)™ — 7 (9 —4V5)™ = 7 NG
If we put
C11+45V5 m (34+V3)"
P5_7\/g (94 4V5)™, Q——\/g

and we use the previous steps we have

1
0 < log % <0.926P; % < 0.0095W
5

and

NG _ 0.0095
(114+5V5)v8 (9 +4v/5)2m

0 < mlog(9+ 4v5) — nlog(3 4+ V8) + log (29)

The equation
1024a* — 196802 + 25 = 0
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is satisfied by as = */55) NG and so A = 19680. We apply again Theorem 3 and we have

(11455

1
m < ﬁ(16 x 3 x 4)1%1og 1810g 6 log 19680 log m < 10%* log m.

It follows that
m < 10%°,

We get that there are finitely many common solutions of simultaneous equations, that is,
there are finitely many Fibonacci balancing numbers. Since the bounds for m are too high
(m < 10%%) we can’t investigate all of them. In order to get a lower bound we use the following
lemma of A. Baker and H. Davenport [1].

Lemma: Suppose that K > 6. For any positive integer M, let p and ¢ be integers satisfying

1<q< KM, |6g —p| < 2(KM)~".
Then, if ||¢3|| > 3K 1, there is no solution of the equation

|mb —n+ gl <C™™
in the range

log K2M
log C'
(It is supposed that 6,3 are real numbers and C' > 1. ||z]| denotes the distance of a real
number z from the nearest integer.)
We divide the inequality (18) by log(3 + +/8) and we show the steps of reduction. In the
other cases, (21), (24), (27), (28) and (29), the method is similar. Using the lemma we have

<m< M.

C=(9+4v5)2=321.997..., 0= log(9 + 4v/5)
log(3 + v/8)

and
(3+V5)V8
V5

In our case we take M = 1026, K = 100. Let 6y be the value of 6 correct to 56 decimal places,
so that

3 =log (log(3 + v/8))*.

10 — 6o < 107°°,
Let g be the last convergent to the continued fraction for #y which satisfies ¢ < 10?®; then
lqfo — p| < 10728, We therefore have
|46 — p| < ql — o] + |g60 — p| < 2 x 1077

In this case the first and the second inequalities of the Lemma are satisfied. The values of 6, 3
and ¢ computed by Maple are given in Appendix. We have that ||¢3| = 0.4049.... It follows
from the lemma, since ||¢f3|| > 0.03, there is no solution of (18) in the range

log 1030

087 10%6.
log321,997 =" <
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That is m less than 12, so we can calculate by hand that there is no Fibonacci balancing
number in this case. We get the same result in the other cases, too.
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APPENDIX

6 = 1.63793820967634701166977102458136522855627526286714168251888

q = 7T850704948944850577723978282

3 = 0.683802570095316530188645755603264115583997429421277165474604
lq|| = 0.40491601596865450151807911061885

By = 0.927971982080690912034348902586612330166885855136454628067058
g1 || = 0.37968838470510105521228687874339

By = 1.17214139406606529388005204956996054474977428085163209065951
g2 = 0.16429278537885661194265286810565

B3 = 0.154978562941451479440940970305750253328169371359925159498283
lqBs| = 0.33226779145594849106219897740840

B4 = 0.0591965435160195851616114482936309354429984974481845288541785
lqB4] = 0.430569855681915879338549291400673

Bs = 0.0226110676066072760438933745751425530008261209846284270642526
llaBs || = 0.376022641498303870922153148389585
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