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1 Preliminaries

1.1 Introduction

The number of triangle centers is astounding. Upwards of eleven, hundred
special triangle centers have been found. Almost all of these centers locations
relate directly to the position of the vertices of the triangle that forms them.
So moving the vertex must move the triangle centers in question. Last year, a
student research group investigated what happened to some of these centers
as one vertex of the triangle moved around a circle. In their paper Tracing
a Point, Spinning a Vertex: How Circles are Made, [1] they found that the
incenter, excenter, and orthocenter of a triangle trace a circle as one vertex of
that triangle moves around a second circle while the other two vertices remain
fixed on that second circle. This investigation aims to generalize their findings
to ellipses as well as expand them to cover an additional triangle center, the
centroid.

All of the results that follow begin with a similar set-up, and so it will
be helpful from the outset to explain that set-up, rather than do so at the
beginning of each theorem. All of the triangles described herein will have
two points (defining the base) fixed at a specified position (not necessarily
on an ellipse). The third point of the triangle will lie at an arbitrary point of
an ellipse and so can be thought of as tracing the ellipse as different points
are chosen. This ellipse, e1, will be centered at the origin and have equation
x2

a2 + y2

b2
= 1, where a is the length of the semi-major axis and b is the length

of the semi-minor axis.
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1.2 Constructions

The following is a list of terms with definitions that are used throughout the
paper and pictures illustrating their constructions.

1.2.1 Centroid

A median of a triangle is constructed by connecting the midpoint of one side
with the opposite vertex. The three medians of a triangle are concurrent and
their point of intersection is called the centroid. It is a known fact that the
centroid coordinates for a triangle with vertices A = (Ax, Ay), B = (Bx, By),

C = (Cx, Cy) is (Ax+Bx+Cx

3
, Ay+By+Cy

3
).

1.2.2 Incenter

The incenter of a triangle is formed by the intersection of the three angle
bisectors of the vertices of the triangle. It is a known fact that the incenter
coordinates for a triangle with vertices A = (Ax, Ay), B = (Bx, By), C =

(Cx, Cy) and corresponding side lengths a, b, c is (Axa+Bxb+Cxc
a+b+c

, Aya+Byb+Cyc
a+b+c

).
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1.2.3 Excenter

An excenter of a triangle is formed by the intersection of the two exterior
angle bisectors of the vertices of the triangle, and the interior angle bisector
of the opposite side.

1.2.4 Orthocenter

An altitude of a triangle is a line that passes through the vertex and is
perpendicular to the opposite side. The three altitudes of a triangle intersect
at a single point called the orthocenter.
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1.2.5 Ellipse

An ellipse is the set of all points the sum of whose distances from two fixed
points (called the foci) is a positive integer, 2a. Such an ellipse can be written

as { (x, y) | x2

a2 + y2

b2
= 1 }.
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2 Theorems

2.1 Centroid

The centroid is an especially simple triangle center, found at the intersection
of the three medians of a triangle, and a few minutes playing with Geometer’s
Sketchpad were enough to convince us that the centroid traces an ellipse,
regardless of where the base of the triangle is situated. (This already marks
a significant departure from the work done by the previous group, wherein
the bases of the triangles considered always lay on the circle being traced.)
Here, then, is a theorem which confirms these observations.

Theorem 2.1.1 Let e1 be an ellipse with semimajor and minor axes equal
to a and b respectively and let D = (x1, y1) and E = (x2, y2) be two points in
the plane. Then, if F = (x3, y3) is any point on the ellipse e1 the centroid of
4DEF lies on a second ellipse, e2, which is centered at (x1+x2

3
, y1+y2

3
) with

semimajor and minor axes a
3

and b
3
, respectively.

Proof Let e1, D, E, and F be as stated. Then, without loss of generality,
let e1 = { (x, y) | x2

a2 + y2

b2
= 1 }.

As D and E are any two points in the plane and F is on e1, we can choose
x1, x2, x3, y1, y2, and y3 such that D = (x1, y1), E = (x2, y2), F = (x3, y3)

and
x2
3

a2 +
y2
3

b2
= 1.
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Let C be the centroid of 4DEF . Then we know C = (x4, y4) such that
x4 = x1+x2+x3

3
, and y4 = y1+y2+y3

3
. (See Figure 2)

Now, we wish to show that C lies on a second ellipse, e2 centered at
(x1+x2

3
, y1+y2

3
) and with semimajor and minor axes a

3
and b

3
, respectively.

In order to show that C is on e2 we simply need to show that

(x4 − x1+x2

3
)2

(a
3
)2

+
(y4 − y1+y2

3
)2

( b
3
)2

= 1.

Thus let us consider the above equation, with respect to our new coordi-
nates:

(x4 − x1+x2

3
)2

(a
3
)2

+
(y4 − y1+y2

3
)2

( b
3
)2

=
(x1+x2+x3

3
− x1+x2

3
)2

(a
3
)2

+
(y1+y2+y3

3
− y1+y2

3
)2

( b
3
)2

=
(x3

3
)2

(a
3
)2

+
(y3

3
)2

( b
3
)2

=
x2
3

32

a2

32

+
y2
3

32

b2

32

=
x2

3

a2
+

y2
3

b2
= 1,

as (x3, y3) is on e1.
Thus C = (x4, y4) is on an ellipse e2 described by

(x− x1+x2

3
)2

(a
3
)2

+
(y − y1+y2

3
)2

( b
3
)2

= 1.

which is centered at (x1+x2

3
, y1+y2

3
) with semimajor and minor axes a

3
and b

3
,

respectively.

Using the same proof strategy as in Theorem 2.1.1, we can see that the
centroid of a triangle traces hyperbolas and parabolas when one vertex of
the triangle is tracing these conic sections.

Corollary 2.1.1 Let h1 be a hyperbola with semimajor and minor axes equal
to a and b, respectively, and let D = (x1, y1) and E = (x2, y2) be two points in
the plane. Then, if F = (x3, y3) is any point on the hyperbola h1 the centroid
of 4DEF lies on a second hyperbola, h2, which is centered at (x1+x2

3
, y1+y2

3
)

with semimajor and minor axes a
3

and b
3
, respectively.

Proof This proof follows immediately from that of the ellipse, the only al-
teration being a change from a + to a − throughout.
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Corollary 2.1.2 Let p1 be a parabola with a equal to the distance from the
vertex to both the focus and the directix and let D = (x1, y1) and E = (x2, y2)
be two points in the plane. Then, if F = (x3, y3) is any point on the parabola
p1, the centroid of 4DEF lies on a second parabola, p2, with vertex at
(x1+x2+x3−x3

√
3

3
, y1+y2

3
) and the distance from the vertex to the focus and the

directrix is a
3
.

Proof Let p1 and 4DEF be as stated. Then we can write p1 as x2 = 4ay,
and thus x2

3 = 4ay3. A little bit of formula manipulation similiar to that done
in proof of theorem 2.1.1 reveals that the centroid C of 4DEF lies on a curve
p2 described by the equation (x− x1+x2+x3−x3

√
3

3
)2 = 4a

3
(y− y1+y2

3
) which is a

parabola whose vertex is at (x1+x2+x3−x3

√
3

3
, y1+y2

3
) and whose distance from

the vertex to the focus and the directrix is a
3
.
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2.2 Incenter

Having dealt with the centroid, the next step was to attempt to generalize
the findings of the previous group. They had found that if the base of a
triangle is placed on a circle, and the third point of that triangle is moved
around that circle, the incenter would trace a circle. Unfortunately, a direct
generalization of that result, substituting ellipse for circle, did not lead to any
promising findings. The shapes generated were unrecognizable to us, and at
any rate clearly not an ellipse. After much trial an error, it was eventually
discovered that if the base of the triangle is placed on the foci of the ellipse,
the incenter does appear to trace an ellipse. The following theorem confirms
this result.

Theorem 2.2.1 Let e1 be an ellipse with semimajor and minor axes equal
to a and b respectively and foci at (c, 0) and (−c, 0). Let D = (c, 0) and
E = (−c, 0). Then, if F is any point on the ellipse e1, the incenter of

4DEF lies on a second ellipse described by the equation x2

c2
+ y2

( bc
a+c

)2
= 1.

Proof Let e1 be an ellipse with semimajor and minor axes equal to a and
b, respectively and foci at (c, 0) and (−c, 0). Let 4DEF be formed by the
points D = (c, 0), and E = (−c, 0), and F = (x1, y1) such that F is on e1.
Let I be the incenter of 4DEF . Let p and q be the lengths of the two sides
of the triangle as shown below:
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So I has coordinates

(
−cq + cp + 2cx1

p + q + 2c
,

2cy1

p + q + 2c
)

=
c

2(a + c)
(p− q + 2x1, 2y1).

Calculating p− q:

p =
√

(x1 + c)2 + y2
1 =

√
(x1 + c)2 + b2(1− x2

1

a2
)

=

√
(x1 + c)2 + (a2 − c2)(1− x2

1

a2
) =

a2 + cx1

a
.

Similarly, q = a2−cx1

a
. Thus, p− q = 2cx1

a
. So,

I =
c

2(a + c)
(
2cx1

a
+ 2x1, 2y1) =

c

2(a + c)
(
2(c + a)x1

a
, 2y1)

= (
c

a
x1,

c

a + c
y1).

Define a new ellipse, e2, with equation x2

c2
+ y2

( bc
a+c

)2
= 1. We want to show

that I lies on e2, regardless of where F lies on e1. Thus, it suffices to show
that

( c
a
x1)

2

c2
+

( c
a+c

y1)
2

( bc
a+c

)2
= 1.

Considering the left hand side of this equality, we have:

( c
a
x1)

2

c2
+

( c
a+c

y1)
2

( bc
a+c

)2
=

c2x2
1

a2

c2
+

c2y2
1

(a+c)2

b2c2

(a+c)2

=
x2

1

a2
+

y2
1

b2
.

And since (x1, y1) lies on e1, we know
x2
1

a2 +
y2
1

b2
= 1, and therefore we get

the desired result of
( c

a
x1)

2

c2
+

( c
a+c

y1)
2

( bc
a+c

)2
= 1.

Thus I must lie on ellipse e2.
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2.3 Excenters

The excenters of a triangle are closely tied to the incenter, as both involve
the bisection of the angles of the triangle. So it was not surprising to find
that the excenters also traced recognizable paths when the triangles base
was formed by the foci. However, different results were obtained depending
on which excenter one considered. The excenter tangent to the base of the
triangle traced an ellipse, while the other two excenters traced lines. The
following two theorems demonstrate these results.

Theorem 2.3.1 Given an ellipse e1 and a triangle formed by the foci of the
ellipse, (−c, 0) and (c, 0), and any third point on e1, (x1, y1), the excenter of
the base of the triangle lies on an ellipse

e2 :
x2

c2
+

y2

( bc
c−a

)2
= 1.
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Proof Let e1 be an ellipse with foci (−c, 0) and (c, 0) and axes a and b with
a > b. Let 4T be the triangle formed by (−c, 0) and (c, 0) and (x1, y1), where
(x1, y1) lies on e1. Let J be the excenter of the side of the triangle between
the foci of e2. Let I be the incenter of 4T , and let M be the midpoint of
the segment IJ .

We begin by finding the coordinates (x2, y2) of J . The excircle center
at J is tangent to the base of T and so a perpendicular line from J to the
x-axis must have length rJ , the radius of the excircle. Thus |y2| = rJ . Also,

rJ =
Area(T )
s− 2c , where s =

Perimeter(T )
2 . Thus,

rJ =
1
2
(2c)|y1|

1
2
(2a + 2c)− 2c

=
c|y1|
a− c

.

Thus |y2| = rJ = c|y1|
a−c

. Since y1 and y2 are on different sides of the x-axis,
y2 = cy1

c−a
.

Now that we have y2, we need x2. We know that A is the center of the
incenter-excenter circle, which passes through (−c, 0) and (c, 0). Thus A is
equidistant between the two points and so must lie on the y-axis. And since
M is the midpoint of segment IJ , I and J are equidistant from the y-axis.
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Thus x2 = −cx1

a
from our proof regarding the incenter. So J = (−cx1

a
, cy1

c−a
).

Now we need only show that it lies on e2 : x2

c2
+ y2

( bc
c−a

)2
= 1. Substituting for

x and y we get:

(−cx1

a
)2

c2
+

( cy1

c−a
)2

( bc
c−a

)2
=

x2
1

a2
+

y2
1

b2
= 1

(as (x1, y1) lies on e1).
Thus J lies on the ellipse e2.

Theorem 2.3.2 Let e1 be an ellipse formed by the equation x2

a2 + y2

b2
= 1.

Let (−c, 0) and (c, 0) be the foci of e1. Let 4T be a triangle formed by these
two points and an arbitrary third point (x1, y1) that lies on e1. Let J be the
excenter of 4T opposite (−c, 0). Then J lies on the line x = a.

Lemma. Let 4ABC be any triangle. Let J be the excenter
opposite A, and let I be the point formed by dropping a perpen-
dicular to AB from J . Then AI=1

2
Perimeter(ABC)
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Let the set up be as above. Extend AB to E and AC to F . Bisect
6 CAB, 6 FCB, and 6 CBE. These meet at J . From J , drop
perpendiculars to BC, AF , and AE at G, H, and I, respectively.
G, H, and I are on the excircle centered at J and so JG ≈
JH ≈ JI. By AAS, 4HCJ ≈ 4GCJ , 4GBJ ≈ 4IBJ , and
4HAJ ≈ 4GAJ . From this we learn the following: AH ≈ AI,
CH ≈ CG, and BG ≈ BI. Now let’s consider 2(AI):

2(AI) = AI + AH = (AB + BI) + (AC + CH)

= AB + BG + AC + CG = AB + AC + BC

=Perimeter( ABC).

Therefore AI=1
2
Perimeter(ABC), as desired.

Proof Consider the perpendicular dropped form J to the x-axis at I. By
the above lemma, the distance from (−c, 0) to I is equal to 1

2
Perimeter(4T ).

And since 4T has two points on the foci and its third on e1, its perimeter is
constant and equal to 2(a + c). Thus the distance from (−c, 0) to I is a + c,
and so I lies at (a, 0). Thus the x-coordinate of J is always a and so J lies
on the line x = a.
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2.4 Orthocenter

The final triangle center to consider was the orthocenter. Here the direct
generalization seemed valid: the orthocenter of a triangle whose three vertices
lie on an ellipse traces an ellipse as one of the vertices moves around the
ellipse. However, there was clearly more to it than that. Depending on
where on the ellipse the base of the triangle is located, the orthocenters
traced-ellipse changes in both size and position. In order to simplify the
problem, we have first shown that if the base of the triangle is parallel to
one of the axes, the orthocenter does in fact trace an ellipse. This theorem
is proven below. We also include two conjectures, which, if proven, would
prove the result for any triangle with all three points lying on an ellipse.

Theorem 2.4.1 Let e1 be an ellipse with semi-major axis along the x-axis
such that x2

a2 + y2

b2
= 1 with a > b. Inscribe a triangle in e1 such that the base

of the triangle is parallel to the x-axis. We wish to show that the orthocenter
of such a triangle traces an ellipse, e2, with semi-major axis along the y-axis,
as its third vertex traverses e1.

14



Proof We begin by calculating the length of the semi-major and minor axes
of e2, such that the orthocenter of a triangle inscribed in the ellipse e1 will
trace e2. First we notice that the vertices of the base of the triangle must be
located at the points at which e1 and e2 meet. It is fairly straightforward to
determine whether the center of e2 lies above or below the center of e1 based
on the location of the base of the triangle. Since the base of our triangle lies
below the semi-major axis of e1 (see diagram), the center of e2 will lie below
that of e1.

Let us call the y-coordinate of the intersection of e1 and e2 (and hence
the base of our triangle) −c. Since the vertices of the base are on both e1

and e2 we can use our equation for e1 to find that the x-coordinates of the

vertices are ±
√

a2(1− c2

b2
).

15



From the enlarged diagram (above)

tan(90− θ) =

√
a2(1− c2

b2
)

b + c
,

and also

tan(90− θ) =
(b + c + d)√
a2(1− c2

b2
)
.

Setting the two equal: d =
a2(1− c2

b2
)−(b+c)2

b+c
.

Similarly, we find f =
a2(1− c2

b2
)−(b−c)2

b−c
.

Since the major axis of e2 is d + b + c + (b− c) + f , we have

d + 2b + f =
a2(1− c2

b2
)(b + c)2

(b + c)
=

2a2

b
.

It is clear that the length of the semi-minor axis of e2 must be a if it is to
be traced from the orthocenter of e1 (since the perpendicular dropped from
the moving vertex will determine the x-range of the orthocenter’s trace).
Thus, we hope to show that the trace of the orthocenter of a triangle with
base of height −c inscribed in ellipse e1, with formula x2

a2 + y2

b2
= 1, will trace

ellipse e2, with formula x2

a2 + (y−g)2

(a2

b
)2

= 1, as its third vertex moves along e1.

First we wish to calculate g:
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g = b + d− a2

b
=

b(b + c) + a2(1− c2

b2
)− (b + c)2 − (a2

b
)(b + c)

b + c
= −c− a2c

b2
.

Thus we can rewrite the equation for e2:
x2

a2 +
(y+(c+a2c

b2
))2

(a2

b
)2

= 1.

Now we wish to show that for an arbitrary point (x1,y1) on e2, this point
is the orthocenter of the triangle we have inscribed in e1. We know that
the altitude from the moving vertex must be vertical (since the base of the
triangle is horizontal), so let us call the location of the third vertex of the
triangle (x1, y2).

From the diagram (above) we have

tan(α) =
y1 + c

x1 +
√

a2(1− c2

b2
)
,

and

17



tan(90− α) =
y2 + c√

a2(1− c2

b2
)− x1

which implies

y2 =

√
a2(1− c2

b2
)− x1

tan(α)
− c.

Substituting, we get

y2 =
(
√

a2(1− c2

b2
)− x1)(

√
a2(1− c2

b2
) + x1)

y1 + c
− c

=
−cy1 − c2 + a2 − a2c2

b2
− x2

1

y1 − c

We wish to show

x2
1

a2
+

(y2 + (c + a2c
b2

))2

(a2

b
)2

= 1.

So

x2
1

a2
+

(
−c(y1+c)+a2(1− c2

b2
)−x2

1

y1+c
+ (c + a2c

b2
))2

(a2

b
)2

=
x2

1

a2
+

(
−cy1−c2+a2−a2c2

b2
−a2+

a2y2
1

b2
+cy1+c2+

a2cy1
b2

+a2c2

b2

y1+c
)2

(a2

b
)2

=
x2

1

a2
+ (

( b
a2 )(

a2y2
1

b2
+ a2cy1

b2
)

y1 + c
)2 =

x2
1

a2
+

y2
1

b2
= 1.

Thus, for any arbitrary point on e2, this point is the orthocenter of a
triangle inscribed in ellipse e1, with the vertices of the base of the triangle
located at the intersection of e1 and e2.

18



3 Conjectures

In our time investigating special points of triangles and conic sections we
arrived at several conjectures that we have been unable to prove but believe
to be true.

3.1 Incenters and Excenters

At the end of our investigation we decided also to investigate hyperbolas as
well as ellipses, and we believe that the incenters and excenters of a triangle
whose base is on the foci of a hyperbola trace out two hyperbolas and two
parallel lines.

Conjecture 3.1.1 Let h1 be a hyperbola with foci D and E. Then if F is
any point on the hyperbola h1 the excenters of the sides DF and EF lie on
one of two other hyperbolas h2 and h3 with vertices at D and E.

Conjecture 3.1.2 Let h1 be a hyperbola with foci D and E. Then if F is
any point on the hyperbola h1 the excenters of the side DE and the incenter
of 4DEF lie on one of the lines through the vertices of h1 and perpendicular
to DE.
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3.2 Orthocenter

In this paper we proved a theorem that we believe to be a case of a larger
theorem. We believe that the orthocenter of a triangle whose three vertices lie
on an ellipse traces an ellipse as one of the vertices moves around the ellipse.
However, we have only shown that the orthocenter of a triangle whose three
vertices lie on an ellipse and whose base is parallel to the semi-major or minor
axes traces out an ellipse. Here we have included two conjectures which, if
proven, would show that the orthocenter of any triangle whose three vertices
lie on an ellipse traces out an ellipse as one of the vertices moves around the
ellipse.

Conjecture 3.2.1 Let e1 be an ellipse centered at the origin. Inscribe a
triangle in e1 such that the origin lies on the base of the triangle. We wish
to show that the orthocenter of such a triangle traces an ellipse, e2, centered
at the origin with semi-major and minor axes determined by the angle of the
base, as its third vertex traverses e1.
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Conjecture 3.2.2 Let e1 be an ellipse centered at the origin. Inscribe a
triangle DEF in e1 such that the origin does not lie on DE. We wish to
show that the orthocenter of such a triangle traces an ellipse, e2, whose center
is determined by the distance of the base to the origin and whose semi-major
and minor axes are the same as the ellipse e3 traced by a triangle D′E ′F ′

whose base D′E ′ is parallel to DE and contains the origin, as its third vertex
traverses e1.

At the end of our investigation we also examined the orthocenter of a
triangle on a hyperbola. We believe that the orthocenter of any triangle
whose vertices lie on a given hyperbola traces out that very hyperbola.
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Conjecture 3.2.3 Let h1 be a hyperbola and 4DEF be a triangle with all
three vertices on h1. Then the orthocenter of 4DEF lies on h1 as well.

3.3 Nine-point center

We actually began our whole investigation with the nine-point center. The
nine-point center is the center of the nine-point circle. This circle passes
through the midpoints of the triangle’s sides and the points where the alti-
tudes intersect the triangle’s sides.
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Conjecture 3.3.1 Let e1 be an ellipse with 4DEF inscribed within it. As
F orbits around e1, the nine-point center traces a second ellipse, e2.
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