Theme 3: Pathogen Detection & Discovery

BRAIN INFECTION AETIOLOGY: SYSTEMATIC REVIEW

Bhagteshwar Singh
University of Liverpool
NIHR Global Health Research Group on Brain Infections
CMC Vellore - 9th July 2019

Background & Rationale

- Lack of large prospective studies of brain infection aetiology in LMICs
- Surveillance data limited by repertoire of available tests
- Makes knowing which pathogens to focus on difficult:
 - Intervention
 - Diagnostics
 - Management algorithms
 - Systematic pathogen detection
 - Gaps for pathogen discovery

Objective

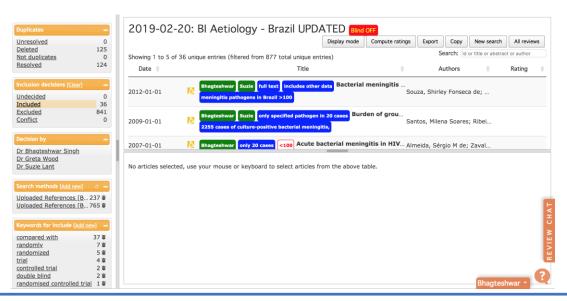
To establish the causes of acute brain infections in Brazil, India and Malawi

Methods: Studies

- Studies reporting aetiology of acute brain infections in Brazil, India and Malawi
 - Any clinical study design considered (preferably observational cross-sectional)
 - As long as denominator is clear (trials/case series possibly problematic)
 - Exclude if only include neonates, or patients with nosocomial or neurosurgical infections
 - >100 participants
- Surveillance data from regional and national laboratory and public health databases within these countries

Methods: Search

- Pubmed & Scopus
- Published 1st Jan 1999 to 31st Jan 2019
- Regardless of language or publication status
- Reference lists of included articles



Methods: Data Collection

Study selection:

- Rayyan
- Hierarchical stepwise criteria
- Title -> abstract -> full text

Data extraction:

- Setting, design, years
- Participant recruitment & characteristics
- Diagnostic techniques: approach & tests
- Reported pathogens proportions of tested and total participants

Risk of bias:

- Bespoke tool modified from existing (JBI)
- 6 questions score +1 for each "Yes"

All:

- Done by 2 reviewers independently
- 3rd reviewer decides if needed

Methods: Analysis

Meta-analysis:

- R
- Separate for each country
- Pooled proportions of each pathogen
- 95% confidence intervals
- Random-effects DerSimonian and Laird model (anticipated clinical heterogeneity)
- Freeman-Tukey (arcsine square root) transformation

Subgroups:

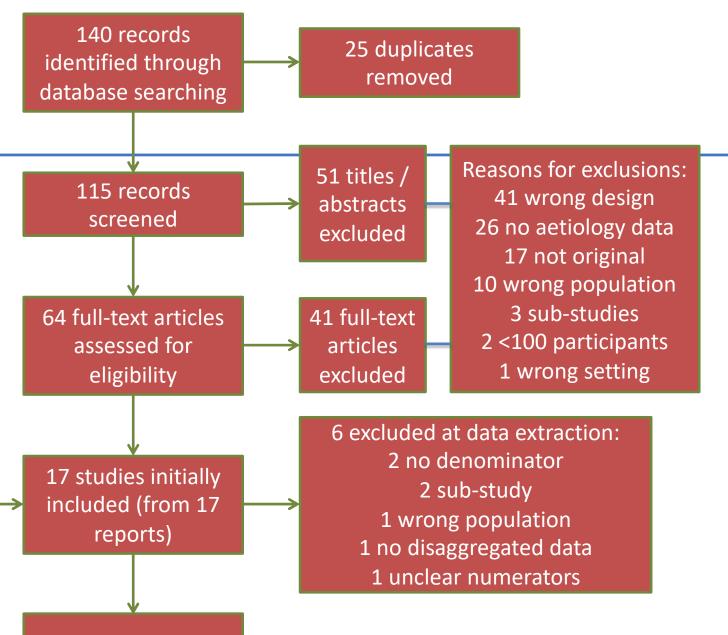
- Meningitis vs. encephalitis vs. other BI vs. undifferentiated BI vs. suspected BI
- Adults vs. children
- People living with HIV vs. without HIV infection
- Immunosuppressed vs. immunocompetent

Statistical Heterogeneity:

- Visually inspection of forest plots
- I² statistic: >50% = significant heterogeneity

Progress

Country	Search: Records	Screening	Data Extraction	Surveillance Data	Analysis
Brazil	Done: 1002	Done	20/40	Some obtained	
India	Done: 1789	Done	40/100	Pending	
Malawi	Done: 140	Done	Done	Pending	Done (initial)



Malawi: PRISMA

4 studies

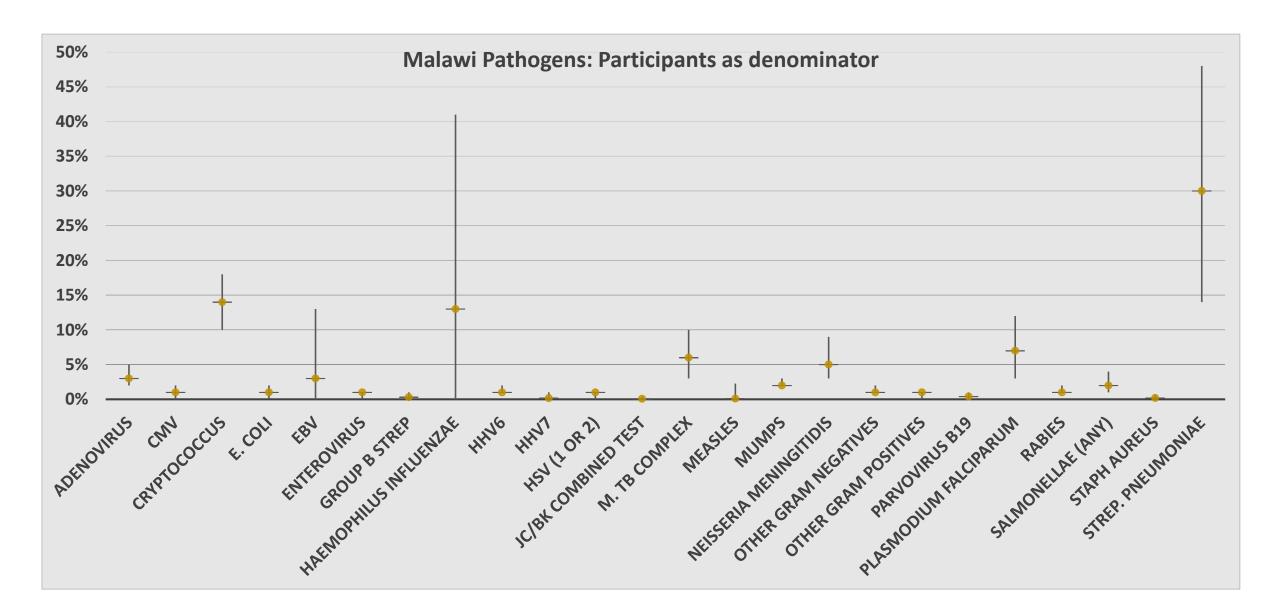
included from

reference lists

11 studies included (from 11 reports)

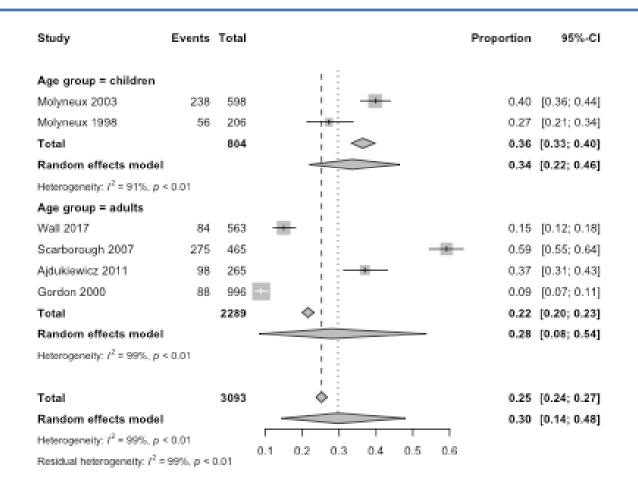
Malawi: Included Studies

- 11 studies
 - 7 prospective observational
 - 4 interventional
- All in single unselected central hospital
 - 1 Lilongwe
 - 10 Blantyre

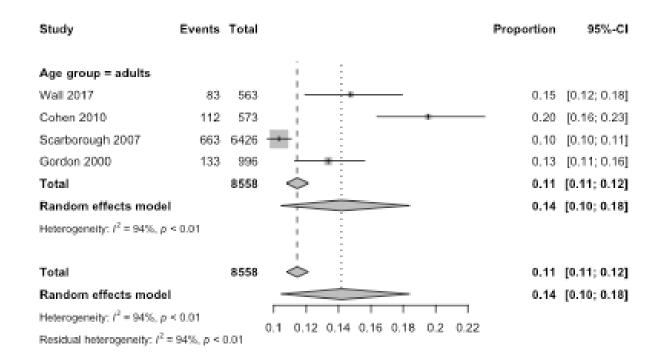


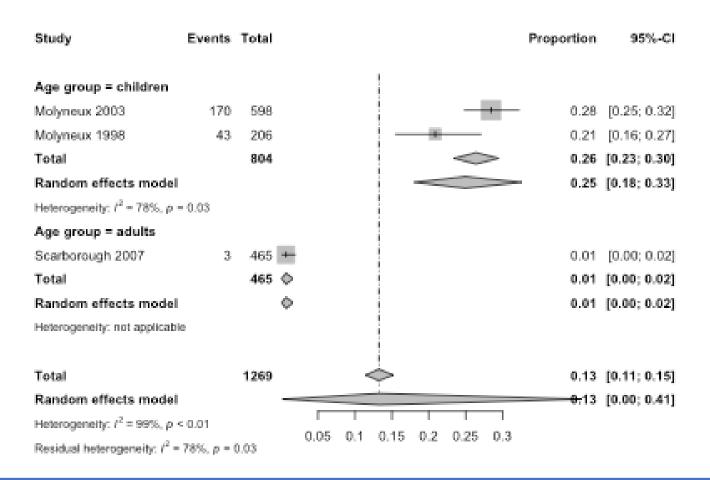
Malawi: Included Studies

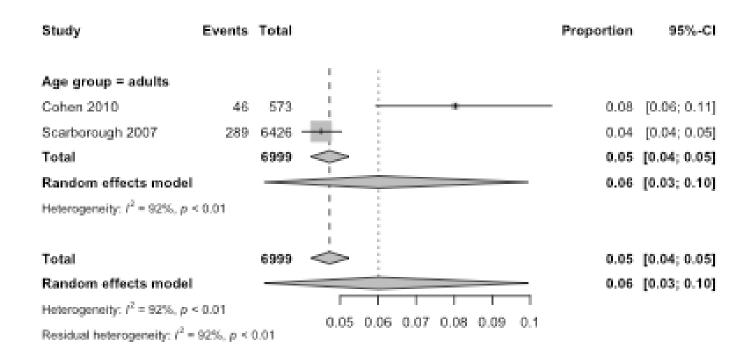
		Years of		Risk of Bias			
Study	Type of Study	Recruitment	Age Groups	Score	Syndrome	Basis of Inclusion	Testing strategy
Makoka 2012	Prospective	2006 to 2007	All	2	Meningitis	CSF tested	Systematic - single panel
Mallewa 2013	Prospective	2002 to 2004	Children	5	Brain infection	Clinician suspicion	Systematic - staged approach
Molyneux 2003	Interventional	1997 to 2001	Children	6	Meningitis	Confirmed/probable	Systematic - single panel
Maclennan 2017	Prospective	2006	Children	5	Unclear	CSF tested	Systematic - single panel
Wall 2017	Interventional	2012 to 2013	Adults	5	Meningitis	Clinician suspicion	Systematic - single panel
Benjamin 2013	Prospective	2007	Adults	5	Meningitis	Clinician suspicion	Systematic - staged approach
Cohen 2010	Prospective	2007	Adults	5	Brain infection	Clinician suspicion	Systematic - single panel
Scarborough 2007	Interventional	2002 to 2005	Adults	4	Meningitis	Confirmed/probable	Systematic - staged approach
Ajdukiewicz 2011	Interventional	2006 to 2008	Adults	4	Meningitis	Confirmed/probable	Systematic - single panel
Gordon 2000	Prospective	1998 to 1999	Adults	4	Meningitis	Confirmed/probable	Systematic - single panel
Molyneux 1998	Prospective	1996 to 1997	Children	6	Meningitis	Clinician suspicion	Systematic - single panel

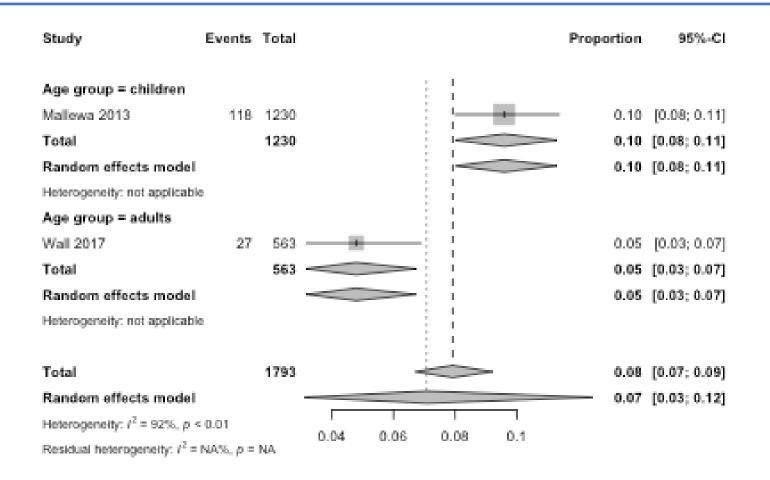


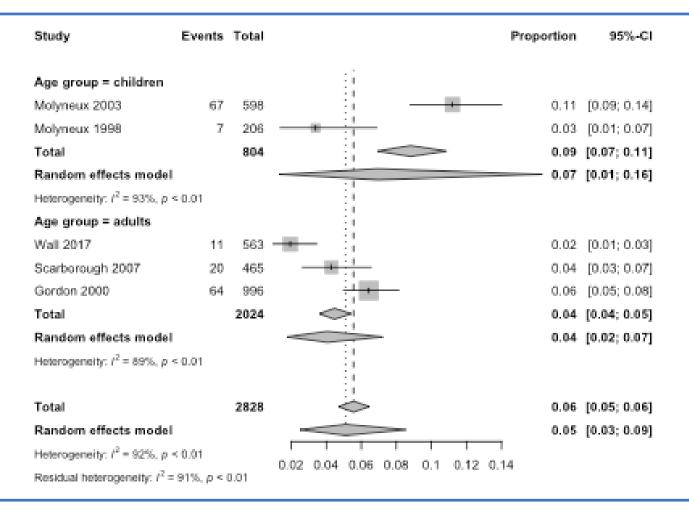
	DENOMINATOR = TOTAL PARTICIPANTS							
PATHOGEN	Participants	Pooled proportion	Lower CI	Upper CI	Adult studies	Child studies	All-age studies	Total studies
Adenovirus	1230	0.03	0.02	0.05	0	1	0	1
CMV	1413	0.01	0	0.02	1	1	0	2
Cryptococcus	8558	0.14	0.1	0.18	4	0	0	4
E. coli	2622	0.01	0	0.02	3	1	0	4
EBV	1413	0.03	0	0.13	1	1	0	2
Enterovirus	1230	0.01	0	0.01	0	1	0	1
Group B strep	598	0.003	0	0.01	0	1	0	1
Haemophilus influenzae	1269	0.13	0	0.41	1	2	0	3
HHV6	1230	0.01	0.01	0.02	0	1	0	1
HHV7	1230	0.0017	0	0.01	0	1	0	1
HSV (1 or 2)	1413	0.01	0	0.01	1	1	0	2
JC/BK combined test	1230	0.0008	0	0.0035	0	1	0	1
M. tb complex	6999	0.06	0.03	0.1	2	0	0	2
Measles	1230	0.001	0	0.0226	0	1	0	1
Mumps	1230	0.02	0.02	0.03	0	1	0	1
Neisseria meningitidis	2828	0.05	0.03	0.09	3	2	0	5
Other Gram negatives	3882	0.01	0.01	0.02	2	2	0	4
Other Gram positives	2059	0.01	0	0.01	2	1	0	3
Parvovirus B19	1230	0.004	0	0.01	0	1	0	1
Plasmodium falciparum	1793	0.07	0.03	0.12	1	1	0	2
Rabies	1230	0.01	0.01	0.02	0	1	0	1
Salmonellae (any)	4088	0.02	0.01	0.04	2	3	0	5
Staph aureus	1461	0.0019	0	0.0064	2	0	0	2
Strep. pneumoniae	3093	0.3	0.14	0.48	4	2	0	6

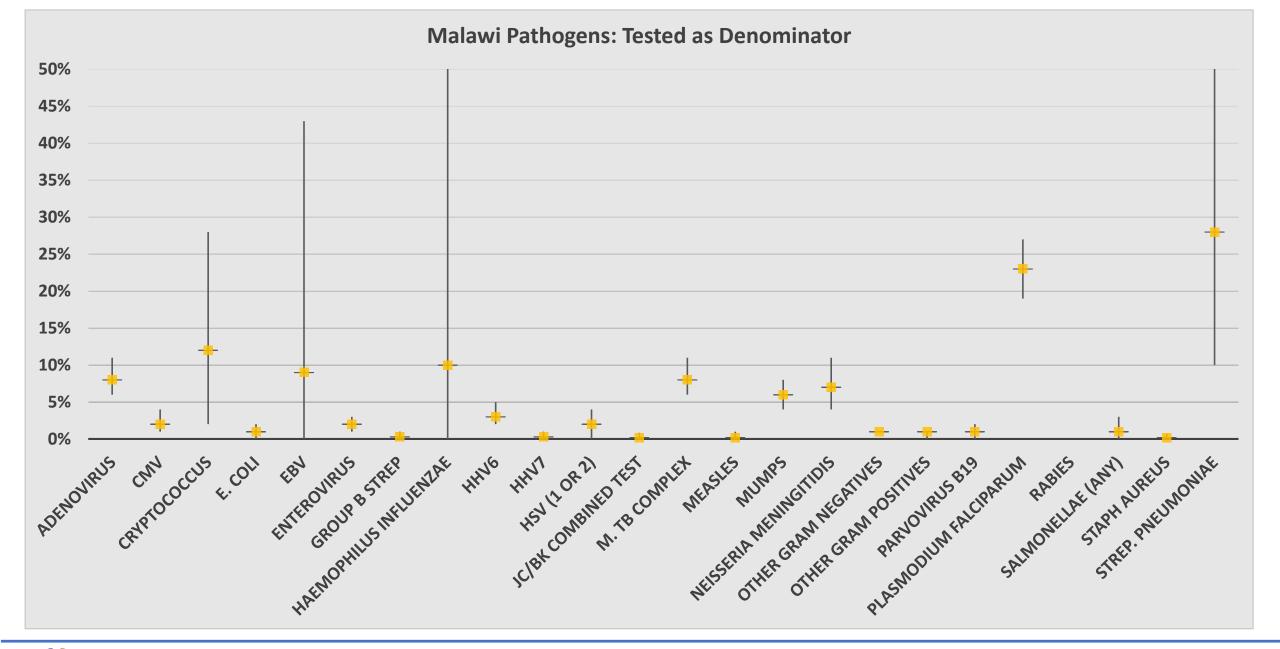

Malawi: S. pneumoniae, of total participants


Malawi: Cryptococcus, of total participants


Malawi: H. influenzae, of total participants


Malawi: M. tuberculosis, of total participants


Malawi: P. falciparum, of total participants



Malawi: N. meningitidis, of total participants

		C	ENOMI	NATOR =	TESTED FOR	PATHOGEN		
PATHOGEN	Participants	Pooled proportion	Lower CI	Upper CI	Adult studies	Child studies	All-age studies	Total studies
Adenovirus	513	0.08	0.06	0.11	0	1	0	1
CMV	566	0.02	0.01	0.04	1	1	0	2
Cryptococcus	724	0.12	0.02	0.28	1	0	1	2
E. coli	2059	0.01	0	0.02	2	1	0	3
EBV	566	0.09	0	0.43	1	1	0	2
Enterovirus	513	0.02	0.01	0.03	0	1	0	1
Group B strep	598	0.003	0	0.01	0	1	0	1
Haemophilus influenzae	1063	0.1	0	0.51	1	1	0	2
HHV6	513	0.03	0.02	0.05	0	1	0	1
HHV7	513	0.003	0	0.01	0	1	0	1
HSV (1 or 2)	566	0.02	0	0.04	1	1	0	2
JC/BK combined test	513	0.0019	0	0.0084	0	1	0	1
M. tb complex	573	0.08	0.06	0.11	1	0	0	1
Measles	513	0.002	0	0.01	0	1	0	1
Mumps	513	0.06	0.04	0.08	0	1	0	1
Neisseria meningitidis	2059	0.07	0.04		2	1	0	3
Other Gram negatives	4033	0.01	0.01	0.01	2	2	1	5
Other Gram positives	2210	0.01	0	0.01	2	1	1	4
Parvovirus B19	513	0.01	0	0.02	0	1	0	1
Plasmodium falciparum	513	0.23	0.19	0.27	0	1	0	1
Rabies								0
Salmonellae (any)	4033	0.01	0	0.03	2	2	1	5
Staph aureus	1461	0.0019	0	0.0064	2	0	0	2
Strep. pneumoniae	2475	0.28	0.1	0.51	3	1	1	5

Comments so far

Heterogeneity:

- Participants
- (India/Brazil) Locations, hospital types
- Statistical

The Team

Malawi:

Sam Moody

Jen Cornick

India:

Chitra Pattabiraman

Divya Mathew

Sharon Jose

Tina Damodar

Priscilla Rupali

V Ravi

Brazil:

Greta Wood

Suzie Lant

Rafael França

Liverpool:

Fiona McGill

Lance Turtle

Mike Griffiths

Tom Solomon

Pathogen Panels

- Specific to country and adult vs child (and <6mo? depends on average age of children seen in each centre)
- Aetiology review should help
- Surveillance data may be even more helpful but struggling to get
- Focus on:
 - Common
 - Treatable
 - Validated test available

Step	Pathogen	Sample	Technique	Common?	Treatable?	Validated test available?
			4	Yes - most common: 30% [14-48] of all participants in meta-		
1	Pneumococcus	CSF	PCR	analysis (6 studies)	Yes	Yes
				Yes: 12% [2-28] of those tested for Cryptococcus in meta-		
	Cryptococcus	CSF/serum	Lateral flow	analysis (2 studies)	Yes	Yes
				Yes: pooled 6% [3-10] of participants in meta-analysis (2 adult	t	
	M. tuberculosis	CSF	PCR	studies)	Yes	Yes
				Yes: pooled 5% [4-8] of adults tested for bacteria in meta-		
	Meningococcus	CSF	PCR	analysis (2 studies)	Yes	Yes
		Blood/serum	PCR/Ag	Yes: 7% [3-12] of 1793 participants in 2 studies; but most		On stored
	Plasmodium falciparum	?	test??	febrile patients have routine malaria testing	Yes	sample??
2	HSV	CSF	PCR	Probably moderate - 2/53 tested in Benjamin 2013	Yes	Yes
				Probably - common in HIC; 2% [1-3] in children (Mallewa		
	Enteroviruses	CSF	PCR	2013)	No	Yes
	E. coli	CSF	PCR	Not rare: 1% [0-2] in 2622 participants (4 studies: 3 adult)	Yes	Yes
				Uncertain for Malawi, but 1-3% of suspected meningitis in		
	Syphilis	CSF/serum	Serology	Marks 2017 syst rev	Yes	Yes
	Salmonellae	CSF	PCR	Not rare: 2% [1-4] of 4088 participants (5 studies: 2 adult)	Yes	Yes
				0/53 PCR-positive in Benjamin 2013, but expected to be		
3	VZV	CSF	PCR	prominent with high HIV prevalence	Yes	Yes
			PCR/serolog	Probably not rare, but not reported in Malawi studies; 25% in	l	Yes but difficult
	Toxoplasma	CSF/serum	У	HIV-infected adults in Ghana (Opintan 2018)	Yes	to interpret
				No Malawi-based studies available, but as seen in India &		Yes but difficult
	Dengue	CSF/serum	Serology	Brazil, could well be present	No	to interpret
				No Malawi-based studies available, but as seen in India &		Yes but difficult
	Chikungunya	CSF/serum	Serology	Brazil, could well be present	No	to interpret
				42/513 children tested in Mallewa 2013; adult commonality		
	Adenovirus	CSF	PCR	plausible	No	Yes
	CMV	CSF	PCR	Yes in HIV	Yes	Yes
4 (IF						

Pathogen Panels

- Specific to country and adult vs child (and <6mo? depends on average age of children seen in each centre)
- Aetiology review should help
- Surveillance data may be even more helpful but struggling to get
- Focus on:
 - Common
 - Treatable
 - Validated test available

Outcomes - 3

- 3.1: Agree on pathogen detection panels Questions:
- 1. Do the pathogen panels for each country accurately reflect the pathogens likely to be encountered in each centre?
- 2. Are the samples and tests correct for each pathogen in terms of yield, accuracy and practicality?
- 3. How much CSF and serum will be needed for each test will 3mL adults/1mL children CSF be enough?
- 4. We haven't yet planned to take serum (only 2.5mL Paxgene and 2.5mL EDTA blood samples). Should we plan to, and if so, how much?

Questions & Discussion...

Methods: Risk of Bias/Quality — EXTRA SLIDE

- JBI Critical Appraisal Checklist for Studies Reporting Prevalence Data (Munn 2014)
- Developed for population-level cross-sectional studies of prevalence of a specific disease
- Piloted by 3 reviewers
- Decided it (and similar) not applicable to hospital-based patients with a variety of microbiological diagnoses
- Methodological quality not so helpful in judging confidence in estimates provided in studies
- Risk of bias
- Bespoke as other studies have done

Questions

- 1. Which pathogens are responsible for acute brain infections in Brazil, India and Malawi, with particular focus on meningitis, encephalitis and brain abscess?
- 2. Which tests and testing strategies have been used to determine brain infection aetiologies in Brazil, India and Malawi?

