
Characterizing Structural Regularities of Labeled Data
in Overparameterized Models

Ziheng Jiang * 1 2 3 Chiyuan Zhang * 4 Kunal Talwar 4 5 Michael C. Mozer 4 6

Abstract
Humans are accustomed to environments that con-
tain both regularities and exceptions. For example,
at most gas stations, one pays prior to pumping,
but the occasional rural station does not accept
payment in advance. Likewise, deep neural net-
works can generalize across instances that share
common patterns or structures, yet have the ca-
pacity to memorize rare or irregular forms. We
analyze how individual instances are treated by
a model via a consistency score. The score char-
acterizes the expected accuracy for a held-out in-
stance given training sets of varying size sampled
from the data distribution. We obtain empirical
estimates of this score for individual instances in
multiple data sets, and we show that the score
identifies out-of-distribution and mislabeled ex-
amples at one end of the continuum and strongly
regular examples at the other end. We identify
computationally inexpensive proxies to the con-
sistency score using statistics collected during
training. We show examples of potential applica-
tions to the analysis of deep-learning systems.

1. Introduction
Human learning requires both inferring regular patterns
that generalize across many distinct examples and mem-
orizing irregular examples. The boundary between reg-
ular and irregular examples can be fuzzy. For example,
in learning the past tense form of English verbs, there
are some verbs whose past tenses must simply be mem-
orized (GO→WENT, EAT→ATE, HIT→HIT) and there are
many regular verbs that obey the rule of appending “ed”

*Equal contribution 1Paul G. Allen School of Computer Sci-
ence, University of Washington, Seattle, WA, USA. 2OctoML.ai,
Seattle, WA, USA. 3Work done while interning at Google. 4Google
Research, Brain Team, Mountain View, CA, USA. 5Presently at
Apple Inc., Cupertino, CA, USA. 6Department of Computer Sci-
ence, University of Colorado Boulder, Boulder, CO, USA.. Corre-
spondence to: Chiyuan Zhang <chiyuan@google.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

(KISS→KISSED, KICK→KICKED, BREW→BREWED, etc.).
Generalization to a novel word typically follows the “ed”
rule, for example, BINK→BINKED. Intermediate between
the exception verbs and regular verbs are subregularities—a
set of exception verbs that have consistent structure (e.g., the
mapping of SING→SANG, RING→RANG). Note that rule-
governed and exception cases can have very similar forms,
which increases the difficulty of learning each. Consider
one-syllable verbs containing ‘ee’, which include the regu-
lar cases NEED→NEEDED as well as exception cases like
SEEK→SOUGHT. Generalization from the rule-governed
cases can hamper the learning of the exception cases and
vice-versa. For instance, children in an environment where
English is spoken over-regularize by mapping GO→GOED
early in the course of language learning. Neural nets show
the same interesting pattern for verbs over the course of
training (Rumelhart & McClelland, 1986).

Intuitively, memorizing irregular examples is tantamount to
building a look-up table with the individual facts accessi-
ble for retrieval. Generalization requires the inference of
statistical regularities in the training environment, and the
application of procedures or rules for exploiting the regular-
ities. In deep learning, memorization is often considered a
failure of a network because memorization implies no gen-
eralization. However, mastering a domain involves knowing
when to generalize and when not to generalize, because the
data manifolds are rarely unimodal.

Consider the two-class problem of chair vs non-chair with
training examples illustrated in Figure 1a. The iron throne
(lower left) forms a sparsely populated mode (sparse mode
for short) as there may not exist many similar cases in the
data environment. Generic chairs (lower right) lie in a re-
gion with a consistent labeling (a densely populated mode,
or dense mode) and thus seems to follow a strong regularity.
But there are many other cases in the continuum of the two
extreme. For example, the rocking chair (upper right) has a
few supporting neighbors but it lies in a distinct neighbor-
hood from the majority of same-label instances (the generic
chairs).

In this article, we formalize this continuum of the structural
regularities of data sets in the context of training overparam-
eterized deep networks. Let D n∼ P be an i.i.d. sample of

ar
X

iv
:2

00
2.

03
20

6v
3

 [
cs

.L
G

]
 1

5
Ju

n
20

21

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

h
ig

h
 C

-s
co

re
lo

w
 C

-s
co

re

(c)

(a)

<latexit sha1_base64="L9jyAUH+ptZbm+ghKuzYbWY8Tp8=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mkUC9C0YvHitYW2lA220m7dLMJuxuhhP4ELx4UxKt/yJv/xm2bg7Y+GHi8N8PMvCARXBvX/XYKa+sbm1vF7dLO7t7+Qfnw6FHHqWLYYrGIVSegGgWX2DLcCOwkCmkUCGwH45uZ335CpXksH8wkQT+iQ8lDzqix0r28cvvlilt15yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW0L6perep5d7VK4zrPowgncArn4EEdGnALTWgBgyE8wyu8OcJ5cd6dj0VrwclnjuEPnM8fXbyNrA==</latexit>

n = 0
<latexit sha1_base64="i2CQxyev9XWwtw2WwuUUB8eUX4k=">AAAB/HicbVBNS8NAEN3Ur1q/Yj16WSyCp5JIQY9FLx4rWFtoQtlsN+3SzW7Ynaih9K948aAgXv0h3vw3btsctPXBwOO9GWbmRangBjzv2ymtrW9sbpW3Kzu7e/sH7mH13qhMU9amSijdjYhhgkvWBg6CdVPNSBIJ1onG1zO/88C04UreQZ6yMCFDyWNOCVip71ZloPlwBERr9RhwGUPed2te3ZsDrxK/IDVUoNV3v4KBolnCJFBBjOn5XgrhhGjgVLBpJcgMSwkdkyHrWSpJwkw4md8+xadWGeBYaVsS8Fz9PTEhiTF5EtnOhMDILHsz8T+vl0F8GU64TDNgki4WxZnAoPAsCDzgmlEQuSWEam5vxXRENKFg46rYEPzll1dJ57zuN+q+f9uoNa+KPMroGJ2gM+SjC9REN6iF2oiiJ/SMXtGbM3VenHfnY9FacoqZI/QHzucPfoCVMQ==</latexit>

n → ∞

<latexit sha1_base64="BActhGOcOU/aPx6f7OgKO6z/6Vo=">AAAB+3icbVBNS8NAFHypX7V+pXr0slgED1ISKeix2IvHCtYW2hA22027dLMJuxulxPwULx4UxKt/xJv/xk3bg7YOLAwz7/FmJ0g4U9pxvq3S2vrG5lZ5u7Kzu7d/YFcP71WcSkI7JOax7AVYUc4E7WimOe0lkuIo4LQbTFqF332gUrFY3OlpQr0IjwQLGcHaSL5dbfnZIMJ6TDDP2vm5yH275tSdGdAqcRekBgu0fftrMIxJGlGhCcdK9V0n0V6GpWaE07wySBVNMJngEe0bKnBElZfNoufo1ChDFMbSPKHRTP29keFIqWkUmMkipVr2CvE/r5/q8MrLmEhSTQWZHwpTjnSMih7QkElKNJ8agolkJisiYywx0aatiinBXf7yKule1N1G3XVvG7Xm9aKPMhzDCZyBC5fQhBtoQwcIPMIzvMKb9WS9WO/Wx3y0ZC12juAPrM8f70qUQA==</latexit>

CP,n
regular example

continuum of
sub-regular
examples

irregular example
(b)

Figure 1. Regularities and exceptions in a binary chairs vs non-chairs problem. (b) illustration of consistency profiles. (c) Regularities
(high C-scores) and exceptions (low C-scores) in ImageNet.

size n from the underlying data distribution P , and f(· ;D)
be a model trained on D. For an instance x with label y, we
trace out the following consistency profile by increasing n:

CP,n(x, y) = E
D

n∼P [P(f(x;D\{(x, y)}) = y], (1)

Note by taking expectation over (x, y), this measures the
generalization performance with respect to the underlying
distribution P . In contrast to the average behavior, we focus
on the per-instance generalization here, as it helps to reveal
the internal regularity structures of the data distribution.
This article focuses on multi-class classification problems,
but the definition can be easily extended to other problems
by replacing the 0-1 classification loss with another suitable
loss function.

CP,n(x, y) also encodes our high-level intuition about the
structural regularities of the training data during (human
or machine) learning. In particular, we can characterize
the multimodal structure of an underlying data distribution
by grouping examples in terms of a model’s generalization
profile for those examples. An (x, y) with high per-instance
generalization lies in a region on the data manifold that is
well supported by other regular instances.

For n = 0, the model makes predictions entirely based on
its prior belief. As n increases, the model collects more
information about P and makes better predictions. For an
(x, y) instance belonging to a dense mode (e.g., the generic
chairs in Figure 1a), the model prediction is accurate even
for small n because even small samples have many class-
consistent neighbors. The blue curve in the cartoon sketch
of Figure 1b illustrates this profile. For instances belonging
to sparse modes (e.g., the iron throne in Figure 1a), the
prediction will be inaccurate for even large n, as the red
curve illustrates. Most instances fill the continuum between

these two extreme cases, as illustrated by the purple curves
in Figure 1b. To obtain a total ordering for all examples, we
pool the consistency profile into a scalar consistency score,
or C-score by taking expectation over n. Figure 1c shows
examples from the ImageNet data set ranked by estimated
C-scores, using a methodology we shortly describe. The im-
ages show that on many ImageNet classes, there exist dense
modes of center-cropped, close-up shot of the representative
examples; and at the other end of the C-score ranking, there
exist sparse modes of highly ambiguous examples (in many
cases, the object is barely seen or can only be inferred from
the context in the picture).

With strong ties to both theoretical notions of generalization
and human intuition, the consistency profile is an important
tool for understanding the regularity and subregularity struc-
tures of training data sets and the learning dynamics of mod-
els trained on those data. The C-score based ranking also has
many potential uses, such as detecting out-of-distribution
and mislabeled instances; balancing learning between dense
and sparse modes to ensure fairness when learning with
data from underrepresented groups; or even as a diagnostic
used to determine training priority in a curriculum learning
setting (Bengio et al., 2009; Saxena et al., 2019). In this
article, we focus on formulating and analyzing consistency
profiles, and apply the C-score to analyzing the structure
of real world image data sets and the learning dynamics of
different optimizers. We also study efficient proxies and
further applications to outlier detection.

Our key contributions are as follows:

• We formulate and analyze a consistency score that takes
inspiration from generalization theory and show that it
matches our intuitions about statistical regularities in
natural-image data sets.

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

• We estimate the C-scores with a series of approximations
and apply the measure to analyze the structural regularities
of the MNIST, CIFAR-10, CIFAR-100, and ImageNet
training sets.

• We evaluate computationally efficient proxies for the C-
score. We demonstrate that proxies based on distances
between instances of the same class in latent space, while
intuitively sensible, are in practice quite sensitive to the
underlying distance metric. In contrast, learning-speed
based proxies correlate very well with the C-score. This
observation is non-trivial because learning speed is mea-
sured on training examples and the C-score is defined for
hold-out generalization.

• We demonstrate potential application of the C-score as a
tool for quantitative analysis of data sets, learning dynam-
ics, and diagnosing and improving deep learning.

• To facilitate future research, we have released the pre-
computed C-scores at the project website. Model check-
points, code, and extra visualizations are available too.

2. Related Work
Analyzing the structure of data sets has been a central topic
for many fields like Statistics, Data Mining and Unsuper-
vised Learning. In this paper, we focus on supervised learn-
ing and the interplay between the regularity structure of data
and overparameterized neural network learners. This dif-
ferentiates our work from classical analyses based on input
or (unsupervised) latent representations. The distinction is
especially prominent in deep learning where a supervised
learner jointly learns the classifier and the representation
that captures the semantic information in the labels.

In the context of deep supervised learning, Carlini et al.
(2018) proposed measures for identifying prototypical ex-
amples which could serve as a proxy for the complete data
set and still achieve good performance. These examples are
not necessarily the center of a dense neighborhood, which
is what our high C-score measures. Two prototype mea-
sures explored in Carlini et al. (2018), model confidence and
the learning speed, are also measures we examine. Their
holdout retraining and ensemble agreement metrics are con-
ceptually similar to our C-score estimation algorithm. How-
ever, their retraining is a two-stage procedure involving pre-
training and fine-tuning; their ensemble agreement mixes
architectures with heterogeneous capacities and ignores la-
bels. Feldman (2020) and Feldman & Zhang (2020) studied
the positive effects of memorization on generalization by
measuring the influence of a training example on a test
example, and identifying pairs with strong influences. To
quantify memorization, they defined a memorization score
for each (x, y) in a training set as the drop in prediction
accuracy on x when (x, y) is removed. A point evaluation
of our consistency profile on a fixed data size n resembles

MNIST Cifar10 Cifar100

<latexit sha1_base64="iAY8lb/r7VsOkv0toTq+Vh7i4zU=">AAACC3icbZDLSsNAFIYn9VbrLerSTWgRKpSSiKLLYl24rGAv0IQwmU7boZNJmJmIIWTvxldx40IRt76AO9/GSZqFtv4w8PGfc5hzfi+kREjT/NZKK6tr6xvlzcrW9s7unr5/0BNBxBHuooAGfOBBgSlhuCuJpHgQcgx9j+K+N2tn9f495oIE7E7GIXZ8OGFkTBCUynL1qj2FMmmnbpKD7UM5RZAm12naYGn9oRGfuHrNbJq5jGWwCqiBQh1X/7JHAYp8zCSiUIihZYbSSSCXBFGcVuxI4BCiGZzgoUIGfSycJL8lNY6VMzLGAVePSSN3f08k0Bci9j3Vme0qFmuZ+V9tGMnxpZMQFkYSMzT/aBxRQwZGFowxIhwjSWMFEHGidjXQFHKIpIqvokKwFk9eht5p0zpvmrdntdZVEUcZHIEqqAMLXIAWuAEd0AUIPIJn8AretCftRXvXPuatJa2YOQR/pH3+AFtJmzk=</latexit> Ĉ
D̂

,n
(x

,y
)

Figure 2. Consistency profiles of training examples. Each curve in
the figure corresponds to the average profile of a set of examples,
partitioned according to the area under the profile curve of each
example.

the second term of their score. Our empirical C-score es-
timation is based on the estimator proposed in Feldman &
Zhang (2020). A key difference is that we are interested
in the profile with increasing n, i.e. the sample complexity
required to correctly predict (x, y).

We evaluate various cheap-to-compute proxies for the C-
score and found that the learning speed has a strong correla-
tion with the C-score. Learning speed has been previously
studied in contexts quite different from our focus on gen-
eralization of individual examples. Mangalam & Prabhu
(2019) show that examples learned first are those that could
be learned by shallower nets. Hardt et al. (2016) present the-
oretical results showing that the generalization gap is small
if SGD training completes in relatively few steps. Toneva
et al. (2019) study forgetting (the complement of learning
speed) and informally relate forgetting to examples being
outliers or mislabeled. There is a large literature of criteria
with no explicit ties to generalization as the C-score has,
but provides a means of stratifying instances. For exam-
ple, Wu et al. (2018) measure the difficulty of an example
by the number of residual blocks in a ResNet needed for
prediction.

3. The Consistency Profile and the C-score
The consistency profile (Equation 1) encodes the structural
consistency of an example with the underlying data distri-
bution P via expected performance of models trained with
increasingly large data sets sampled from P . However, it
is not possible to directly compute this profile because P is
generally unknown for typical learning problems. In prac-
tice, we usually have a fixed data set D̂ consisting of N i.i.d.
samples from P . So we can estimate the consistency profile
with the following empirical consistency profile:

ĈD̂,n(x, y) = Êr

D
n∼D̂ [P(f(x;D\{(x, y)}) = y)] , (2)

where n = 0, 1, . . . , N − 1, D is a subset of size n uni-
formly sampled from D̂ excluding (x, y), and Êr denotes
empirical averaging with r i.i.d. samples of such subsets.
To obtain a reasonably accurate estimate (say, r = 1000),
calculating the empirical consistency profile is still compu-
tationally prohibitive. For example, with each of the 50,000

https://pluskid.github.io/structural-regularity/

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

top ranked examples in CIFAR-10

top examples in CIFAR-100

mislabeled ambiguous atypical form

M
N

IS
T

C
IF

A
R

-1
0

C
IF

A
R

-1
00

(a) (b)

bottom ranked examples with annotations

Figure 3. (a) Top ranked examples in CIFAR-10 and CIFAR-100. (b) Bottom ranked examples with annotations.

training example in the CIFAR-10 training set, we need to
train more than 2 trillion models. To obtain an estimate
within the capability of current computation resources, we
make two observations. First, model performance is gener-
ally stable when the training set size varies within a small
range. Therefore, we can sample across the range of n that
we’re concerned with and obtain the full profile via smooth
interpolation. Second, let D be a random subset of training
data, then the single model f(· ;D) can be reused in the es-
timation of all of the held-out examples (x, y) ∈ D̂\D. As
a result, with clever grouping and reuse, the number of mod-
els we need to train can be greatly reduced (See Algorithm 1
in the Appendix).

In particular, we sample n dynamically according to the sub-
set ratio s ∈ {10%, . . . , 90%} of the full available training
set. We sample 2,000 subsets for the empirical expectation
of each n and visualize the estimated consistency profiles
for clusters of similar examples in Figure 2. One interest-
ing observation is that while CIFAR-100 is generally more
difficult than CIFAR-10, the top ranked examples (magenta
lines) in CIFAR-100 are more likely to be classified cor-
rectly when the subset ratio is low. Figure 3a visualizes the
top ranked examples from the two data sets. Note that in
CIFAR-10, the dense modes from the truck and automobile
classes are quite similar.

In contrast, Figure 2 indicates that the bottom-ranked exam-
ples (cyan lines) have persistently low probability of cor-
rect classification—sometimes below chance—even with a
90% subset ratio. We visualize some bottom-ranked exam-

ples and annotate them as (possibly) mislabeled, ambiguous
(easily confused with another class or hard to identify the
contents), and atypical form (e.g., burning “forest”, fallen
“bottle”). As the subset ratio grows, regularities in the data
distribution systematically pull the ambiguous instances in
the wrong direction. This behavior is analogous to the phe-
nomenon we mentioned earlier that children over-regularize
verbs (GO→GOED) as they gain more linguistic exposure.

To get a total ordering of the examples in a data set, we distill
the consistency profiles into a scalar consistency score, or
C-score, by taking the expectation over n:

ĈD̂(x, y) = En[ĈD̂,n(x, y)] (3)

For the case where n is sampled according to the subset
ratio s, the expectation is taken over a uniform distribution
over sampled subset sizes.

4. The Structural Regularities of Common
Image Data Sets

We apply the C-score estimate to analyze several common
image data sets: MNIST (LeCun et al., 1998), CIFAR-
10 / CIFAR-100 (Krizhevsky, 2009), and ImageNet (Rus-
sakovsky et al., 2015). See the supplementary materials for
details on architectures and hyperparameters.

Figure 4a shows the distribution of ĈD̂,n on CIFAR-10
for the values of n corresponding to each subset ratio
s ∈ {10, ..., 90}. For each s, 2000 models are trained and
held-out examples are evaluated. The Figure suggests that

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

<latexit sha1_base64="iAY8lb/r7VsOkv0toTq+Vh7i4zU=">AAACC3icbZDLSsNAFIYn9VbrLerSTWgRKpSSiKLLYl24rGAv0IQwmU7boZNJmJmIIWTvxldx40IRt76AO9/GSZqFtv4w8PGfc5hzfi+kREjT/NZKK6tr6xvlzcrW9s7unr5/0BNBxBHuooAGfOBBgSlhuCuJpHgQcgx9j+K+N2tn9f495oIE7E7GIXZ8OGFkTBCUynL1qj2FMmmnbpKD7UM5RZAm12naYGn9oRGfuHrNbJq5jGWwCqiBQh1X/7JHAYp8zCSiUIihZYbSSSCXBFGcVuxI4BCiGZzgoUIGfSycJL8lNY6VMzLGAVePSSN3f08k0Bci9j3Vme0qFmuZ+V9tGMnxpZMQFkYSMzT/aBxRQwZGFowxIhwjSWMFEHGidjXQFHKIpIqvokKwFk9eht5p0zpvmrdntdZVEUcZHIEqqAMLXIAWuAEd0AUIPIJn8AretCftRXvXPuatJa2YOQR/pH3+AFtJmzk=</latexit>

ĈD̂,n(x, y)

MNIST CIFAR-10 CIFAR-100

(a) (b) <latexit sha1_base64="JiNjHYR4dbOQ6nV8w/V6Z9F1Fnk=">AAACCXicbZDLSsNAFIYn9VbrLerSzWARKkhJRNFlsS5cVrAXaEKYTCft0MmFmYkYQrZufBU3LhRx6xu4822cpFlo6w8DH/85hznndyNGhTSMb62ytLyyulZdr21sbm3v6Lt7PRHGHJMuDlnIBy4ShNGAdCWVjAwiTpDvMtJ3p+283r8nXNAwuJNJRGwfjQPqUYykshwdWhMk03bmpAVYPpITjFh6nWVZ4+EkOXb0utE0CsFFMEuog1IdR/+yRiGOfRJIzJAQQ9OIpJ0iLilmJKtZsSARwlM0JkOFAfKJsNPikgweKWcEvZCrF0hYuL8nUuQLkfiu6sw3FfO13PyvNoyld2mnNIhiSQI8+8iLGZQhzGOBI8oJlixRgDCnaleIJ4gjLFV4NRWCOX/yIvROm+Z507g9q7euyjiq4AAcggYwwQVogRvQAV2AwSN4Bq/gTXvSXrR37WPWWtHKmX3wR9rnDw4kmos=</latexit>

ĈD̂(x, y)
<latexit sha1_base64="JiNjHYR4dbOQ6nV8w/V6Z9F1Fnk=">AAACCXicbZDLSsNAFIYn9VbrLerSzWARKkhJRNFlsS5cVrAXaEKYTCft0MmFmYkYQrZufBU3LhRx6xu4822cpFlo6w8DH/85hznndyNGhTSMb62ytLyyulZdr21sbm3v6Lt7PRHGHJMuDlnIBy4ShNGAdCWVjAwiTpDvMtJ3p+283r8nXNAwuJNJRGwfjQPqUYykshwdWhMk03bmpAVYPpITjFh6nWVZ4+EkOXb0utE0CsFFMEuog1IdR/+yRiGOfRJIzJAQQ9OIpJ0iLilmJKtZsSARwlM0JkOFAfKJsNPikgweKWcEvZCrF0hYuL8nUuQLkfiu6sw3FfO13PyvNoyld2mnNIhiSQI8+8iLGZQhzGOBI8oJlixRgDCnaleIJ4gjLFV4NRWCOX/yIvROm+Z507g9q7euyjiq4AAcggYwwQVogRvQAV2AwSN4Bq/gTXvSXrR37WPWWtHKmX3wR9rnDw4kmos=</latexit>

ĈD̂(x, y)
<latexit sha1_base64="JiNjHYR4dbOQ6nV8w/V6Z9F1Fnk=">AAACCXicbZDLSsNAFIYn9VbrLerSzWARKkhJRNFlsS5cVrAXaEKYTCft0MmFmYkYQrZufBU3LhRx6xu4822cpFlo6w8DH/85hznndyNGhTSMb62ytLyyulZdr21sbm3v6Lt7PRHGHJMuDlnIBy4ShNGAdCWVjAwiTpDvMtJ3p+283r8nXNAwuJNJRGwfjQPqUYykshwdWhMk03bmpAVYPpITjFh6nWVZ4+EkOXb0utE0CsFFMEuog1IdR/+yRiGOfRJIzJAQQ9OIpJ0iLilmJKtZsSARwlM0JkOFAfKJsNPikgweKWcEvZCrF0hYuL8nUuQLkfiu6sw3FfO13PyvNoyld2mnNIhiSQI8+8iLGZQhzGOBI8oJlixRgDCnaleIJ4gjLFV4NRWCOX/yIvROm+Z507g9q7euyjiq4AAcggYwwQVogRvQAV2AwSN4Bq/gTXvSXrR37WPWWtHKmX3wR9rnDw4kmos=</latexit>

ĈD̂(x, y)

CIFAR-10

Figure 4. (a) Histogram of ĈD̂,n for each subset ratio on CIFAR-10. (b) Histogram of the C-score ĈD̂ averaged over all subset ratios on 3
different data sets.

depending on s, instances may be concentrated near floor
or ceiling, making them difficult to distinguish (as we elab-
orate further shortly). By taking an expectation over s, the
C-score is less susceptible to floor and ceiling effects. Fig-
ure 4b shows the histogram of this integrated C-score on
MNINT, CIFAR-10, and CIFAR-100. The histogram of
CIFAR-10 in Figure 4b is distributed toward the high end,
but is more uniformly spread than the histograms for specific
subset ratios in Figure 4a.

Visualization of examples ranked by the estimated score can
be found in Figure 3. Detailed per-class rankings can be
found in the supplementary material.

Next we apply the C-score analysis to the ImageNet data
set. Training a standard model on ImageNet costs one to
two orders of magnitude more computing resources than
training on CIFAR, preventing us from running the C-score
estimation procedure described early. Instead, we investi-
gated the feasibility of approximating the C-score with a
point estimate, i.e., selection of the s that best represents the
integral score. This is equivalent to taking expectation of s
with respect to a point-mass distribution, as opposed to the
uniform distribution over subset ratios. By ‘best represents,’
we mean that the ranking of instances by the score matches
the ranking by the score for a particular s.

Figure 5a shows the rank correlation between the integral
score and the score for a given s, as a function of s for our
three smaller data sets, MNIST, CIFAR-10, and CIFAR-100.
Examining the green CIFAR-10 curve, there is a peak at
s = 30, indicating that s = 30 yields the best point-estimate
approximation for the integral C-score. That the peak is at
an intermediate s is consistent with the observation from
Figure 2 that the C-score bunches together instances for low
and high s. For MNIST (blue curve), a less challenging
data set than CIFAR-10, the peak is lower, at s = 10; for
CIFAR-100 (orange curve), a more challenging data set than
CIFAR-10, the peak is higher, at s = 40 or s = 50. Thus,
the peak appears to shift to larger s for more challenging
data sets. This finding is not surprising: more challenging
data sets require a greater diversity of training instances in
order to observe generalization.

(a)
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Per-class C-scores means

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Pe
r-c

la
ss

 C
-s

co
re

 st
ds

projectile

yellow lady's slipper

upright

car wheel

school bus

(b)

Figure 5. (a) Rank correlation between integral C-score and the
C-score for a particular subset ratio, s. The peak of each curve
indicates the training set size that best reveals generalization of
the model. (b) Joint distribution of C-score per-class means and
standard deviations on ImageNet. Samples from representative
classes (?’s) are shown in Figure 6.

Based on these observations, we picked s = 70 for a point
estimate on ImageNet. In particular, we train 2,000 ResNet-
50 models each with a random 70% subset of the ImageNet
training set, and estimate the C-score based on those models.

The examples shown in Figure 1c are ranked according to
this C-score estimate. Because ImageNet has 1,000 classes,
we cannot offer a simple overview over the entire data set as
in MNIST and CIFAR. Instead, we focus on analyzing the
behaviors of individual classes. Specifically, we compute
the mean and standard deviation (SD) of the C-scores of
all the examples in a particular class. The mean C-scores
indicates the relative difficulty of classes, and the SD in-
dicates the diversity of examples within each class. The
two-dimensional histogram in Figure 5a depicts the joint
distribution of mean and SD across all classes. We selected
several classes with various combinations of mean and SD,
indicated by the ?’s in Figure 5a. We then selected sample
images from the top 99%, 35% and 1% percentile ranked by
the C-score within each class, and show them in Figure 6.

Projectile and yellow lady’s slipper represent two extreme
cases of diverse and unified classes, respectively. Most other
classes lie in the high density region of the 2D histogram

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

in Figure 5b, and share a common pattern of a densely
populated mode of highly regular examples and a tail of
rare, ambiguous examples. The tail becomes smaller from
the class car wheel to upright and school bus.

5. C-score Proxies
We are able to reduce the cost of estimating C-scores from
infeasible to feasible, but the procedure is still very expen-
sive. Ideally, we would like to have more efficient proxies
that do not require training multiple models. We use the
term proxy to refer to any quantity that is well correlated
with the C-score but does not have a direct mathematical
relation to it, as contrasted with approximations that are
designed to mathematically approximate the C-score (e.g.,
approximating the expectation with empirical averaging).
The possible candidate set for C-score proxies is very large,
as any measure that reflects information about difficulty or
regularity of examples could be considered. Our Related
Work section mentions a few such possibilities. In this paper,
we primarily study two variants: pairwise distance based
proxies and learning speed based proxies.

5.1. Pairwise Distance Based Proxies

Pairwise distance matches our intuition about consistency
very well. In fact, our motivating example in Figure 1a is
illustrated in this way. Intuitively, an example is consistent
with the data distribution if it lies near other examples hav-
ing the same label. However, if the example lies far from
instances in the same class or lies near instances of different
classes, one might not expect it to generalize. Based on this
intuition, we define a relative local-density score:

Ĉ±L(x, y) = 1/N
∑N

i=1
2(1[y = yi]− 1

2)K(xi, x), (4)

Table 1. Rank correlation between C-score and pairwise distance
based proxies on inputs. Measured with Spearman’s ρ and
Kendall’s τ rank correlations, respectively.

Ĉ ĈL Ĉ±L Ĉ LOF

ρ
CIFAR-10 −0.064 −0.009 0.083 0.103

CIFAR-100 −0.098 0.117 0.105 0.151

τ
CIFAR-10 −0.042 −0.006 0.055 0.070

CIFAR-100 −0.066 0.078 0.070 0.101

where K(x, x′) = exp(−‖x− x′‖2/h2) is an RBF kernel
with the bandwidth h, and 1[·] is the indicator function.
To evaluate the importance of explicit label information,
we study two related scores: ĈL that uses only same-class
examples when estimating the local density, and Ĉ that uses
all the neighbor examples by ignoring the labels.

ĈL(x, y) = 1/N
∑N

i=1
1[y = yi]K(xi, x), (5)

Ĉ(x) = 1/N
∑N

i=1
K(xi, x). (6)

We also study a proxy based on the local outlier factor (LOF)
algorithm (Breunig et al., 2000), which measures the local
deviation of each point with respect to its neighbours. Since
large LOF scores indicate outliers, we use the negative LOF
score as a C-score proxy, denoted by Ĉ LOF(x).

Table 1 shows the agreement between the proxy scores and
the estimated C-score. Agreement is quantified by two
rank correlation measures on three data sets. Ĉ LOF performs
slightly better than the other proxies, but none of the proxies
has high enough correlation to be useful, because it is very
hard to obtain semantically meaningful distance estimations
from the raw pixels.

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

200
projectile

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

500 car wheel

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

500
upright

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

1000 school bus

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

1000 yellow lady's slipper

Figure 6. Example images from ImageNet. The 5 classes are chosen to have representative per-class C-score mean–standard-deviation
profiles, as shown in Figure 5a. For each class, the three columns show sampled images from the (C-score ranked) top 99%, 35%, and 1%
percentiles, respectively. The bottom pane shows the histograms of the C-scores in each of the 5 classes.

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

0 20 40 60 80
Epoch

0.6

0.4

0.2

0.0

0.2

0.4

0.6

a) CIFAR-10

Ĉ

ĈL

Ĉ±L

ĈLOF

<latexit sha1_base64="LNewJ4HcsTdh0OcoQH4lrCpSONc=">AAACSXicbZBLSwMxFIUz9V1fVZdugkVxVWZEUHeiIC4KVrAqdGrNZG7bYCYzJHfEMszfc+POnf/BjQtFXJk+EF8XAl/OuTePEyRSGHTdJ6cwNj4xOTU9U5ydm19YLC0tn5s41RzqPJaxvgyYASkU1FGghMtEA4sCCRfBzWHfv7gFbUSszrCXQDNiHSXagjO0Uqt07QfQESpjUnQUhHlxw+8yzA5z3//Cq+r3TeYnEa3mPyWEO8yqJ0d5X/dBhV8Htkplt+IOiv4FbwRlMqpaq/TohzFPI1DIJTOm4bkJNjOmUXAJedFPDSSM37AONCwqFoFpZoMkcrpulZC2Y22XQjpQv09kLDKmFwW2M2LYNb+9vvif10ixvdvMhEpSBMWHF7VTSTGm/VhpKDRwlD0LjGth30p5l2nG0YZftCF4v7/8F863Kt52Ze90u7x/MIpjmqySNbJJPLJD9skxqZE64eSePJNX8uY8OC/Ou/MxbC04o5kV8qMKY5/SPbLz</latexit>

b) CIFAR-100
0 100 200

Training epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

accuracy
p_L
p_max
entropy
forgetting

c)

Figure 7. (a-b) Spearman rank correlation between C-score and
distance based proxies using learned hidden representations. (c)
Spearman rank correlation between C-score and learning speed
based proxies on CIFAR-10.

We further evaluate the proxies using the penultimate layer
of the network as a representation of an image: Ĉ±Lh , ĈL

h ,
Ĉh and Ĉ LOF

h , with the subscript h indicating distance in
hidden space. In particular, we train neural network models
with the same specification on the full training set. We plot
the correlation between the C-score and the proxy based on
the learned representation at each epoch as a function of
training epoch in Figure 7a,b. For both data sets, the proxy
score that correlates best with the C-score is Ĉ±Lh (grey),
followed by Ĉ LOF

h (brown), then ĈL
h (pink) and Ĉh (blue).

Clearly, appropriate use of labels helps with the ranking.

The results reveal interesting properties of the hidden rep-
resentation. One might be concerned that as training pro-
gresses, the representations will optimize toward the classi-
fication loss and may discard inter-class relationships that
could be potentially useful for other downstream tasks (Scott
et al., 2018). However, our results suggest that Ĉ±Lh does
not diminish as a predictor of the C-score, even long after
training converges. Thus, at least some information concern-
ing the relation between different examples is retained in the
representation, even though intra- and inter-class similarity
is not very relevant for a classification model. To the extent
that the hidden representation—crafted through a discrimi-
native loss—preserves class structure, one might expect that
the C-score could be predicted without label reweighting;
however, the poor performance of Ĉh suggests otherwise.

Figure 8 visualizes examples ranked by the class weighted
local density scores in the input and learned hidden space,
respectively, in comparison with examples ranked by the
C-score. The ranking calculated in the input space relies
heavily on low level features that can be derived directly
from the pixels like strong silhouette. The rankings calcu-
lated from the learned hidden space correlate better with
C-score, though the visualizations show that they could not
faithfully detect the dense cluster of highly uniform exam-
ples with high C-scores.

In summary, while pairwise distance based proxies are very
intuitive to formulate, in practice, the rankings are very
sensitive to the underlying distance metrics.

Figure 8. (Left pane) The 3 blocks show examples from CIFAR-10
“automobile” ranked by Ĉ±L, Ĉ±L

h and the C-score, respectively.
The three columns in each block shows the top, middle and mid-
dle ranked examples, respectively. (Right pane) Examples from
CIFAR-100 “bear” shown in the same layout.

5.2. Learning Speed Based Proxies

Inspired by our observations in the previous section that the
speed-of-learning tends to correlate with the C-score rank-
ings, we instead focus on a class of learning-speed based
proxies that have the added bonus of being trivial to com-
pute. Intuitively, a training example that is consistent with
many others should be learned quickly because the gradient
steps for all consistent examples should be well aligned.
One might therefore conjecture that strong regularities in a
data set are not only better learned at asymptote—leading
to better generalization performance—but are also learned
sooner in the time course of training. This learning speed
hypothesis is nontrivial, because the C-score is defined for
a held-out instance following training, whereas learning
speed is defined for a training instance during training. This
hypothesis is qualitatively verified from Figure 10. In par-
ticular, the cyan examples having the lowest C-scores are
learned most slowly and the purple examples having the
highest C-scores are learned most quickly. Indeed, learning
speed is monotonically related to C-score bin.

Figure 7c shows a quantitative evaluation, where we com-
pute the Spearman’s rank correlation between the C-score
of an instance and various proxy scores based on learning
speed. In particular, we test accuracy (0-1 correctness), pL
(softmax confidence on the correct class), pmax (max soft-
max confidence across all classes) and entropy (negative en-
tropy of softmax confidences). We use cumulative statistics
which average from the beginning of training to the current
epoch because the cumulative statistics yield a more sta-
ble measure—and higher correlation—than statistics based
on a single epoch. We also compare to a forgetting-event
statistic (Toneva et al., 2019), which is simply a count of the
number of transitions from “learned” to “forgotten” during
training. All of our proxies show strong correlation with the
C-score: pL reaches ρ ≈ 0.9 at the peak; pmax and entropy
perform similarly, both slightly worse than pL. The forget-
ting event statistic slightly underperforms our proxies and
takes a larger number of training epochs to reach its peak
correlation. We suspect this is because forgetting events hap-

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

102 103 104

num training example removed

0.9500

0.9525

0.9550

0.9575

0.9600

0.9625

ac
cu

ra
cy

remove memorized
remove random

(a)
0 100 200

Training Epoch

0.2

0.4

0.6

0.8

De
te

ct
io

n
Ra

te p_L
accuracy
forgetting
lof

(b)

Figure 9. (a) Model performance on SVHN when certain number
of examples are removed from the training set. (b) Detection rate
of label-flipped outliers on CIFAR-10.

pen only after an example is learned, so unlike the proxies
studied here, forgetting statistics for hard examples cannot
be obtained in the earlier stage of training.

6. Application
By characterizing the structural regularities in large scale
datasets, the C-score provides powerful tools for analyzing
data sets, learning dynamics, and to diagnose and poten-
tially improve learning systems. In this section, we provide
several illustrative applications along this line.

In the first example, we demonstrate the effects of removing
the irregular training examples. In Figure 9a, we show
the performance of models trained on the SVHN (Netzer
et al., 2011) training set as a function of the number of
lowest C-score examples removed. For comparison, we
show the performance with the same number of random
examples removed. We found that the model performance
improves as we remove the lowest ranked training examples,
but it eventually deteriorates when too many (about 104)
training examples are removed. This deterioration occurs
because the C-score typically ranks mislabeled instances
toward the bottom, followed by—at least in this data set—
correctly labeled but rare instances. Although the mislabeled
instances have no utility, the rare instances do, causing a
drop in performance as more rare instances are removed.
On data sets with fewer mislabelings, such as CIFAR-10,
we did not observe an advantage of removing low-ranked
examples versus removing random examples.

To quantitatively evaluate the outlier identification rate, we
construct a modified dataset by corrupting a random fraction
γ = 25% of the CIFAR-10 training set with random label
assignments, so that we have the ground-truth indicators for
the outliers. We then identify the fraction γ with the lowest
ranking by our two most promising learning-speed based
C-score proxies—cumulative accuracy and pL. Figure 9b
shows the detection rate—the fraction of the lowest ranked
examples which are indeed outliers; the two C-score proxies
successfully identify over 95% of outliers. This is consistent
with previous work (Pleiss et al., 2020) showing the loss

0 25 50 75 100 125 150 175 200
training epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y
of

 e
ac

h
gr

ou
p

0.00-0.05
0.05-0.10
0.10-0.15
0.15-0.20
0.20-0.25
0.25-0.30
0.30-0.35
0.35-0.40
0.40-0.45
0.45-0.50

0.50-0.55
0.55-0.60
0.60-0.65
0.65-0.70
0.70-0.75
0.75-0.80
0.80-0.85
0.85-0.90
0.90-0.95
All

(a) SGD
0 25 50 75 100 125 150 175 200

training epoch

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y
of

 e
ac

h
gr

ou
p

0.00-0.05
0.05-0.10
0.10-0.15
0.15-0.20
0.20-0.25
0.25-0.30
0.30-0.35
0.35-0.40
0.40-0.45
0.45-0.50

0.50-0.55
0.55-0.60
0.60-0.65
0.65-0.70
0.70-0.75
0.75-0.80
0.80-0.85
0.85-0.90
0.90-0.95
All

(b) Adam
Figure 10. Learning speed of CIFAR-10 examples grouped by C-
score. The thick transparent curve shows the average accuracy
over the entire training set. SGD achieves test accuracy 95.14%,
Adam achieves 92.97%.

curves could be informative at detecting noisy examples. We
also evaluated the forgetting-event statistic (Toneva et al.,
2019) and the local outlier factor (LOF) (Breunig et al.,
2000) algorithm based on distances in the hidden space, but
neither is competitive.

In the final example, we demonstrate using the C-score to
study the behavior of different optimizers. For this study, we
partition the CIFAR-10 training set into subsets by C-score.
Then we record the learning curves—model accuracy over
training epochs—for each set. Figure 10 plots the learn-
ing curves for C-score-binned examples. The left panel
shows SGD training with a stagewise constant learning rate,
and the right panel shows the Adam optimizer (Kingma
& Ba, 2015), which scales the learning rate adaptively. In
both cases, the groups with high C-scores (magenta) gener-
ally learn faster than the groups with low C-scores (cyan).
Intuitively, the high C-score groups consist of mutually con-
sistent examples that support one another during training,
whereas the low C-score groups consist of irregular exam-
ples forming sparse modes with fewer consistent peers. In
the case of true outliers, the model needs to memorize the
labels individually as they do not share structure with any
other examples.

The learning curves have wider dispersion in SGD than in
Adam. Early in SGD training where the learning rate is
large, the examples with the lowest C-scores barely learn.
In comparison, Adam shows less spread among the groups
and as a result, converges sooner. However, the superior
convergence speed of adaptive optimizers like Adam does
not always lead to better generalization (Wilson et al., 2017;
Keskar & Socher, 2017; Luo et al., 2019). We observe
this outcome as well: SGD with a stagewise learning rate
achieves 95.14% test accuracy, compared to 92.97% for
Adam. The visualization generated with the help of the
C-score provides an interesting perspective on the differ-
ence between the two cases with different generalization
performances: SGD with stagewise learning rate effectively
enforces a sort of curriculum in which the model focuses
on learning the strongest regularities first. This curriculum
could help the model building a more solid representation
based on domain regularities, when compared to Adam that

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

learns all examples at similar pace.

7. Discussion
We formulated a consistency profile for individual examples
in a data set that reflects the probability of correct gener-
alization to the example as a function of training set size.
This profile has strong ties to generalization theory as it
essentially measures the per-instance generalization. We
distilled the profile into a scalar C-score, which provides a
total ordering of the instances in a data set by essentially the
sample complexity—the amount of training data required—
to ensure correct generalization to the instance. By studying
the estimated scores on real world datasets, we show that
this formulation captures well the basic intuitions about data
regularity in both human and machine learning.

To leverage the C-score to analyze structural regularities in
complex data sets, we derived a C-score estimation proce-
dure and obtained C-scores for examples in MNIST, CIFAR-
10, CIFAR-100, and ImageNet. The C-score estimate helps
to characterize the continuum between a densely populated
mode consisting of aligned, centrally cropped examples
with unified shape and color profiles, and sparsely popu-
lated modes of just one or two instances.

We further studied two variants of computationally efficient
proxies to the C-score. We found that the pairwise dis-
tance based proxies are sensitive to the underlying distance
metrics, while the learning speed based proxies generally
provide better correlation with the C-score.

We demonstrate examples of potential applications of the
C-score as analytical tools to inspect large scale datasets
and the learning systems trained on the data, which provides
insights to the otherwise complicated and opaque systems.
In particular, we show that the C-score could be used to
identify outliers and provide detailed analysis of the learning
dynamics when comparing different optimizers.

One feature of our formulation is that the C-score depends
on the neural network architecture, and more generally on
the learning algorithm. Just like how a math major and a
music major might have different opinions on the difficulty
of courses, different neural networks could have different
inductive biases a priori, and the C-score captures this fact.
In practice, we found that the C-score estimations are con-
sistent among commonly used convolutional networks, po-
tentially because they are not that different from each other.
In particular, we compared the Inception based estimation
on CIFAR-10 with ResNet-18, VGG-11 and VGG-16, and
found the Spearman’s ρ correlations are above 0.91. Re-
cently some new convolution-free architectures based on
attention mechanism (Dosovitskiy et al., 2021) or dense
connections (Tolstikhin et al., 2021; Melas-Kyriazi, 2021;
Touvron et al., 2021) emerged and achieved similar per-

formance as their convolutional counterparts on standard
image classification benchmarks. We leave it as future work
to conduct extensive comparison on more diverse archi-
tectures and emerging algorithms such as finetuning after
self-supervised learning (Chen et al., 2020a;b; Grill et al.,
2020; Caron et al., 2021), and so on.

In the 1980s, neural nets were touted for learning rule-
governed behavior without explicit rules (Rumelhart & Mc-
Clelland, 1986). At the time, AI researchers were focused
on constructing expert systems by extracting explicit rules
from human domain experts. Expert systems ultimately
failed because the diversity and nuance of statistical regular-
ities in a domain was too great for any human to explicate.
In the modern deep learning era, researchers have made
much progress in automatically extracting regularities from
data. Nonetheless, there is still much work to be done
to understand these regularities, and how the consistency
relationships among instances determine the outcome of
learning. By defining and investigating a consistency score,
we hope to have made some progress in this direction. We
have released the precomputed C-scores on standard deep
learning benchmark datasets to foster future research along
this direction.

Code and Pre-computed C-scores
We provide code implementing our C-score estima-
tion algorithms, and pre-computed C-scores and asso-
ciated model checkpoints for CIFAR-10, CIFAR-100
and ImageNet (downloadable from https://pluskid.
github.io/structural-regularity/). The ex-
ported files are in Numpy’s data format saved via
numpy.savez. For CIFAR-10 and CIFAR-100, the ex-
ported file contains two arrays labels and scores. Both
arrays are stored in the order of training examples as de-
fined by the original data sets found at https://www.cs.
toronto.edu/~kriz/cifar.html. The data load-
ing tools provided in some deep learning library might not
be following the original data example orders, so we pro-
vided the labels array for easy sanity check of the data
ordering.

For ImageNet, since there is no well defined example or-
dering, we order the exported scores arbitrarily, and include
a script to reconstruct the data set with index information
by using the filename of each example to help identify the
example-score mapping.

Acknowledgements
We thank Vitaly Feldman for guidance on simulation de-
sign and framing of the research, Samy Bengio for general
comments and feedback, and Yoram Singer for making the
collaboration possible.

https://pluskid.github.io/structural-regularity/
https://pluskid.github.io/structural-regularity/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Lev-
enberg, J., Mané, D., Monga, R., Moore, S., Murray, D.,
Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever,
I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan,
V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M.,
Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In Proceedings of the 26th annual
international conference on machine learning, pp. 41–48.
ACM, 2009.

Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. Lof:
identifying density-based local outliers. In Proceedings
of the 2000 ACM SIGMOD international conference on
Management of data, pp. 93–104, 2000.

Carlini, N., Erlingsson, U., and Papernot, N. Prototypical
examples in deep learning: Metrics, characteristics, and
utility. Technical report, OpenReview, 2018.

Caron, M., Touvron, H., Misra, I., Jégou, H., Mairal, J.,
Bojanowski, P., and Joulin, A. Emerging properties
in self-supervised vision transformers. arXiv preprint
arXiv:2104.14294, 2021.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020a.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and
Hinton, G. Big Self-Supervised models are strong Semi-
Supervised learners. In Advances in Neural Information
Processing Systems, 2020b.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021.

Feldman, V. Does learning require memorization? A short
tale about a long tail. In ACM Symposium on Theory of
Computing (STOC), 2020.

Feldman, V. and Zhang, C. What neural networks mem-
orize and why: Discovering the long tail via influence
estimation. In Advances in neural information processing
systems, 2020.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond,
P. H., Buchatskaya, E., Doersch, C., Pires, B. A., Guo,
Z. D., Azar, M. G., Piot, B., Kavukcuoglu, K., Munos,
R., and Valko, M. Bootstrap your own latent: A new
approach to Self-Supervised learning. In Advances in
Neural Information Processing Systems, 2020.

Hardt, M., Recht, B., and Singer, Y. Train faster, generalize
better: Stability of stochastic gradient descent. In Interna-
tional Conference on Machine Learning, pp. 1225–1234.
PMLR, 2016.

Jacot, A., Gabriel, F., and Hongler, C. Neural tangent kernel:
Convergence and generalization in neural networks. In
Advances in neural information processing systems, pp.
8571–8580, 2018.

Keskar, N. S. and Socher, R. Improving generalization per-
formance by switching from adam to sgd. arXiv preprint
arXiv:1712.07628, 2017.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical Report TR-2009, University of
Toronto, 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Luo, L., Xiong, Y., Liu, Y., and Sun, X. Adaptive gradi-
ent methods with dynamic bound of learning rate. In
International Conference on Learning Representations,
2019.

Mangalam, K. and Prabhu, V. U. Do deep neural networks
learn shallow learnable examples first? In ICML 2019
Workshop on Identifying and Understanding Deep Learn-
ing Phenomena, 2019.

Melas-Kyriazi, L. Do you even need attention? a stack of
feed-forward layers does surprisingly well on imagenet.
arXiv preprint arXiv:2105.02723, 2021.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and
Ng, A. Y. Reading digits in natural images with unsu-
pervised feature learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

Pleiss, G., Zhang, T., Elenberg, E. R., and Weinberger,
K. Q. Detecting noisy training data with loss curves. In
International Conference on Learning Representations,
2020.

https://www.tensorflow.org/

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. OpenAI Blog, 1(8):9, 2019.

Rumelhart, D. E. and McClelland, J. L. On Learning the
Past Tenses of English Verbs, pp. 216–271. MIT Press,
Cambridge, MA, USA, 1986.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. Imagenet large scale visual recognition chal-
lenge. International journal of computer vision, 115(3):
211–252, 2015.

Saxena, S., Tuzel, O., and DeCoste, D. Data parameters:
A new family of parameters for learning a differentiable
curriculum. In Wallach, H., Larochelle, H., Beygelzimer,
A., d'Alché-Buc, F., Fox, E., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems 32, pp.
11093–11103. Curran Associates, Inc., 2019.

Scott, T., Ridgeway, K., and Mozer, M. C. Adapted deep
embeddings: A synthesis of methods for k-shot inductive
transfer learning. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett, R. (eds.),
Advances in Neural Information Processing Systems 31,
pp. 76–85. Curran Associates, Inc., 2018.

Tan, M. and Le, Q. V. Efficientnet: Rethinking model
scaling for convolutional neural networks. arXiv preprint
arXiv:1905.11946, 2019.

Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., Zhai,
X., Unterthiner, T., Yung, J., Keysers, D., Uszkoreit, J.,
Lucic, M., et al. Mlp-mixer: An all-mlp architecture for
vision. arXiv preprint arXiv:2105.01601, 2021.

Toneva, M., Sordoni, A., Combes, R. T. d., Trischler, A.,
Bengio, Y., and Gordon, G. J. An empirical study of
example forgetting during deep neural network learning.
In International Conference on Learning Representations,
2019.

Touvron, H., Bojanowski, P., Caron, M., Cord, M., El-
Nouby, A., Grave, E., Joulin, A., Synnaeve, G., Verbeek,
J., and Jégou, H. Resmlp: Feedforward networks for
image classification with data-efficient training. arXiv
preprint arXiv:2105.03404, 2021.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht,
B. The marginal value of adaptive gradient methods in
machine learning. In Advances in Neural Information
Processing Systems, pp. 4148–4158, 2017.

Wu, Z., Nagarajan, T., Kumar, A., Rennie, S., Davis, L. S.,
Grauman, K., and Feris, R. Blockdrop: Dynamic in-
ference paths in residual networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8817–8826, 2018.

A. Experiment Details
The details on model architectures, data set information
and hyper-parameters used in the experiments for empirical
estimation of the C-score can be found in Table 2. We imple-
ment our experiment in Tensorflow (Abadi et al., 2015). The
holdout subroutine used in the empirical C-score estimation
is based on the estimator proposed in Feldman & Zhang
(2020), and listed in Algorithm 1. Most of the training
jobs for C-score estimation are run on single NVidia® Tesla
P100 GPUs. The ImageNet training jobs are run with 8 P100
GPUs using single-node multi-GPU data parallelization.

The experiments on learning speed are conducted with
ResNet-18 on CIFAR-10, trained for 200 epochs while batch
size is 32. For optimizer, we use the SGD with the initial
learning rate 0.1, momentum 0.9 (with Nesterov momen-
tum) and weight decay is 5e-4. The stage-wise constant
learning rate scheduler decrease the learning rate at the 60th,
90th, and 120th epoch with a decay factor of 0.2.

Algorithm 1 Estimation of ĈD̂,n

Require: Data set D̂ = (X,Y) with N examples
Require: n: number of instances used for training
Require: k: number of subset samples
Ensure: Ĉ ∈ RN : (ĈD̂,n(x, y))(x,y)∈D̂

Initialize binary mask matrix M ← 0k×N

Initialize 0-1 loss matrix L← 0k×N

for i ∈ (1, 2, . . . , k) do
Sample n random indices I from {1, . . . , N}
M [i, I]← 1

Train f̂ from scratch with the subset X[I], Y [I]

L[i, :]← 1[f̂(X) 6= Y]
end for
Initialize score estimation vector Ĉ ← 0N

for j ∈ (1, 2, . . . , N) do
Q← ¬M [:, j]
Ĉ[j]← sum(¬L[:, Q])/sum(Q)

end for

B. Time and Space Complexity
The time complexity of the holdout procedure for empirical
estimation of the C-score is O(S(kT + E)). Here S is the
number of subset ratios, k is number of holdout for each
subset ratio, and T is the average training time for a neural
network. E is the time for computing the score given the
k-fold holdout training results, which involves elementwise
computation on a matrix of size k × N , and is negligible
comparing to the time for training neural networks. The
space complexity is the space for training a single neural
network times the number of parallel training jobs. The
space complexity for computing the scores is O(kN).

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

Table 2. Details for the experiments used in the empirical estimation of the C-score.

MNIST CIFAR-10 CIFAR-100 ImageNet

Architecture MLP(512,256,10) Inception† Inception† ResNet-50 (V2)
Optimizer SGD SGD SGD SGD
Momentum 0.9 0.9 0.9 0.9
Base Learning Rate 0.1 0.4 0.4 0.1×7
Learning Rate Scheduler ∧(15%)? ∧(15%)? ∧(15%)? LinearRampupPiecewiseConstant??

Batch Size 256 512 512 128×7
Epochs 20 80 160 100
Data Augmentation · · · · · · Random Padded Cropping~ + Random Left-Right Flipping · · · · · ·
Image Size 28×28 32×32 32×32 224×224
Training Set Size 60,000 50,000 50,000 1,281,167
Number of Classes 10 10 100 1000

† A simplified Inception model suitable for small image sizes, defined as follows:
Inception :: Conv(3×3, 96)→ Stage1→ Stage2→ Stage3→ GlobalMaxPool→ Linear.

Stage1 :: Block(32, 32)→ Block(32, 48)→ Conv(3×3, 160, Stride=2).
Stage2 :: Block(112, 48)→ Block(96, 64)→ Block(80, 80)→ Block (48, 96)→ Conv(3×3, 240, Stride=2).
Stage3 :: Block(176, 160)→ Block(176, 160).

Block(C1, C2) :: Concat(Conv(1×1, C1), Conv(3×3,C2)).
Conv :: Convolution→ BatchNormalization→ ReLU.

? ∧(15%) learning rate scheduler linearly increase the learning rate from 0 to the base learning rate in the first 15% training
steps, and then from there linear decrease to 0 in the remaining training steps.

?? LinearRampupPiecewiseConstant learning rate scheduler linearly increase the learning rate from 0 to the base learning rate in
the first 15% training steps. Then the learning rate remains piecewise constant with a 10× decay at 30%, 60% and 90% of the
training steps, respectively.

~ Random Padded Cropping pad 4 pixels of zeros to all the four sides of MNIST, CIFAR-10, CIFAR-100 images and (randomly)
crop back to the original image size. For ImageNet, a padding of 32 pixels is used for all four sides of the images.

For kernel density estimation based scores, the most expen-
sive part is forming the pairwise distance matrix (and the
kernel matrix), which requires O(N2) space and O(N2d)
time, where d is the dimension of the input or hidden repre-
sentation spaces.

C. More Visualizations of Images Ranked by
C-score

Examples with high, middle and low C-scores from all the
10 classes of MNIST and CIFAR-10 are shown in Figure 11
and Figure 12, respectively. The results from the first 60 out
of the 100 classes on CIFAR-100 is depicted in Figure 13.
Figure 14 and Figure 15 show visualizations from ImageNet.
Please see the project website for more visualizations.

D. C-Score Proxies based on Pairwise
Distances

In the experiments of pairwise distance based C-score prox-
ies, we use an RBF kernelK(x, x′) = exp(−‖x−x′‖2/h2),
where the bandwidth parameter h is adaptively chosen as
1/2 of the mean pairwise Euclidean distance across the data
set. For the local outlier factor (LOF) algorithm (Breunig
et al., 2000), we use the neighborhood size k = 3. See

Figure 16 for the behavior of LOF across a wide range of
neighborhood sizes.

D.1. Pairwise Distance Estimation with Gradient
Representations

Most modern neural networks are trained with first order
gradient descent based algorithms and variants. In each
iteration, the gradient of loss on a mini-batch of training
examples evaluated at the current network weights is com-
puted and used to update the current parameter. Let ∇t(·)
be the function that maps an input-label training pair (the
case of mini-batch size one) to the corresponding gradient
evaluated at the network weights of the t-th iteration. Then
this defines a gradient based representation on which we
can compute density based ranking scores. The intuition is
that in a gradient based learning algorithm, an example is
consistent with others if they all compute similar gradients.

Comparing to the hidden representations defined the outputs
of a neural network layer, the gradient based representations
induce a more natural way of incorporating the label infor-
mation. In the previous section, we reweight the neighbor
examples belonging to a different class by 0 or -1. For gradi-
ent based representations, no ad hoc reweighting is needed
as the gradient is computed on the loss that has already
takes the label into account. Similar inputs with different

https://pluskid.github.io/structural-regularity/

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

Figure 11. Examples from MNIST. Each block shows a single class; the left, middle, and right columns of a block depict instances with
high, intermediate, and low C-scores, respectively.

Figure 12. Examples from CIFAR-10. Each block shows a single class; the left, middle, and right columns of a block depict instances
with high, intermediate, and low C-scores, respectively.

labels automatically lead to dissimilar gradients. Moreover,
this could seamlessly handle labels and losses with rich
structures (e.g. image segmentation, machine translation)
where an effective reweighting scheme is hard to find. The
gradient based representation is closely related to recent
developments on Neural Tagent Kernels (NTK) (Jacot et al.,
2018). It is shown that when the network width goes to infin-
ity, the neural network training dynamics can be effectively
approximately via Taylor expansion at the initial network
weights. In other words, the algorithm is effectively learning
a linear model on the nonlinear representations defined by
∇0(·). This feature map induces the NTK, and connects
deep learning to the literature of kernel machines.

Although NTK enjoys nice theoretical properties, it is chal-
lenging to perform density estimation on it. Even for the
more practical case of finite width neural networks, the gra-
dient representations are of extremely high dimensions as
modern neural networks general have parameters ranging
from millions to billions (e.g. Tan & Le, 2019; Radford
et al., 2019). As a result, both computation and memory
requirements are prohibitive if a naive density estimation is
to be computed on the gradient representations. We leave
as future work to explore efficient algorithms to practically
compute this score.

E. What Makes an Item Regular or
Irregular?

The notion of regularity is primarily coming from the statis-
tical consistency of the example with the rest of the popula-
tion, but less from the intrinsic structure of the example’s
contents. To illustrate this, we refer back to Figure 4b in
the main text, the distribution is uneven between high and
low C-score values. As a result, the high C-score groups
will have more examples than the low C-score groups. This
agrees with the intuition that regularity arises from high
probability masses.

To test whether an example with top-ranking C-score is
still highly regular after the density of its neighborhood is
reduced, we group the training examples according equal
sized bins on the value range of their C-score values. We
then subsample each group to contain an equal number
(∼ 400) of examples. Then we run training on this new data
set and observe the learning speed in each (subsampled)
group. The result is shown in Figure 19, which is to be
compared with the results without group-size-equalizing in
Figure 10 in the main text. The following observations can
be made:

1. The learning curves for many of the groups start to
overlap with each other.

2. The lower ranked groups now learns faster. For exam-
ple, the lowest ranked group goes above 30% accuracy

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

Figure 13. Examples from CIFAR-100. Each block shows a single class; the left, middle, and right columns of a block depict instances
with high, intermediate, and low C-scores, respectively. The first 60 (out of the 100) classes are shown.

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

500 teapot

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

500
barometer

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

500
banana

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

1000
car mirror

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

1000 flamingo

Figure 14. Example images from ImageNet. For each class, the three columns show sampled images from the (C-score ranked) top 99%,
35%, and 1% percentiles, respectively. The bottom pane shows the histograms of the C-scores in each of the 5 classes.

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

200
pitcher

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

500 alp

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

500
pretzel

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

500
jeep

0.00 0.25 0.50 0.75 1.00
C-score Histogram

0

500
barn

Figure 15. Example images from ImageNet. For each class, the three columns show sampled images from the (C-score ranked) top 99%,
35%, and 1% percentiles, respectively. The bottom pane shows the histograms of the C-scores in each of the 5 classes.

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

0 25 50 75 100
k

0.10

0.15

0.20

0.25

Sp
ea

rm
an

's
rh

o

input space
hidden space

(a) CIFAR-10

0 25 50 75 100
k

0.00

0.05

0.10

0.15

0.20

Sp
ea

rm
an

's
rh

o

input space
hidden space

(b) CIFAR-100

Figure 16. The Spearman’s ρ correlation between the C-score and
the score based on LOF with different neighborhood sizes.

near epoch 50. In the run without subsampling (Fig-
ure 10a in the main text), this groups is still below
20% accuracy at epoch 50. The model is now learning
with a much smaller data set. Since the lower ranked
examples are not highly consistent with the rest of the
population, this means there are fewer “other examples”
to compete with (i.e. those “other examples” will move
the weights towards a direction that is less preferable
for the lower ranked examples). As a result, the lower
ranked groups can now learn faster.

3. On the other hand, the higher ranked groups now learn
slower, which is clear from a direct comparison be-
tween Figure 10a in the main text and Figure 19 here.
This is because for highly regular examples, reducing
the data set size means removing consistent examples
— that is, there are now less “supporters” as oppose to
less “competitors” in the case of lower ranked groups.
As a result, the learn speed is now slower.

4. Even though the learning curves are now overlapping,
the highest ranked group and the lowest ranked group
are still clearly separated. The potential reason is that
while the lower ranked examples can be outliers in
many different ways, the highest ranked examples are
probably regular in a single (or very few) visual clus-
ters (see the top ranked examples in Figure 12). As
a result, the within group diversities of the highest
ranked groups are still much smaller than the lowest
ranked groups.

In summary, the regularity of an example arises from its con-
sistency relation with the rest of the population. A regular
example in isolation is no different to an outlier. Moreover,
it is also not merely an intrinsic property of the data distri-
bution, but is closely related to the model, loss function and
learning algorithms. For example, while a picture with a
red lake and a purple forest is likely be considered an out-
lier in the usual sense, for a model that only uses grayscale
information it could be highly regular.

F. Sensitivity of C-scores to the Number of
Models

We used 2,000 models per subset ratio to evaluate C-scores
in our experiments to ensure that we get stable estimates.
In this section, we study the sensitivity of C-scores with
respect to the number of models and evaluate the possibility
to use fewer models in practice. Let C0−2k be the C-scores
estimated with the full 2,000 models per subset ratio. We
split the 2,000 models for each subset ratio into two halves,
and obtain two independent estimates C0−1k and C1k−2k.
Then for m ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000},
we sample m random models from the first 1,000 split, and
estimate C-scores (denoted by Cm) based on those models.
We compute the Spearman’s ρ correlation between each
Cm and C1k−2k. The results are plotted in Figure 20. The
random sampling of m models is repeated 10 times for each
m and the error bars show the standard deviations. The
figure shows that a good correlation is found for as few as
m = 64 models. However, the integral C-score requires
training models for various subset ratios (9 different subset
ratios in our simulations), so the total number of models
needed is roughly 64 × 9. If we want to obtain a reliable
estimate of the C-score under a single fixed subset ratio,
we find that we need 512 models in order to get a > .95
correlation with C1k−2k. So it appears that whether we
are computing the integral C-score or the C-score for a
particular subset ratio, we need to train on the order of
500-600 models.

In the analysis above, we have used C1k−2k as the reference
scores to compute correlation to ensure no overlapping be-
tween the models used to compute different estimates. Note
C1k−2k itself is well correlated with the the full estimate
from 2,000 models, as demonstrated by the following corre-
lations: ρ(C0−1k, C1k−2k) = 0.9996, ρ(C0−1k, C0−2k) =
0.9999, and ρ(C1k−2k, C0−2k) = 0.9999.

Characterizing Structural Regularities of Labeled Data in Overparameterized Models

Figure 17. Examples from CIFAR-10 (left 5 blocks) and CIFAR-100 (right 5 blocks). Each block shows a single class; the left, middle,
and right columns of a block depict instances with top, intermediate, and bottom ranking according to the relative local density score
Ĉ±L in the input space, respectively.

Figure 18. Examples from CIFAR-10 (left 5 blocks) and CIFAR-100 (right 5 blocks). Each block shows a single class; the left, middle,
and right columns of a block depict instances with top, intermediate, and bottom ranking according to the relative local density score
Ĉ±L

h in the latent representation space of a trained network, respectively.

0 25 50 75 100 125 150 175 200
training epoch

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y
of

 e
ac

h
gr

ou
p

0.05-0.10
0.10-0.15
0.15-0.20
0.20-0.25
0.25-0.30
0.30-0.35
0.35-0.40
0.40-0.45
0.45-0.50
0.50-0.55

0.55-0.60
0.60-0.65
0.65-0.70
0.70-0.75
0.75-0.80
0.80-0.85
0.85-0.90
0.90-0.95
All

Figure 19. Learning speed of group of examples ranked by C-
scores, with equal number (400) of examples in each group via
subsampling.

21 23 25 27 29

number of models for each subset ratio s

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

 rh
o

co
rre

la
tio

n

s=20
s=30
s=40
s=50
s=60
integral C-score

Figure 20. The correlation of C-scores estimated with varying num-
bers of models (the x-axis) and C-scores estimated with 1,000
independent models. The simulations are run with CIFAR-10, and
the error bars show standard deviation from 10 runs.

