Skip to main content
Log in

Development of the Spaser-in-Liposome Complexes for Theranostical Application

  • PHYSICAL AND ENGINEERING FUNDAMENTALS OF MICROELECTRONICS AND OPTOELECTRONICS
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The possibility of forming a complex of spasers inside artificially created closed membranes (liposomes) is studied experimentally. The localization of the complexes inside liposomes is confirmed using a scanning confocal microscope. It is demonstrated that spasers retain their performance. The results show the liposome-encapsulated spasers can be effective theranostic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. D. J. Bergman and M. I. Stockman, ‘‘Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,’’ Phys. Rev. Lett. 90, 027402 (2003). https://doi.org/10.1103/PhysRevLett.90.027402

  2. E. I. Galanzha, R. Weingold, D. A. Nedosekin, et al., ‘‘Spaser as a biological probe,’’ Nat. Commun. 8, 1552 (2017). https://doi.org/10.1038/ncomms15528

    Article  Google Scholar 

  3. S. Lepeshkin, V. Baturin, E. Tikhonov, N. Matsko, Yu. Uspenskii, A. Naumova, O. Feya, M. A. Schoonen, and A. R. Oganov, ‘‘Super-oxidation of silicon nanoclusters: magnetism and reactive oxygen species at the surface,’’ Nanoscale 8, 18616–18620 (2016). https://doi.org/10.1039/C6NR07504E

    Article  Google Scholar 

  4. G. Yu. Yukina, S. G. Zhuravskii, A. A. Panevin, M. M. Galagudza, V. V. Tomson, and N. M. Blum, ‘‘Macrophage granulomas and mast cells as beginning organ remodeling in case of silicone dioxide nanoparticles chronic toxicity,’’ Transl. Med. 3 (2), 70–79 (2016). https://doi.org/10.18705/2311-4495-2016-3-2-70-79

    Article  Google Scholar 

  5. M. I. Stockman, S. V. Faleev, and D. J. Bergman, ‘‘Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics,’’ Phys. Rev. Lett. 87, 167401 (2001). https://doi.org/10.1103/PhysRevLett.87.167401

  6. D. B. Li and C. Z. Ning, ‘‘Interplay of various loss mechanisms and ultimate size limit of a surface plasmon polariton semiconductor nanolaser,’’ Opt. Express 20, 16348–16357 (2012). https://doi.org/10.1364/OE.20.016348

    Article  ADS  Google Scholar 

  7. A. I. Plekhanov, ‘‘Spaser as novel versatile biomedical tool,’’ in Technical Digest VII Int. Symp. Modern Problems of Laser Physics (MPLP 2016), Novosibirsk, Russia, 2016, p. 71.

  8. A. D. Bangham, ‘‘Liposomes: realizing their promise,’’ Hosp. Practice 27 (12), 51–62 (1992). https://doi.org/10.1080/21548331.1992.11705537

    Article  Google Scholar 

  9. G. Aizik, N. Waiskopf, M. Agbaria, M. Ben-David-Naim, Ya. Levi-Kalisman, A. Shahar, U. Banin, and G. Golomb, ‘‘Liposomes of quantum dots configured for passive and active delivery to tumor tissue,’’ Nano Lett. 19, 5844–5852 (2019). https://doi.org/10.1021/acs.nanolett.9b01027

    Article  ADS  Google Scholar 

  10. K. Sahil, S. Premjeet, B. Ajay, A. Middha, and K. Bhawna, ‘‘Stealth liposomes: a review,’’ Int. J. Res. Ayurveda Pharm. 2, 1534–1538 (2011).

    Google Scholar 

  11. N. V. Surovtsev, E. S. Salnikov, V. K. Malinovsky, L. L. Sveshnikova, and S. A. Dzuba, ‘‘On the low-temperature onset of molecular flexibility in lipid bilayers seen by Raman scattering,’’ J. Phys. Chem. B. 112, 12361–12365 (2008). https://doi.org/10.1021/jp801575d

    Article  Google Scholar 

  12. S. V. Adichtchev and N. V. Surovtsev, ‘‘Raman spectroscopy for quantification of water-to lipid ratio in phospholipid suspensions,’’ Vib. Spectrosc. 97, 102–105 (2018). https://doi.org/10.1016/j.vibspec.2018.06.004

    Article  Google Scholar 

  13. V. P. Bessmeltsev, M. V. Maksimov, V. V. Vileiko, N. V. Goloshevskii, and V. S. Terent’ev, ‘‘Multichannel confocal microscope based on a diffraction focusing multiplier with automatic synchronization of scanning,’’ Optoelectron., Instrum. Data Process. 54, 531–537 (2018). https://doi.org/10.3103/S8756699018060018

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V. V. Vileiko and A. A. Shkoldina for their help in measuring using a confocal microscope. The equipment of the common use center ‘‘High-Resolution Spectroscopy of Gases and Condensed Matter’’ at the Institute of Automation and Electrometry of the SB RAS was used during the work.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. II.10.2.1, state registration no. AAAA-A17-117060810014-9 and project no. II.10.2.3, state registration no. AAAA-A17-117052410033-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kuchyanov.

Additional information

Translated by I. Obrezanova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchyanov, A.S., Mikerin, S.L., Adichtchev, S.V. et al. Development of the Spaser-in-Liposome Complexes for Theranostical Application. Optoelectron.Instrument.Proc. 56, 304–309 (2020). https://doi.org/10.3103/S8756699020030097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020030097

Keywords:

Navigation