Skip to main content
Log in

Sonochemical approach for rapid growth of zinc oxide nanowalls

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The sonochemical process drives chemical reactions with sound fields by creating extraordinarily high density of energy, pressure and temperatures. The process resulted in a number of unexpected chemical species and thought-provoking results in the recent past. In this paper, we present a new sonochemical approach to synthesize ZnO (zinc oxide) nanowalls (NWalls) on aluminum and alumina coated substrates at room ambient conditions. We achieved highly dense and uniform ZnO NWalls in areas that are coated with Al or Al2O3 (alumina). The synthesis process was shown not to occur on Si, SiO2, Cr, or Ag surfaces. A series of experiments on understanding the growth kinetics offers detailed insight into the growth dynamics over time. Photoluminescence (PL) measurements, UV Vis spectroscopy, and SEM-EDS results confirm NWalls composed of crystalline ZnO that are formed via Al assisted growth induced by phase transformations under extraordinary pressure, temperature, and chemical growth kinetics. The chemical growth method as reported here, is applicable to arbitrary substrates coated with an Al thin film. We demonstrate the applications of the as-formed NWalls in UV photoconductors and gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders. AIP Conf. Proc. 79, 7983–7990 (1996)

    Google Scholar 

  2. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem., Int. Ed. Engl. 42(26), 3031–3034 (2003)

    Article  Google Scholar 

  3. A. Mang, K. Reimann, S. Rübenacke, Band gaps, crystal-field splitting, spin–orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure. Solid State Commun. 94(4), 251–254 (1995)

    Article  ADS  Google Scholar 

  4. J.B. Baxter, E.S. Aydil, Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86(5), 053114 (2005)

    Article  ADS  Google Scholar 

  5. Z. Fan et al., ZnO nanowire field-effect transistor and oxygen sensing property. Appl. Phys. Lett. 85(24), 5923–5925 (2004)

    Article  ADS  Google Scholar 

  6. S.-W. Kim, S. Fujita, S. Fujita, Self-organized ZnO quantum dots on SiO2/Si substrates by metalorganic chemical vapor deposition. Appl. Phys. Lett. 81(26), 5036–5038 (2002)

    Article  ADS  Google Scholar 

  7. Z.W. Pan, Z.R. Dai, Z.L. Wang, Nanobelts of semiconducting oxides. Science 291(5510), 1947–1949 (2001)

    Article  ADS  Google Scholar 

  8. J.-J. Wu, S.-C. Liu, C.-T. Wu, K.-H. Chen, L.-C. Chen, Heterostructures of ZnO–Zn coaxial nanocables and ZnO nanotubes. Appl. Phys. Lett. 81(7), 1312–1314 (2002)

    Article  ADS  Google Scholar 

  9. M.H. Huang S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001)

    Article  ADS  Google Scholar 

  10. H.T. Ng, J. Li, M.K. Smith, P. Nguyen, A. Cassell, J. Han, M. Meyyappan, Growth of epitaxial nanowires at the junctions of nanowalls. Science 300(5623), 1249 (2003)

    Article  Google Scholar 

  11. B.P. Zhang, K. Wakatsuki, N.T. Binh, Y. Segawa, N. Usami, Low-temperature growth of ZnO nanostructure networks. J. Appl. Phys. 96(1), 340–343 (2004)

    Article  ADS  Google Scholar 

  12. K.S. Suslick, D.J. Flannigan, Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu. Rev. Phys. Chem. 59(1), 659–683 (2008)

    Article  ADS  Google Scholar 

  13. A.P. Nayak A.M. Katzenmeyer, J.-Y. Kim, M.K. Kwon, Y. Gosho, M.S. Islam, Purely Sonochemical Route for Oriented Zinc Oxide Nanowire Growth on Arbitrary Substrate (SPIE, San Diego, 2010)

    Google Scholar 

  14. S.H. Jung, E. Oh, K.H. Lee, W. Park, S.H. Jeong, A sonochemical method for fabricating aligned ZnO nanorods. Adv. Mater. 19(5), 749–753 (2007)

    Article  Google Scholar 

  15. P.K. Vabbina, P. Nayyar, A.P. Nayak, A.M. Katzenmeyer, L. Vj, N. Pala, M.S. Islam, A.A. Talin, Synthesis of Crystalline ZnO Nanostructures on Arbitrary Substrates at Ambient Conditions (SPIE, San Diego, 2011)

    Google Scholar 

  16. B.Q. Cao, T. Matsumoto, M. Matsumoto, M. Higashihata, D. Nakamura, T. Okada, ZnO nanowalls grown with high-pressure PLD and their applications as field emitters and UV detectors. J. Phys. Chem. C 113(25), 10975–10980 (2009)

    Article  Google Scholar 

  17. C.-H. Lee, Scalable network electrical devices using ZnO nanowalls. Nanotechnology 22(5), 055205 (2011)

    Article  ADS  Google Scholar 

  18. M.A. Mousa, E.M. Diefallah, A.A. Abdel Fattah, Z.A. Omran, Physicochemical studies on ZnO–Al2O3 system. J. Mater. Sci. 25(7), 3067–3071 (1990)

    Article  ADS  Google Scholar 

  19. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003–1009 (2007)

    Article  ADS  Google Scholar 

  20. D.P. Stieler, V.L. Dalal, Measurement of mobility in nanocrystalline semiconductor materials using space charge limited current, Thesis, Iowa State University (2005)

  21. V.V. Mikho, A.P. Fedchuk, Special characteristics of the photoluminescence spectra of aluminum oxide arising from sorbed particles. J. Appl. Spectrosc. 21(4), 1331–1333 (1974)

    Article  ADS  Google Scholar 

  22. M. Larichev, N. Shaitura, O. Laricheva, The influence of ultrasonic field on the oxidation of al powders with water. Russ. J. Phys. Chem. 2(5), 757–758 (2008)

    Article  Google Scholar 

  23. K. Nagata, K. Sato, K. Goto, Kinetics of the solid state reaction between zinc oxide and aluminum oxide. Metall. Mater. Trans., B Process Metall. Mater. Proc. Sci. 11(3), 455–461 (1980)

    Google Scholar 

  24. M. Zawadzki, J. Wrzyszcz, Hydrothermal synthesis of nanoporous zinc aluminate with high surface area. Mater. Res. Bull. 35(1), 109–114 (2000)

    Article  Google Scholar 

  25. R. Revel, D. Bazin, E. Elkaim, Y. Kihn, H. Dexpert, An in situ study using anomalous wide-angle X-ray scattering and X-ray absorption spectroscopy of the catalytic system ZnAl2O4 supported on alumina. J. Phys. Chem. B 104(42), 9828–9835 (2000)

    Article  Google Scholar 

  26. S. Pin, M.A. Newton, F. D’Acapito, M. Zema, S.C. Tarantino, G. Spinolo, R.A. De Souza, M. Martin, P. Ghigna, Mechanisms of reactions in the solid state: (110) Al2O3 + (001) ZnO interfacial reaction. J. Phys. Chem. C 116(1), 980–986 (2011)

    Article  Google Scholar 

  27. P. Yang, H. Xu, L. Zhang, F. Xie, J. Yang, Numerical evaluation on heat transport characteristics between Al2O3 and ZnO materials in nanoscale situation. ACS Appl. Mater. Interfaces 4(1), 158–162 (2012)

    Article  Google Scholar 

  28. L. Zou, X. Xiang, M. Wei, L. Yang, F. Li, D.G. Evans, A facile and green synthesis route to mesoporous spinel-type Zn–Al complex oxide. Ind. Eng. Chem. Res. 47(5), 1495–1500 (2008)

    Article  Google Scholar 

  29. C.R. Gorla, W.E. Mayo, S. Liang, Y. Lu, Structure and interface-controlled growth kinetics of ZnA2O4 formed at the (1120) ZnO/(0112) Al2O3 interface. J. Appl. Phys. 87(8), 3736–3743 (2000)

    Article  ADS  Google Scholar 

  30. M.S. Wagh, G.H. Jain, D.R. Patil, S.A. Patil, L.A. Patil, Modified zinc oxide thick film resistors as NH3 gas sensor. Sens. Actuators B, Chem. 115(1), 128–133 (2006)

    Article  Google Scholar 

  31. H. Nanto, T. Minami, S. Takata, Zinc oxide thin film ammonia gas sensors with high sensitivity and excellent selectivity. AIP Conf. Proc. 60, 482–484 (1986)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Matthew Ombaba, Prof. Savas Kaya, Prof. Neizh Pala, Prof. Aykutlu Dana and Ta-Chun Lin for their helpful suggestions and training on specific tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saif Islam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, A.P., Katzenmeyer, A.M., Gosho, Y. et al. Sonochemical approach for rapid growth of zinc oxide nanowalls. Appl. Phys. A 107, 661–667 (2012). https://doi.org/10.1007/s00339-012-6823-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6823-8

Keywords

Navigation