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1. INTRODUCTION

The terms balancing numbers and Lucas-balancing numbers are used
to describe the series of numbers generated by the recursive formulas Bn =
6Bn−1 − Bn−2; B0 = 0, B1 = 1 with n ≥ 2 and Cn = 6Cn−1 − Cn−2; C0 = 1,
C1 = 3, with n ≥ 2 respectively [1,10]. The roots λ1 = 3+

√
8 and λ2 = 3−

√
8

for both these sequences, the respective Binet formulas are Bn =
λn1−λn2
λ1−λ2 and

Cn = λ1+λ2
2 [1, 10]. Many interesting results of balancing numbers and their

related sequences can be found in [5, 10–12].

In [4], Filipponi established two interesting classes of integers namely, in-
complete Fibonacci numbers and incomplete Lucas numbers which were obtai-
ned from some of the well-known combinatorial forms of Fibonacci and Lucas
numbers. He has also studied some of the congruence properties for incomplete
Lucas numbers in [4]. Filipponi dreamt a glimpse of possible generalizations of
incomplete Fibonacci and Lucas numbers which were fulfilled by some authors
later [2, 7–9, 13]. In this article we establish some combinatorial expressions
for balancing and Lucas-balancing numbers and introduce incomplete balan-
cing and incomplete Lucas-balancing numbers.

Balancing sequence has been generalized in many ways. One important
generalization of balancing numbers is the k-balancing numbers introduced
in [6, 12]. k-balancing numbers are defined recursively by

Bk,n+1 = 6kBk,n −Bk,n−1 n ≥ 2,
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with initials Bk,0 = 0 and Bk,1 = 1. In [12], Ray has introduced sequence
of balancing polynomials {Bn(x)}∞n=0that are natural extension of k-balancing
numbers and is defined recursively by

Bn(x) =


1, if n = 0
6x, if n = 1
6xBn−1(x)−Bn−2(x), if n > 1.

Further, he has also established the Binet formula as

Bn(x) =
λn1 (x)− λn2 (x)

24
,

where

λ1(x) = 3x+4, λ2(x) = 3x−4 and 4 =
√

9x2 − 1.

The first few balancing polynomials are

B2(x) = 6x,B3(x) = 36x2−1, B4(x) = 216x3−12x,B5(x) = 1296x4−108x2+1.

The derivatives of balancing polynomials in the form of convolution of these
polynomials are also presented in [12].

In a similar manner, the nth Lucas-balancing polynomial Cn(x) is defined
as

Cn(x) =


1, if n = 0
3x, if n = 1
6xCn−1(x)− Cn−2(x), if n > 1,

and its Binet formula is

Cn(x) =
λn1 (x) + λn2 (x)

2
.

The first few Lucas-balancing polynomials are

C2(x) = 18x2 − 1, C3(x) = 108x3 − 9x,C4(x) = 648x4 − 72x2 + 1, C5(x)

= 3888x5 − 540x3 + 15x.

In this article, authors aim is to establish some combinatorial expressi-
ons of balancing and Lucas-balancing numbers and investigate some of their
properties.

2. SOME COMBINATORIAL EXPRESSIONS OF BALANCING
AND LUCAS BALANCING NUMBERS

In this section, we establish some combinatorial expressions for balancing
and Lucas-balancing numbers. These expressions lead to form some combina-
torial expressions for balancing and Lucas-balancing polynomials.
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Theorem 2.1. Let Bn and Cn denote nth balancing and Lucas-balancing
numbers respectively, then

Bn =

b(n−1)/2c∑
j=0

(−1)j
(
n− 1− j

j

)
6n−2j−1,(2.1)

Cn = 3

bn/2c∑
j=0

(−1)j
n

n− j

(
n− j
j

)
6n−2j−1,(2.2)

where b.c denotes the floor function.

Proof. From the Binet formulas for both balancing and Lucas-balancing
numbers and by well-known Waring formulas [3],

Bn =
λn1 − λn2
λ1 − λ2

=

b(n−1)/2c∑
j=0

(−1)j
(
n− 1− j

j

)
(λ1λ2)

j(λ1 + λ2)
n−2j−1,

2Cn = λn1 + λn2 =

bn/2c∑
j=0

(−1)j
n

n− j

(
n− j
j

)
(λ1λ2)

j(λ1 + λ2)
n−2j ,

and the result follows as λ1λ2 = 1 and λ1 + λ2 = 6. �

Indeed, the combinatorial expression for polynomial Bn(x) leads to

Bn(x) =

b(n−1)/2c∑
j=0

(−1)j
(
n− 1− j

j

)
(6x)n−1−2j for n ≥ 1,

which is shown in [12]. Similarly the combinatorial expression for polynomial
Cn(x) will be

Cn(x) = 3

bn/2c∑
j=0

(−1)j
n

n− j

(
n− j
j

)
6n−1−2jxn−2j for n ≥ 1.

Further, their derivatives are respectively given by

(2.3) B′n(x)=

b(n−1)/2c∑
j=0

(−1)j(n−1−2j)

(
n− 1− j

j

)
6n−1−2jxn−2−2j for n ≥ 1,

(2.4) C ′n(x) = 3

bn/2c∑
j=0

(−1)j
n(n− 2j)

n− j

(
n− j
j

)
(6x)n−1−2j for n ≥ 1.
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Clearly, B′0(x) = C ′0(x) = 0. Some simple properties of the polynomials B′n(x)
and C ′n(x) can be derived from the Binet formulas. In fact, letting

λ′1(x) =
d

dx
(λ1(x)) =

3λ1(x)

∆
, λ′2(x) =

d

dx
(λ2(x)) =

−3λ2(x)

∆
,

which follows

(λn1 (x))′ =
d

dx
(λn1 (x)) =

3nλn1 (x)

∆
, (λn2 (x))′ =

d

dx
(λn2 (x)) =

−3nλn2 (x)

∆
,

we can write

B′n(x) =
d

dx

(
λn1 (x)− λn2 (x)

2∆

)
=

3nCn(x)− 9xBn(x)

∆2
,(2.5)

C ′n(x) =
d

dx
(λn1 (x) + λn2 (x)) = 3nBn(x).(2.6)

3. INCOMPLETE BALANCING AND LUCAS-BALANCING NUMBERS

The combinatorial expressions (2.1) and (2.2) give rise to two interes-
ting classes of integers Bn(k) and Cn(k), for integral values n and k. We
call these integers as incomplete balancing numbers and incomplete Lucas-
balancing numbers respectively which will be defined subsequently. In this
section, authors aim to establish certain properties of incomplete balancing
and incomplete Lucas-balancing numbers.

Definition 3.1. The incomplete balancing numbers Bn(k) be defined as
for any natural number n,

Bn(k) =

k∑
j=0

(−1)j
(
n− 1− j

j

)
6n−2j−1, 0 ≤ k ≤ ñ,(3.7)

where ñ = bn−12 c.

The numbers Bn(k) are shown in the Table 1 for the first few values of n
and the corresponding admissible values of k.

Observation of Table 1 gives rise to,

Bn(0) = 6n−1 for n ≥ 1,

Bn(ñ) = Bn for n ≥ 1,

Bn(ñ− 1) =

{
Bn ± 3n, if n is even
Bn ± 1, if n is odd

for n ≥ 3.

We define the incomplete Lucas-balancing numbers in the following man-
ner:
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TABLE 1

Incomplete balancing numbers

n/k 0 1 2 3 4 5 6

1 1
2 6
3 36 35
4 216 204
5 1296 1188 1189
6 7776 6912 6930
7 46656 40176 40392 40391
8 279936 233280 235440 235416
9 1679616 1353024 1372464 1372104 1372105
10 10077696 7838208 8001504 7997184 7997214
11 60466176 45349632 46656000 46610640 46611180 46611179
12 362797056 262020096 272097792 271662336 271669896 271669860
13 2176782336 1511654400 1587057120 1583318016 1583408736 1583407980 1583407981
14 13060694016 8707129344 9260322624 9227810304 9228790080 9228777984 9228778026
15 78364164096 50065993728 54050281344 53779804704 53789422464 53789259168 53789259420
16 470184984576 287335268351 315594558720 313418505600 313508724480 313506764928 313506778494

Definition 3.2. The incomplete Lucas-balancing numbers Cn(k) be defi-
ned as for any natural number n,

Cn(k) = 3
k∑
j=0

(−1)j
n

n− j

(
n− j
j

)
6n−2j−1, 0 ≤ k ≤ n̂,(3.8)

where n̂ =
⌊
n
2

⌋
.

The numbers Cn(k) are shown in Table 2 for the first few values of n and
the corresponding admissible values of k.

TABLE 2

Incomplete Lucas-balancing numbers

n/k 0 1 2 3 4 5 6

1 3
2 18 17
3 108 99
4 648 576 577
5 3888 3348 3363
6 23328 19440 19602 19601
7 139968 112752 114264 114243
8 2839808 653184 666144 665856 665857
9 5038848 3779136 3884112 3880872 3880899
10 30233088 21835008 22651488 22619088 22619538 22619537
11 181398528 125971200 132129792 131830416 131836356 131836323
12 1088391168 725594112 770943744 768331008 768399048 768398400 768398401
13 6530347008 4172166144 4499691264 4477856256 4478563872 4478554044 4478554083
14 39182082048 23944605696 26272553472 26096193792 26102984184 26102925216 26102926098
15 235092492288 137137287168 153463154688 152077471488 152140048848 152138987424 152139002544

Observation of Table 2 gives rise to,

Cn(0) = 3.6n−1 for n ≥ 1,

Cn(n̂) = Cn for n ≥ 1,

Cn(n̂− 1) =

{
Cn ± 1, if n is even
Cn ± n, if n is odd

for n ≥ 3.
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3.1. SOME IDENTITIES CONCERNING
THE INCOMPLETE BALANCING NUMBERS Bn(k)

Like balancing and Lucas-balancing numbers, incomplete balancing num-
bers also satisfy the second order recurrence relation. The following result
demonstrates this fact.

Proposition 3.3. The numbers Bn(k) obey the second order recurrence
relation

(3.9) Bn+2(k + 1) = 6Bn+1(k + 1)−Bn(k) for 0 ≤ k ≤ b(n− 2)/2c.

Proof. By virtue of the Definition 3.7,

6Bn+1(k+1)−Bn(k) = 6
k+1∑
j=0

(−1)j
(
n− j
j

)
6n−2j−

k∑
j=0

(−1)j
(
n− 1− j

j

)
6n−1−2j

= 6
k+1∑
j=0

(−1)j
[(
n− j
j

)
+

(
n− j
j − 1

)
+

(
n
−1

)
6n
]

6n−2j

=
k+1∑
j=0

(−1)j
(
n− j + 1

j

)
6n+1−2j ,

and the result follows. �

Observe that, the relation (3.9) can be transformed into the non-homo-
geneous recurrence relation

(3.10) Bn+2(k) = 6Bn+1(k)−Bn(k)− (−1)k+16n−1−2k
(
n− 1− k

k

)
.

The relation (3.10) can be generalized as follows.

Proposition 3.4. Let 0 ≤ k ≤ n−h−1
2 . Then the identity

(3.11)
h∑
j=0

(−1)j+16j
(
h
j

)
Bn+j(k + j) = (−1)h+1Bn+2h(k + h)

holds.

Proof. Using induction on h, the result (3.11) clearly holds for h = 0 and
h = 1. Assume that the result holds for some h > 1. For the inductive step,
we have

h+1∑
j=0

(−1)j+16j
(
h+ 1
j

)
Bn+j(k + j)
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=
h+1∑
j=0

(−1)j+16j
[(
h
j

)
+

(
h

j − 1

)]
Bn+j(k + j)

= (−1)h−1Bn+2h(k + h) +
h+1∑
i=−1

(−1)i+26i+1

(
h
i

)
Bi+n+1(k + 1 + i)

= (−1)h−1Bn+2h(k + h) +

h∑
i=0

(−1)i+26i+1

(
h
i

)
Bi+n+1(k + 1 + i)

= (−1)h−1Bn+2h(k + h)− 6
h∑
i=0

(−1)i+16i
(
h
i

)
Bi+n+1(k + 1 + i)

= (−1)h−1Bn+2h(k + h)− 6(−1)h−1Bn+2h+1(k + 1 + h)

= (−1)h−1[Bn+2h(k + h)− 6Bn+2h+1(k + 1 + h)]

= (−1)hBn+2(h+1)(k + 1 + h),

which completes the proof. �

Using induction on m, the following identity can be proved analogously.

h−m∑
j=0

(−1)j+16j+m
(

h
m+ j

)
Bn+j(j) = (−1)h+1Bn+2h−m(h−m),(3.12)

where h ≥ m and n ≥ h−m+ 1.
Notice that, the identity obtained from (3.12) by setting m = 0 is identical

to the identity obtained from (3.11) for k = 0.
The following is an interesting relation concerning incomplete balancing

numbers. The sum of all elements of the nth row of the array of Table 1 is
expressed in terms of balancing and Lucas-balancing numbers.

Proposition 3.5. For incomplete balancing numbers Bn(k), the following
identity holds.

ñ∑
k=0

Bn(k) =

{
(3nCn −Bn)/16, if n is even
(3nCn + 7Bn)/16 if n is odd .

Proof. Recall that ñ = bn−12 c. Then,

Bn(0) +Bn(1) + · · ·+Bn(ñ)

=

(
n− 1− 0

0

)
6n−1−0 +

[
(−1)0

(
n− 1− 0

0

)
6n−1−0+(−1)1

(
n− 1− 1

1

)
6n−1−2

]
+ · · ·+

[
(−1)0

(
n− 1− 0

0

)
6n−1−0 + · · ·+ (−1)ñ

(
n− 1− ñ

ñ

)
6n−1−2ñ

]
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= (ñ+ 1)

(
n− 1− 0

0

)
6n−1−0 + (ñ+ 1− 1)(−1)1

(
n− 1− 1

1

)
6n−1−2

+ · · ·+ (−1)ñ
(
n− 1− ñ

ñ

)
6n−1−2ñ

=
ñ∑
j=0

(ñ+ 1− j)(−1)j
(
n− 1− j

j

)
6n−1−2j

= (ñ+ 1)

ñ∑
j=0

(−1)j
(
n− 1− j

j

)
6n−1−2j −

ñ∑
j=0

(−1)jj

(
n− 1− j

j

)
6n−1−2j

= (ñ+ 1)Bn −
ñ∑
j=0

(−1)jj

(
n− 1− j

j

)
6n−1−2j .

The second term of the right hand side expression of the above equation

leads to Bn(8n+1)−3nCn

16 for x = 1 in (2.3) and (2.5). For n is even,
ñ∑
k=0

Bn(k) is

nBn
2 −

Bn(8n+1)−3nCn

16 and for n is odd,
ñ∑
k=0

Bn(k) is (n+1)Bn

2 − Bn(8n+1)−3nCn

16 .

This completes the proof. �

In [4], Filipponi has shown that for n = 2m, where m is a non-negative
integer, the incomplete Fibonacci numbers Fn(k) is odd for all admissible values
of k. The following result shows that for n = 2m, the incomplete balancing
numbers Bn(k) is even for all admissible values of k.

Proposition 3.6. If n = 2m for any non-negative integer m, then Bn(k)
is even for all admissible values of k.

Proof. We prove this result by induction on m. The basic step is true for
m = 1. In the inductive step, assume that the result is valid for all m ≤ n.
Now, using the (3.9); we have

B2m+2(k + 1) = 6B2m+1(k + 1)−B2m(k).

Clearly the first term is divisible by 2 and by the hypothesis the second term
is also even and hence the result follows. �

Filipponi has also shown that for any prime p, the incomplete Lucas
numbers satisfy the identity Lp(k) ≡ 1 (mod p) for all admissible values of
k in [4]. Whereas no such type of identity exists in incomplete Fibonacci
numbers. To demonstrate this fact, consider the following example.
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Example 3.7. Let p = 7. Consider k = 1, 2, 3 and observe that F7(1) =
6 ≡ −1 (mod 7), F7(2) = 12 ≡ −2 (mod 7) and F7(3) = 13 ≡ −1 (mod 7),
respectively.

However, the similar type of identities do exist in both incomplete ba-
lancing and Lucas-balancing numbers. The following result demonstrates this
fact.

Proposition 3.8. If n = 2m for any non-negative integer m, then for all
admissible values of k, Bn(k) ≡ 0 (mod n).

Proof. By virtue of Definition (3.7),

(3.13) Bn(k) = 62
m−1 +

k∑
j=1

(−1)j
(

2m − 1− j
j

)
62

m−1−2j .

The first term on the right hand side (3.13) is an integer when B2m(k) is
divisible by 2m for all m ≥ 0. The second term is also an integer due to
Filipponi [3], and thus the congruence follows. �

3.2. SOME IDENTITIES INVOLVING
THE INCOMPLETE LUCAS-BALANCING NUMBERS Cn(k)

Balancing numbers and Lucas-balancing numbers are related by an iden-
tity Bn+1−Bn−1 = 2Cn. Similar properties are valid for incomplete balancing
and Lucas-balancing numbers.

Proposition 3.9. The identity

(3.14) Bn+1(k)−Bn−1(k − 1) = 2Cn(k),

holds for 0 ≤ k ≤ n̂, where n̂ = bn2 c.

Proof. By virtue of Definition 3.7,

Bn+1(k)−Bn−1(k−1) =

k∑
j=0

(−1)j
(
n− j
j

)
6n−2j−

k−1∑
j=0

(−1)j
(
n− 2− j

j

)
6n−2j−2

=

k∑
j=0

(−1)j
(
n− j
j

)
6n−2j−

k∑
j=1

(−1)j−1
(
n− 1− j
j − 1

)
6n−2j

=

k∑
j=0

(−1)j
(
n− 1− j
j − 1

)
+

(
n− j
j

)
6n−2j
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= 2

3
k∑
j=0

(−1)j
n

n− j

(
n− 1− j
j − 1

)
6n−2j−1

 ,
which ends the proof. �

Proposition 3.10. The numbers Cn(k) obey the second order recurrence
relation

(3.15) Cn+2(k + 1) = 6Cn+1(k + 1)− Cn(k).

Proof. Using (3.14) and (3.9),

Cn+2(k + 1) =
1

2
{Bn+3(k + 1)−Bn+1(k)}

=
1

2
[{6Bn+2(k + 1)−Bn+1(k)} − {6Bn(k)−Bn−1(k − 1)}]

= 3(Bn+2(k + 1)−Bn(k)) +
1

2
(Bn−1(k − 1)−Bn+1(k))

= 6Cn+1(k + 1)− Cn(k),

and the result follows. �

Notice that, the relation (3.15) can be transformed into the non-homo-
geneous recurrence relation
(3.16)

Cn+2(k) = 6Cn+1(k)− Cn(k) + (−1)k+2 3n

n− k

(
n− k
k

)
6n−2k−1 for n ≥ 2k.

Proposition 3.11. For 0 6 k 6 ñ, then the following identity holds.

(3.17) 12 Cn(k) = Bn+2(k)−Bn−2(k − 2) .

Proof. In view of (3.14) and (3.15),

Bn+2(k) = 2Cn+1(k) +Bn(k − 1),

Bn−2(k − 2) = Bn(k − 1)− 2Cn−1(k − 1),

from which the result follows. �

Using the relations (3.11) and (3.14), the identity (3.15) can be generali-
zed as follows.

Proposition 3.12. For 0 ≤ k ≤ n−h−1
2 , then

h∑
j=0

(−1)j+16j
(
h
j

)
Cn+j(k + j) = (−1)h+1Cn+2h(k + h)

holds.
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The following is an interesting relation concerning incomplete Lucas-
balancing numbers. The sum of all elements of the nth row of the array of
Table 2 is expressed in terms of balancing and Lucas-balancing numbers.

Proposition 3.13. For incomplete Lucas-balancing numbers Cn(k),

n̂∑
k=0

Cn(k) =

{
Cn + n(3Bn − 2Cn)/2 , if n is even
{Cn + n(3Bn − 2Cn)}/2 , if n is odd .

Proof. Recall that n̂ = bn2 c. Therefore, we have

Cn(0) +Cn(1) + · · ·+Cn(n̂) = (n̂+ 1)Cn− 3

n̂∑
j=0

(−1)jj
n

n− j

(
n− j
j

)
6n−1−2j .

Putting x = 1 in (2.4) and (2.6) and adopting the same procedure described
earlier, we obtain

Bn =
n̂∑
j=0

(−1)j
n− 2j

n− j

(
n− j
j

)
6n−1−2j .

Therefore,

3

n̂∑
j=0

(−1)jj
n

n− j

(
n− j
j

)
6n−1−2j = 3n(Cn −Bn)/2.

For n is even and odd,

n̂∑
k=0

Cn(k) is (n2 + 1)Cn−3n(Cn−Bn)/2 and (n+1
2 )Cn−

3n(Cn −Bn)/2 respectively. Therefore, the proof is completed. �

Proposition 3.14. If n = 3m for any non-negative integer m, then for
all admissible values of k, Cn(k) ≡ 0 (mod n).

Proof. By virtue of Definition 3.16,

(3.18) Cn(k) = 23m−133m + 3m+1
k∑
j=1

(−1)j
1

3m − j

(
3m − j
j

)
63

m−2j−1.

The first term on the right hand side of (3.18) is an integer when C3m(k) is
divisible by 3m for all m ≥ 0. The second term is also an integer again due to
Filipponi [4] and thus the congruence follows. �
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4. GENERATING FUNCTIONS OF THE INCOMPLETE BALANCING
AND LUCAS-BALANCING NUMBERS

The generating functions for balancing and Lucas-balancing numbers play
a vital role to find out many important identities for these numbers. In this
section, we derive generating functions for both incomplete balancing and
Lucas-balancing numbers.

The following result [7] is useful to prove the subsequent theorem.

Lemma 4.1. Let {sn}n∈N be a complex sequence satisfying the following
non-homogeneous second-order recurrence relation:

sn = asn−1 + bsn−2 + rn, n > 1,

where a, b ∈ C and rn : N −→ C is a given sequence. Then the generating
function U(t) of sn is

U(t) =
G(t) + s0 − r0 + (s1 − s0a− r1)t

1− at− bt2
,

where G(t) denotes generating function of rn.

The following are the generating functions for incomplete balancing and
incomplete Lucas-balancing numbers.

Theorem 4.2. Let k be a fixed positive integer. Then
∞∑
j=0

Bk(j)t
j = t2k+1 (1− 6t)k+1(B2k+1 −B2kt)− (−1)k+1t2

(1− 6t+ t2)(1− 6t)k+1
,(4.19)

∞∑
j=0

Ck(j)t
j = t2k

(1− 6t)k+1(C2k − C2k−1t)− (−1)k+1t2

(1− 6t+ t2)(1− 6t)k+1
.(4.20)

Proof. By virtue of the identity (3.7), for 0 ≤ n < 2k + 1, Bn(k) = 0 and
for other values of n and r ≥ 0 integers, then B2k+1+r(k) = B2k+r. It follows
from (3.10) that, for n ≥ 2k + 3,

Bn(k) = 6Bn−1(k)−Bn−2(k)− (−1)k+1

(
n− 3− k
n− 3− 2k

)
6n−3−2k.

Letting s0 = B2k+1(k), s1 = B2k+2(k), . . . , sn = Bn+2k+1 and suppose that

r0 = r1 = 0 and rn = (−1)k+16n−2
(
n− 2 + k
n− 2

)
. It is easy to deduce the

generating function of the sequence {rn} as G(t) = (−1)k+1t2

(1−6t)k+1 . Therefore by

Lemma 4.1, the generating function of the incomplete balancing numbers sa-
tisfies the following:

Uk(t)(1− 6t+ t2) +
(−1)k+1t2

(1− 6t)k+1
= B2k+1 + (B2k+2 − 6B2k+1)t,
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where Uk(t) is the generating function of the sequence {sn}. It follows that
∞∑
j=0

Bk(j)t
j = t2k+1Uk(t). In the proof of the identity (4.20), we use the follo-

wing facts:
For 0 ≤ n < 2k, Cn(k) = 0, and for other values of n and r ≥ 0 integers then,
C2k+1+r(k) = C2k+r. It follows from (3.16) that, for n ≥ 2k + 2,

Cn(k) = 6Cn−1(k)− Cn−2(k) + (−1)k+2 3(n− 2)

(n− 2− k)

(
n− 2− k
n− 2− 2k

)
6n−2k−3.

Letting s0 = C2k(k), s1 = C2k+1(k), . . . , sn = Cn+2k and suppose that r0 =
r1 = 0 and

rn = 3.6n−3(−1)k+2n− 2 + 2k

n− 2 + k

(
n− 2 + k
n− 2

)
.

The generating function of the sequence {rn} is G1(t) = (−1)k+23t2(2−t)
(1−6t)k+1 . Again

from Lemma 4.1, the generating function of the incomplete Lucas-balancing
numbers satisfies the equation:

Uk(t)(1− 6t+ t2) +
(−1)k+23t2(2− t)

(1− 6t)k+1
= C2k + (C2k+1 − 6C2k)t.

Finally, we conclude that
∞∑
j=0

Ck(j)t
j = t2kUk(t). �
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