library(curl) ##You will need to load the R package "curl" to use this cleaning code ##Stroop Data (Data Set 1) filename <- curl("https://raw.githubusercontent.com/PerceptionCognitionLab/data0/master/contexteffects/FlankerStroopSimon/LEF_stroop.csv") stroop <- read.csv2(filename, header=TRUE, dec=".") stroop$cond <- as.numeric(as.factor(stroop$congruency)) #congruent -> 1, incongruent -> 2, neutral -> 3 ntrial <- length(stroop[stroop$ID == stroop$ID[1], 1]) nsub <- length(unique(stroop$ID)) stroop$trial <- rep(1:ntrial, nsub) stroop$rt <- stroop$RT/1000 #rt data in seconds stroop <- stroop[stroop$rt > .2 & stroop$rt < 2, ] stroop <- subset(stroop, accuracy == 1 & cond != 3) ##Simon Data (Data Set 4) filename <- curl("https://raw.githubusercontent.com/PerceptionCognitionLab/data0/master/contexteffects/FlankerStroopSimon/LEF_simon.csv") simon <- read.csv2(filename, header=TRUE, dec=".") simon$cond <- as.numeric(as.factor(simon$congruency)) #congruent -> 1, incongruent -> 2, neutral -> 3 ntrial <- length(simon[simon$ID == simon$ID[1], 1]) nsub <- length(unique(simon$ID)) simon$trial <- rep(1:ntrial, nsub) simon$rt <- simon$RT/1000 simon <- simon[simon$rt > .2 & simon$rt < 2, ] simon <- subset(simon, accuracy == 1) ##Flanker Data (Data Set 7) filename <- curl("https://raw.githubusercontent.com/PerceptionCognitionLab/data0/master/contexteffects/FlankerStroopSimon/LEF_flanker.csv") flanker <- read.csv2(filename, header=TRUE, dec=".") flanker$cond <- as.numeric(as.factor(flanker$congruency)) #congruent -> 1, incongruent -> 2, neutral -> 3 ntrial <- length(flanker[flanker$ID == flanker$ID[1], 1]) nsub <- length(unique(flanker$ID)) flanker$trial <- rep(1:ntrial, nsub) flanker$rt <- flanker$RT/1000 flanker <- flanker[flanker$rt > .2 & flanker$rt < 2, ] flanker <- subset(flanker, accuracy == 1 & cond != 3)