EE219C SPRING 2003 FINAL PROJECT REV2.0 1

Formal Refinement Verification in Metropolis

Douglas Densmore
University of California, Berkeley
densmore@eecs.berkeley.edu

Abstract=When building system level models of computer sys- Previous work in the area of model checking these types of
tems, often it is advantageous to begin with an abstract modiéor ~ systems has included [12] which examines how to represent
the purposes of simulation or initial behavior verification. How- process network structures, [4] and [9] which examine how to

ever, once this abstract model has served its purpose, a mode- . - . . .
tailed, less abstract model should replace it to give not ogla more use Co-Design Finite State Machines for Functional Equiva-

“realistic” performance estimation but also bring the model closer lence. [11] creates a way to look at analysis of C programs

to a possible physical implementation for reasons such assthe- for source-to-source transformations and was useful imkthi

sis. However, in qrder to make this refinement, one mUSt be as- ing how to represent the structure of programming languages

sured that the refined models conform to the behavior of their Each of these sources provides some insight and background

abstract counterparts. This paper introduces the beginnig of a

framework for the Metropolis Design Environment which begins Into hovy to tr_"nk about Ve”fy'”g struqtures in programs e$é

to verify this refinement. helped identify that the key to this project was to have a ekth
ology in place with a compact data structure which was flexibl
allowed for abstraction, and which can be evaluated effilsien

|. INTRODUCTION

As computer systems become more and more complex, &b- YAPl and TTL Models
straction is used to simplify many portions of the desigmint One clear motivating example for the need for refinement in
selected behaviors needed at that particular point in aydesiMetropolis involves the YAPI (Y-Chart API) [6] and the TTL
These behaviors reflect the necessary information to pdocé@ask Transaction Level) Libraries. These are both process
with the design while not hindering the designer with tediouvork based FIFO libraries. In Metropolis, the YAPI librargh
details or overly complex interactions. As the design pesges unbounded FIFO-like elements while the TTL library attesnpt
however, those details are added back into the design as tihé&e a refined version withoundedfifpyapi2TTL TTL2yapj
level of abstraction decreases. The abstract componemts @ind rdwrthresholdelements. The boundedfifo simply is the
design must be replaced with their more detailed countespastorage mechanism now with a fixed size. The rdwrthreshold
Key in this transformation is that the replacing componelots element acts as the coordination for access to this elerkéent.
not introduce behaviors that were not present in the alistraally, yapi2TTL and TTL2yapi are used for the refinement in-
system. It is the process of ensuring that the set of possildeface in the refined netlist similar to figure 1.
refined behaviors are a subset of the abstract behaviorgsthat During the use of these elements in a multi-media applica-
refinement verification. tion exercise in Metropolis, several bugs were discovefbis

The Metropolis Design environment [5] is particularly indrew attention to the fact that refinement checking is a atuci
need of such a verification procedure. Metropolis is a framelement as the design process becomes more complex and spec-
work based aroundmeta-modeénforcing a semantics involv- ifications are adhered to in @ua hocmanner.
ing the separation of communication, computation, anddieor This paper goes on to demonstrate a particular methodology
nation activities. From this meta-model there are path#éte s on much smaller models then either the TTL or YAPI library el-
ulation, analysis, and synthesis tools. Metropolis hasaat pements. The flow is not currently mature enough for a model as
of its syntax and semantics the notion of successive refinemeomplex as TTL or YAPI but the overall flow and goals will not
Figure 1 shows briefly how refinement is used currently. change when moved to this issue. Ultimately an example file
provided with the Metropolis distribution and a test file wer
used as will be shown in section VI. However, it is this back-

/*introduce to the netlist(this), ground which gave rise to this project.
and object for refinement(ref_obj)*/
refine(ref_obj,this);

//1n Metropolis Netlist

B. Purpose of paper

["redefine the connects The purpose of this paper is to detail the initial tool chain

so that the refinenent input

and outputs map to the abstracts ports*/ and methodology for verifying that one Metropolis Model is

refineconnect (this, src_connect(ref_obj,out), a refinement of the other. Section Il formally introduces tvha
port(ref_obj,out), abs_out); fi ificati . Secti 1-A h bl .

ref i neconnect (t hi s, src._connect (ref obj,in), refinement verification is. Section II-A states the problem i
port(ref _obj,in),abs_in); terms of the Metropolis Meta-Model. Section Il describles t

process of writing a Metropolis backend to create the stinect
Fig. 1. Current Metro Refinement on which refinement verification would be based. Sections IV

EE219C SPRING 2003 FINAL PROJECT REV2.0 2

and V discuss two important tools in this investigation.diiy ‘lme oo Galls
sections VI, VII, and VIII detail the results, conclusioras)d Process M onpots |
future work respectively. 0

NG

Il. REFINEMENT FSM °

Provides

The notion of refinement verification for this paper stems ‘ | Services
from that of Hierarchical Verification in [2]. This projeceb Internal T
gins with Hierarchical Verification as the foundation anddiro ?ﬁg%‘g‘;g Ports

fies it slightly for this project. [2] uses the teiimplementation
whereas we will use the terrafinemento mean the same thing. , _
We will define the problem as follows: Fig. 2. Function Calls to Media as Observable Variables
A model is generically defined as an object which can gen-
erate a set of finite sequences of behavi@sOne of these ysed to determine refinement. ace,; can be obtained by
possible finite sequences, is considered a trac@, Given a trayersing this structure described next.
modelX and a modeY, X refines the modeY, denotedX </
Y if given a tr_apeﬁ of X then the projectiom[ObsY] is a trace B. Control Flow Automata in Metropolis
of Y. Atrace,a is considered a sequenced set of observable val-) o o
ues for a finite execution of the module. A projection of agrac 1he key structure in this investigation is the Control Flow
a[ObsY], is the trace produced on Modutdor the execution Automaton (CFA) representation of a Metropolis Model.
which createdi over the Observable variables %f The two Metropolis has amction Automataspecification underlying it
modulesX andY aretrace equivalentx ~%¢f v, if X <fef y [5] but this provides much more information than is required
andY <Ref X ’ - and its structure is not suited to use in our refinement saenar
The answer to the refinement problexY) is YES if X re- A CFA is defined as a very much like [8]. Itis & tupteQ, do,

fines Y and otherwise NO. X, 0p,—>. , _ _
Qis afinite set of control locations. These will be determined

) o) by the Metropolis model structureg ¢ the initial control loca-
A. Refinement Verification for Metropolis tion, X is a set of variables, and Op are operations which denote

Building on the generic refinement definition given in settio(1) function calls to media (2) basic blocks of instructistest-

II, we have defined the refinement problem in Metropolis witlng (3) basic block of instructions ending. This ending ard b
a discussion on the syntactic conditions and trace defmitio ginning notion is taking from thAction Automataemantics. A

1) Syntatic Conditions: [2] frames the refinement condi-basic block is taken in the traditional sense, meaning acsect
tions in terms of theeactive module§l] syntax and puts re- of code in which there is no conditional execution which coul
quirements on their variable structures for each model to hesult in a different execution sequence. A basic block Bimp
compared. For the similar syntactic conditions for Metrop@ould be viewed abstractly as a function call. It is for tléa-
lis models, giverX <%/ Y, are thatYi,puts C Xinputs @nd son that the start and end are denoted. This way, the CFA could
Youtputs € Xoutputs- ESSentially this simply requires that be augmented with the body of the function call, inserteilas
have all ofY's inputs and outputs (if not more). This could behe beginning and end portions.
viewed as simply a naming issue if you require the same or-An edge (q, Op, Q) is a member of a finite set of edges and
der and number of corresponding inputs and outputs for eable transition relationship;-, is defined as (< Op x Q). A
model. edge makes a transition based on the Op present’q.

2) Trace Definition: As mentioned previously, a tracg,is Ideally an CFA is created which represents the model and
considered a sequenced set of observable values for a fieite €orresponding automata are created which represent ttee sta
cution of the module. In the case of Metropolis, the key obserof variables in the automata. For example a model may have a
able values that we are concerned withfarection calls to me- loop which is checks the value of a particular variable. TRAC
dia. This paper will refer to a trace consisting of function sallwould have a variable; € X, which has an automata which can
to media as dracey;, where the “M” stands for “Metropolis”. be queried as to the value of that variable to determine what
Due to the semantics of Metropolis, processes must commugdlges can be transitioned. For the purposes of this project,
cate strictly via media. Ultimately the behavior of a prexean these automata are not formally defined nor are they automat-
be characterized by the sequence by which it makes these cédlally generated. Figure 4 shows one possible representati
Syntactically this results in an interface call attachea partic- that could be used to show the incrementing of an integer with
ular port. Figure 2 shows the process and medium interacti@nfunctional range of 0 to 2.

This shows what is observable to the rest of the system is thisFigures 3 and 4 demonstrate a code snippet and the resulting
process’ use of the media interface. Metropolis CFA as defined in this paper.

In order to characterize the Metropolis tradeacel/, the Once a CFA is defined, @racey; is nonempty wordi; .,
key structure to be obtained from the model is the control floawver the alphabet o control locations such that &~ a;1
graph concerning the ways in which these sets of observafileall 1 <i <n.
events can occur. Once this structure is cre&ede Equiva- Naturally the potential for a CFA to be quite large is a con-
lenceconcepts such aisimilarity andSimilarity [2] could be cern. As you will see in the description of the backend it is

EE219C SPRING 2003 FINAL PROJECT REV2.0 3
bounded by the nodes in the Abstract Syntax Tree created by Hypothetical Automaton for X variable

Metropolis compilation which could be very large. However
this can be reduced further by heuristic grouping of nodes to x-o X=1 X=2

create control locations as will be shown.

Control Location 1

Automaton for O el Gomta Location
I1l. CFA BACKEND Model ‘oo
The Metropolis Design Environment is designed around the
concept of aneta-modehas mentioned previously. This allows emu§$$§e:‘§é’|§2f‘32cim
a ey . . . while loop
for the initial model to be decomposed into an intermediepe r
resentation and then fed to a number of different tools dalle X<2 X>=2
backendsThis is demonstrated roughly in the structure shown Contl Locaton S
in figure 5. As you can see the model is parsed intd\bstract Toroup Tpe Node: (Group Typo Node:

Syntax Tre¢AST) and that AST is interpreted by the backends pot1 calRead()+
to generate another representation with semantics fohanot S
tool while maintaining some relationship to the originaldeb poup Type Note: None

The creation of a backend to generate a CFA as described ear- pg1 callRead()
lier was the primary work of this paper.

Control Location 8
Group Type Node: None
Ending of basic block

Control Location 5

The CFA backend traverses the AST and identifiestiaes Group Typo Node: Colecion

of the AST. Itis composed of two files: Xer+(4)
« CFABackend.java Control Location 6 Gontrol Location 9
« CFACodegenVisitor.java © o catocton) End i odvrts
CFABackend.java is what is called when the backend-is X++(-)

vokedand actually writes to various files the results of te
itor functions The file CFACodegenVisitor.java actually con- ——

tains the visitor functions. The visitor functions traverthe Group Type Node: one

AST and determine what should happen at each type of node.

There are _0vei160 differgnt node typesthat can make.up aN g 4. Resulting CFA for Code Example

AST. It is in these functions that the CFA structure is deter-

mined. In particular this is true when visiting what this ject

introduces assrouping Node Type€ach AST node generates « Control Nodes - these include AwaitStatementNode,
its own location structure. Groups of these belong tgrmaup AwaitGuardNode, LoopNode

location structure Each group location structure each contains « Variable Nodes - these include ThisPortAccessNode
exactly one node which is a member of tli&ouping Node Also, the CFA internal structure is able to be created in one
Types These sets of group location structures with one uniqpass through the Metropolis Model code so the running time
node of the Grouping Node Types are what constitute a cahis O(Nodes Traversed with Visitor Functionsyhere visitor

trol location,Q, in the CFA. All of this is stored in an internal functions< AST nodes types in code.

list structure which can be traversed itself. It is this hetio

grouping which prevents the size of the CFA from be®@ST A Visual Representation

Nodes in Modeland rathe©(Grouping Node Types in Model)
which is substantially smaller in practice. In order to hévis ple visual representation as shown in figure 6

reduction theSrouping Node Typeare currently defined as: This is simply for debugging purposes and allows the user to

« Structure Nodes - these include ProcessDeclNode, Coge not only what the structure of the CFA is but also examine

pileUnitNode what individual nodes composecantrol location This infor-
mation can be used to redefine whabeuping Node Typés
and also see the effects of different heuristic choicesifoug-
ing. TheGroupfield is an integer identification of what group
this is. In turn this corresponds to a control locati@nin the
CFA. TheParentsfield is a set of integers which define which

The first and most trivial result of the CFA backend is a sim-

/I sanpl e code sni ppet

process exanple {
port Read portl;
port Wite port2;

voi d thread(){ groups are the parents of this groupypesis a set of integers
int x =0 which are associated which each node to identify it (as défine
while (x<2){ by the AST node types). Thaputsfield denotes what input

port1.call Read();
X++; }
port2.cal I Wite();

variables must be required to transition from this groupe Th
Outputsfield denotes which output variables will be present

}
}

Fig. 3. Metro Code Example

(go “high™) when you transition from this nodeéMisc is used
to hold such information as if arithmetic nodes are visiteel (
a PlusNode denoting a possible incrementing of a varialile) o
other information used to build the CFAlamesis simply a

EE219C SPRING 2003 FINAL PROJECT REV2.0 4

list of Strings which indicates what types nodes make up th%?gﬁi S?’)

group location (corresponding to the type field; easier &alye Types: 12

And finally theCond Codsdield indicates which type of condi- | nput s: i n1

tional node was visited for the group (i.e. LoopNodes, Awaiut puts: #can be bl ank
StatementNodes, etc) and is internally defined to idenkigy tM sc: #can be bl ank
branching structure of the CFA. The “arrow” like symbols ar ”gséb'aggp'\?de

used where there are multiple children. This can be produce | ' |

in one pass of the internal list structure of the CFAGICFA Vv Vv

Control Locations)

. . . Fig. 6. CFA Visual Representation
B. Finite State Machine Representation 9 P

The second more functional result of the CFA backend, 7! SS File
that it produces a Finite State Machine representation ef th'o 2 zloafgtn ngztm
CFA. The inputs to the finite state machine represent informas 5 #st ate count
tion provided by other automata to the CFA model (such asthg 2 #next state equations
variable automata) and the outputs are the function calissto #i nputs current_state next_state outputs
dia. This is formatted as a KISS representation. An examiple®t0 s1 s2 0101
KISS is shown in figure 7. 020 s2 sl 1010
This format was chosen for two reasons: (1) It is easily pro-
duced from the internal list structure (2) it can be read by-vary, 7 kiss Representation
ous tools such as SIS [7]. SIS in turn can produce other famat
such as BLIF, PLA, EQN, etc. Of particular interest is BLIF
whose close relative EXLIF can be read by FORTE [10] as wils very inexpensive to createeactive modulevhich models an

be described in section IV FSM (2) It allows for non-deterministic behavior which is not
Once the initial data structure is created by the backend takowed byKISSmodels provided t&IS (3) It can be read by
algorithm to create a KISS file is as shown in figure 8 tools such adMOCHA[3]. MOCHAallows a rich set of model

The running time of this algorithm i©(2 * CFA Structure checking algorithms to be run on ti#A model that are useful
Groups) Essentially you have to traverse the structure once Bth for refinement and other verification tasks.
create the lists of inputs and outputs. Then you must traviers ~ The first point for making this representation was that it was
again to actually generate the KISS file based on that inferniexpensive to do from the FSM representation. Figure 9sgive
tion. Each line of KISS requires that you examine the input arthe algorithm to do so.
output lists Comp|ete|y to see if they contain input or ottgu This can be done in one pass of the KISS file. The variable
that location. declaration initializations for the module are simply frahe
KISSinput (.i), output (.0), and state (.s) declarations. Trtie
command is simply another listing of the variables. Thedatg
part of the file, theupdatecommands, correspond one-to-one
The third and final result of th€FA backends a“reactive with each line in theKISSbody. The running time of this is
module”[1] file. This is a modeling language for describing theaturally O(KISS file body)
behavior of hardware and software systems. This is produced’he second reason for using this representation, non-
as an additional benefit of the backend for three reasonst (1jeterminism, is inherent in the fact that multiple guardgyma
betrue. Also inherent is that the union of all guard commands
does not have to equal the entire space of the inputs (i.e. it
@ can be partially specified). Naturally, KISS currently has d
terministic behavior so it will result in a reactive moduléhw

C. Reactive Module Representation

Meta model AJ . . . : .
ceoi,n,;ﬁef [Front end | deterministic behavior. However, there is nothing prewvena
reactive module from being produced from a KISS file which
would not run in SIS. A CFA could be produced that has non-

I deterministic behavior simply with a modification to the kac
end.

% <{> % % The third and final reasoMOCHA will be discussed in sec-
tion V.

Simllglzllion Syr1|lohoelsi5 Veri:i)c:l‘ion EIaboTator IV FORTE
SystemC , Java, Promela, Prior to the integration oReactive Moduleinto the CFA
C++ simulator QSss

Backend the project was targeting a tool called FORTE.
FORTE [10] is a tool provided by Intel Corporation which is
Fig. 5. Metropolis Compiler Structure a collection of several tools. These dfenctional Language

EE219C SPRING 2003 FINAL PROJECT REV2.0

Input: CFA Data StructureD
Output: KISS File
/[create unique inputs list (1)
V group locations € D{
for each inpuf € i{
if j ¢ unique input listL, add;j}}
/lsame procedure as (1) for outputs using a different list
/ICreate the declarations section
Simply output the size of the input and output lists for thand .o
portions. The .s is the size of the structirand .p is how many lines
you process when done making the body.
/[Create the Body
/linput portion of the kiss line (2)
v group locationsi € D{
v elementse € IL{
ifeciwritel
else write ¢
Output currentgroup and childgroup
/lsame procedure for output values as (2) for kiss line

}

Fig. 8. Algorithm for KISS construction

Input: KISS File
Output: Reactive Module File
create new Module:filename>
Illists of the external, interface, and private variables
for Vi € FSM Output
new interface variable
for Vi € FSM Input
new external variable
for Vi € FSM State
new private variable
create new atom cfa
controls<each interface variable, each private variable
reads<each external variable, each private variable
init
<allinterface and private variables = false except firsestatiable-
update
<for each line of the KISS representation the guard is thepjate
input = true and that current state = true, the result is the siate
variable = true and the appropriate outputs =true

Fig. 9. Algorithm for Reactive Module construction

(FL), Symbolic Trajectory Evaluatio(6TE), FSM Logic Data

//sis comrands

read ki ss <fil enane>
state_minimn ze

state_assign <nova> or <jedi>
source script.rugged

wite blif <filenanme>

BLIF to EXLIF Manual Edits
« Remove starkiss, endkiss, and kiss code embedded in file
« Remove external don't care section (.exdc)
« Add to the .latch definitions a clk signal and the type of floig it
(rising, falling)
« Remove the .latclorder and .code portions

Fig. 10. SIS Commands and EXLIF requirements

Input: Two EXLIF Models,A andR with State Spac& 4 andXr
Output: Answer to the Refinement QuestidR, (A

Letqa e Zaand g € g

Given a set of states, the ®t5° is (X4 UXg) \ S

Let Z be a vector of inputs common to botandR

Let 54(qa, ¥) be a vector of outputs fok given the state g and the
inputs®

Let 7r(qr, ¥) be a vector of outputs fdR given the state g and the
inputs®

Let E,, be a set of sets of states reachabla input sequences

Leto be a set of set§(ga, gr) | g4 € X4, 0r € Xr}

Let Tr(qa, #, ga’) = true if there is a transition from gto g4’ under
input

Letpre(c) = {(d4, 9r)| 3 Z: Tr(ga, %, d4’) N Tr(dr, Z, dr’) N (g4,
qr’) € o}

//Start of Algorithm

Eo = @

El(%A- ar) =V Z, 74(Qa, Z) (O ¥r(Qr, 7)

do{

k=k+1

Ex+1(da, Gr) = Ex(da, gr) \ preEf (0a, ar)
until (Ek+1 = Ek)
if (Vdr € Xr, 3 qa suchthat (q, qr) € Ex)
ReturnYES
else

ReturnNO

Fig. 11. Algorithm for FORTE Refinement Check

V. MOCHA

mode] and some circuit drawing tools. FORTE works on circuit Since the CFA Backend produces Reactive Module

descriptions of models. This is was a major factor in influen®IOCHA can be used to do refinement checking. However, this

ing the decision to reduce the CFA into a FSM representatiofequires some manual preparation of the file produced by the
Once a model had been created as a KISS file, that KI®8ckend. [3] describes refinement asaze inclusiorproblem.

file was given to the SIS tool. This was used to create a BL[Fhis amounts to:

file with the script in figure 10. This representation was very 1) For every initial states of X, the projection ofs to the

similar to the EXLIF file format used by FORTE. Some simple
modifications allowed this to be converted to EXLIF and imtur
read by FORTE also shown in figure 10. These manual edits

could be worked into a Perl script in the future.

variables ofY is an initial state of.
2) For every reachable state ®bf X, if X has a transition
from stot thenY has a matching transition.

The search can be done symbolically or emuneratively with

Once the models are converted to EXLIF files FORTE calOCHA. In the case that the test fails it generates a coun-
begin to process them for refinement. The algorithm is in #guterexample of a trace oX which is not a trace of. This may

11.

be computationally complex. Therefore some restrictiaies a

The running time for such an algorithm is approximatelplaced on the modules, to verif/ <</ Y.

O(m e n) wheren is the number of states amd is the tran-

1) The moduler has no private variables

sitions. This algorithm and corresponding code was notedea 2) Every interface variable of is an interface variable of.

as part of this project but supplied by Intel.

3) Every external variable of is an external variable of.

EE219C SPRING 2003 FINAL PROJECT REV2.0 6

Recalling our requirements for refinement, the 2nd and 3rd Refinement | MOCHA Result | FORTE Result
conditions are already met. However, a module created tth t gg:?zTeTS;g) EI(E)S Egzgmg
CFA Backend will have private variables representing state (XX, X’X2) NO NO
The solution for this is to create\itness ModulgW. This is a (XX2, XX) NO NO

module whose interface variables are the private variafl¥s
Also, Wshould not contain any of the external variableXain
turn, a moduleY’, will be created with those private variables
declared as interface variables. Once this is the caseXiiéh
=<fef Y’ as shown in [1]. The procedure is naturally:
1) CreateY’ from Y by changing private variables to inter-the flow requires that you submit the KISS file to SIS. The gcrip
face. in figure 10 is run to assign state encoding and logic to the sym
2) Define awitness ModuleW, whose interface variablesbolic states in the KISS file. This can then be written out in
are the private variables &f but exclude the observableBLIF format. Then the slight manual edits as described previ
variables ofX. ously have to be done to the BLIF file to convert it to EXLIF for
3) CheckX||W <%¢f Y’ with MOCHA FORTE. Finally you run NEXLIF2EXE (provided by FORTE)
Since this not automatic this is a potential bottleneck i tho convert the EXLIF to an executable format for FORTE.
flow, since the creation of Witness Moduleequires creativity ~ This flow was demonstrated using a file from the Metropo-
on the part of the user. In addition the parallel composition lis examples distributionXX.mmm and a small example file
also manual. created solely for this projecffestmmm These files were
compared with modified version¥XX2.mmmand Test2.mmm
VI. RESULTS which should not be a refinement and one which should be a
refinement respectively. The two “XX” files are shown in the
f@ppendicesAlso in theappendiceare an example of a snippet
of the visual representation, reactive module code for ditieo
modules, and the KISS and BLIF code generated. This gives a
feel for the various representations. The “Test” files angody
Model Refinement Verification Flow \ not provided as to not overwhelm with information.

TABLE |
REFINEMENT CHECKING OUTCOMES

In order to demonstratef@oof of concepfor our methodol-
ogy, we assembled the previously described componentain
complete flow as shown in figure 12.

' The results (Table 1) was that the two filesX.mmmand
Metropolis Mads! (mmm) XX2.mmm were indeed found to not be a refinement, (XX,
Reactive @ Visual XX2) = NO. This was verified by both with MOCHA and
_ = Bi’;:nd — O FORTE. The two files',l'est.mmnan_dTestZ.mmm\/vere found
Vool H to be a refinement, (Test, Test2) = YES, by MOCHA. The re-
N sults for FORTE for these files are still pending as of theingit
Kiss file of
%j Editand CFA of this report. While these are trivial models, this is erreou
Parallel @ aging for two reasons (1) The flow works from start to finish
Compose SIS and (2) It can indeed begin to identify potential refinememis
XIW < V92 state_assign scrt models which are not refinements.
@ {} As mentioned, the FORTE flow contained code provided
BLIE file from Intel. It is due to this limited access that the resuligen
MOCHA TS not yet been attained for the “Test” files. The results for the
& other files were as expected and increase our confidence in the
NEXLIF2EXE ﬂOW
Modi%eme The overall coding effort was primarily in the CFABack-
@ end.java and CFACodegenVisitor.java files. There-i4000
lines of codebetween the two. They are built right into the
K FORTE / existing Metropolis infrastructure so they can be run liky a
other current backend.

Fig. 12. Refinement Verification Flow
9 VIl. CONCLUSIONS

As you can see from figure 12, the process begins with aThe conclusion of this project is that there is now a flow in
Metropolis Model. Using the metropolis compilation enginplace to check the refinement of Metropolis Models. This flow
you can simply run it through the CFA Backend automaticallyvas successfully shown on a model included with the Metropo-
This will return areactive module fileandKISS file and avi- lis distribution package. Currently this flow only works oery
sual representationThe reactive module is fed to Mocha busimplistic models but in order to remedy this only the CFA
first it must be augmented withitness modulenanually to do Backend component needs to be made more robust. The tool
refinement checking on it. This was described in section \& Tlehain will function, from the more robustly modeled CFA, cor
visual representation is simply for viewing. The main tradk rectly and should need only minor adjustments. The flow is

EE219C SPRING 2003 FINAL PROJECT REV2.0

also nicely automatic for a large portion. A small scriptsldo [7]
be able to take care of the edits needed to the BLIF file. The
only major obstacle to complete automation is the creatfon o
the Witness Module This is a small tradeoff in return for the [8]
power and future usefulness of the MOCHA tool.

This project began with not only the absence of a tool chain
but also a methodology. Regardless of the performance ®f thi
initial flow, the methodology is now in place and can be built!
upon and made more robust to handle issues as they will in-
evitably arise. This methodology hopefully has as its fand
tion sound model checking practices while at the same ti
taking advantages of heuristics and abstractions to taingget [11]
problem domain.

[12]
VIII. FUTURE WORK

Primarily the future work will be concerned with the devel-
opment of the CFA internal data structure. This is not ondy th
most complex and semantically difficult of all the portiorfs o
the flow but it also is the foundation for the entire flow. The

E. M. SENTOVICH, K. J. SNGH, L. LAVAGNO, C. MOON, R. MUR-
GAl, A. SALDANHA , H. SAv0J, P. R. SEPHAN, R. K. BRAYTON, AND
SANGIOVANNI-VINCENTELLI, A. SIS: A system for sequential circuit
synthesis. Tech. rep., University of California, Berkel&992.
HENZINGER, T. A., JHALA, R., MAJUMDAR, R., NECULA, G. C.,
SUTRE, G.,AND WEIMER, W. Temporal safety proofs for systems code.
In Proceedings of the 14th International Conference on Coepéiided
Verification (CAV)(2002), Lecture Notes in Computer Science 2404,
Springer-Verlag, pp. 526-538.

HsIEH, H., BALARIN, F., LAVAGNO, L., AND SANGIOVANNI-
VINCENTELLI, A. Syncronous approach to functional equivalence of em-
bedded system implementatiodEEE Transactions On Computer-Aided
Design of Integrated Circuits and Systems (Aug 2001), 1016-1033.

] NAOR, N., LERMAN, Y., AND KESSLER M. Forte/fl user guide. Tech.

rep., Intel Corporation, Jan 2003.

NECULA, G. C., MCcPEAK, S., RAHUL, S. P. AND WEIMER, W. CIL:
Intermediate language and tools for analysis and transftiom of C pro-
grams.Lecture Notes in Computer Science 232a02), 213-228.
STREHL, K., AND THIELE, L. Symbolic model checking of pro-
cess networks using interval diagram techniques. Pitaceedings of
the IEEE/ACM International Conference on Computer-Aideesibn
(ICCAD-98)(San Jose, California, 8-12, 1998), pp. 686—692.

APPENDIXI
METROPOLISMODELS

FSMandReactive Modulereation works acceptably and corpackage test;
rectly provided that the CFA structure is robust and corre%; ocess XX {

Currently the CFA backend has a limited number of visitor
functions. This needs to increase if more complex modules
(having more complex and diverse AST nodes) are going to
be examined. This initial flow was created with the example
model in mind and the visitor functions and heuristics reflec
this. This will be the bulk of the future work. However, it widu
also be interesting to explore some more of the featurei¢cpar
ularly relating to non-determinism, associated with thective
modules. Metropolis has the notion of non-determinism and
naturally this will not work with the current FSM structute-
stead on adding some constraint to the FSM, perhaps MOCHA
and reactive modules could exploit this. Naturally, thetrstap

for larger models is to get this to work for the TTL and YAPI
libraries.

ACKNOWLEDGEMENTS }

Thanks to Felice Balarin, John Moondanos, Roberto
Passerone, Harry Hsieh, and Yoshi Watanabe for their viduab

port | ntReader portO;
port IntWiter portl;

public XX(String name) {}
void thread() {
int w=0, r =0;

while (w< 30) {
bl ock(CQuter) {
awai t {
(portl. nspace() > O;
portl.intWiter; portl.intWiter)({
portl.witelnt(w);
w=w+ 1;

}
(portO.nun() > O;
portO.int Reader; portO.intReader)
r = portO.readlnt();

input and guidance without which this project would not hav#ckage test;

been possible.

REFERENCES

ALUR, R.,AND HENZINGER, T. A. Reactive moduleg-ormal Methods
in System Design: An International Journal,I5(July 1999), 7—48.
ALUR, R., AND HENZINGER, T. A. Hierarchical Verification Draft,
Mar 2003, ch. 8.

ALUR, R., HENZINGER, T. A., MANG, F. Y. C., QADEER, S., RAJA-
MANI, S. K.,AND TASIRAN, S. MOCHA: Modularity in model check-
ing. In Computer Aided Verificatio(l1998), pp. 521-525.

BALARIN, F., HsiEH, H., JURECSKA, A., LAVAGNO, L., AND
SANGIOVANNI-VINCENTELLI, A. Formal verification of embedded sys-
tems based on cfsm networks. Pnoceedings of the 33rd annual confer-
ence on Design automation conferer{t896), ACM Press, pp. 568-571.
BALARIN, F., LAVAGNO, L., PASSERONE C., SANGIOVANNI-
VINCENTELLI, A., SGROI, M., AND WATANABE, Y. Modeling and
designing heterogeneous systems. Tech. rep., UniverkiBalifornia,
Berkeley.

DE Kock, E. A., SvITs, W. J. M., VAN DER WOLF, P., BRUNEL,
J.-Y., KRUIJTZER, W. M., LIEVERSE, P., ViISSERS K. A., AND Es-
SINK, G. Yapi: application modeling for signal processing syste In
Proceedings of the 37th conference on Design automg#660), ACM
Press, pp. 402-405. }

(1]
(2]
(3]

(4]

(5]

(6]

process XX2 {

port | ntReader portO;
port IntWiter portil;

public XX2(String nane) {}
void thread() {
int w=0, r =0;

while (w< 30) {
bl ock(Quter) {
awai t {
(portl.nspace() > O;
portl.intWiter; portl.intWiter){
portl.writelnt(w;
portO.readlnt();
w=w+ 1;

}

(port0.nun() > O;
port 0. i nt Reader; portO.intReader)
r = portO.readlnt();

EE219C SPRING 2003 FINAL PROJECT REV2.0

APPENDIXII
VISUAL REPRESENTATIONSNIPPET FORXX. MMM

Goup: 5

Parents: 4 555

Types: 128 25 51 152

I nput s:

Qutputs: witelnt portl

M sc:

Narmes: Awai t Guar dNode Bl ockNode Cbj ect Fi el dAccessNode
Thi sPor t AccessNode

Cond Codes: 0 0 0 O

|
\Y

G oup: 6

Parents: 5 6

Types: 152 51

I nput s:

Qutputs: portl_end witelnt_end

M sc:

Narmes: Thi sPort AccessNode- End Obj ect Fi el dAccessNode- End
Cond Codes: 0 O

|
Y

APPENDIXIII
REACTIVE MODULE

// Reactive Mdule of Metro CFA
nmodul e XX is

external thread_input, w_input, r_input : bool

interface r, w, witelnt, portl, portl_end, witelnt_end,

readlnt, portO, portO_end, readlnt_end : bool

private s0, sl1l, s2, s3, s4, s5, s6, s7, s8, s9, sl11 : bool

atomcfa controls sO, sl1, s2, s3, s4, s5 s6, s7, s8, s9,

s11, r, w, witelnt, portl, portl_end, witelnt_end,
readlnt, port0O, portO_end, readlnt_end

reads thread_i nput, w_input, r_input, sO, sl1l, s2, s3, s4,

s5, s6, s7, s8, s9, sli

init

[1 true ->s0" :=false; s1' := true; s2' := false;

s3' :=false; s4’ := false; s5 := false; s6 := false;
s7' := false; s8 := false; s9 := false; sl11' := false;
r' :=false; w :=false; witelnt’ := false;

portl := false; portl_end := false; witelnt_end := false;
readlnt’ := false; port0 := false;

port0_end’ := false; readlnt_end := false;

updat e

[1 sO = true -> s0 := true;

[1 s1 =true -> sl := true;

[1 thread_input = true & sl = true -> s2' := true;

r’ :=true ; W :=true ;

[T winput =true & s2 =true ->s3 :=true;

[1 s3 =true -> s4" := true;

[1] s4 =true ->s5 :=true; witelnt’ :=true ;

portl := true ;

[1] s6 =true -> s6" :=true; portl_end := true ;
witelnt_end := true ;

[T winput =true & w.input =true & w.input = true
& s6 = true -> s7" = true;

[T r_input = true & s5 = true -> s8 := true;
readlnt’ :=true ; port0 := true ;

[1] s8 = true ->s9 :=true; portO_end :=true ;
readlnt_end := true ;

[1] s8 = true -> sl11’" := true;

APPENDIX IV
KISS HLE

#Kiss File for XX. nmmm

#Cener ated by CFA Backend

i3

.0 10

.s 11

.p9

Variabl e Order

thread wr *** r wwitelnt portl portl_end
witelnt_end readlnt portO portO_end readlnt_end
100 s1 s2 1100000000

010 s2 s3 0000000000

000 s3 s4 0000000000

000 s4 s5 0011000000

000 s5 s6 0000110000

010 s6 s7 0000000000

001 s5 s8 0000001100

000 s8 s9 0000000011

000 s9 s11 0000000000

.e
APPENDIXV
BLIF FILE
.nodel XX ki ss
.inputs INO IN 1 IN2
.outputs OUT_O OUT_1 OQUT_2 QUT_3 QUT_4 QUT_5
QUT_6 OUT_7 OUT_8 QUT_9
.latch v5.0 LatchQut_v3 0
.latch v5.1 LatchQut_v4 0
.start_kiss
i3
.0 10
.p 13
.s 4
.r SO
000 SO S1 0000000000
010 SO SO 0000000000
100 SO SO 1100000000
000 S1 S2 0011000000
010 S1 SO 0000000000
100 S1 SO 1100000000
000 S2 SO 0000110000
001 S2 S3 0000001100
010 S2 SO 0000000000
100 S2 SO 1100000000
000 S3 SO 0000000011
010 S3 SO 0000000000
100 S3 SO 1100000000
.end_ki ss
.latch_order LatchQut_v3 LatchQut_v4
.code SO 00
.code S1 11
.code S2 01
.code S3 10

.names LatchQut_v3 LatchQut_v4 [39] [30]
111 1

.nanes v5.0 LatchQut_v3 [39] [32]
001 1

.nanes LatchQut _v3 [40] [36]

11

.names IN 2 LatchQut_v3 [40] v5.0
1-- 1

-01 1

.nanes [30] LatchQut_v3 [40] v5.1
1-- 1

-01 1

.names IN.O OUT_O

11

.nanmes IN.O QUT_1

11

.names [30] QOUT_2

11

.nanes [30] OUT_3

11

.names [32] OQUT_4

11

.nanes [32] QUT_5

11

.nanes IN_2 OUT_6

11

.names IN 2 QUT_7

11

EE219C SPRING 2003 FINAL PROJECT REV2.0

.names [36] OUT_8

11

.names [36] OUT_9

11
_names INO IN_1
00 1

[39]

.names LatchQut_v4 [39] [40]

011
. exdc

_names INO IN_1

.nanmes IN.O IN 1

.nanmes IN.O IN 1

_names INO IN_1

1-1-- 1
-11-- 1
--11- 1
--1-0 1
.names INO IN 1
11--- 1
1-1-- 1
-11-- 1
--11- 1
--1-0 1
.nanmes IN.O IN 1
11--- 1
1-1-- 1
-11-- 1
--11- 1
--1-0 1
.names IN.O IN 1
11--- 1
1-1-- 1
-11-- 1
--11- 1
--1-0 1

_names INO IN_1

.names INO IN_1

.nanmes IN.O IN 1

11---

.nanmes IN.O IN 1

IN 2

IN_2

IN_2

IN 2

IN 2

IN_2

IN_2

IN2

IN2

IN_2

IN_2

Lat chQut _v3

Lat chQut _v3

Lat chQut _v3

Lat chQut _v3

Lat chQut _v3

Lat chQut _v3

Lat chQut _v3

Lat chQut _v3

Lat chQut _v3

Lat chQut _v3

Lat chQut _v3

Lat chQut _v4

Lat chQut _v4

Lat chQut _v4

Lat chQut _v4

Lat chQut _v4

Lat chQut _v4

Lat chQut _v4

Lat chQut _v4

Lat chQut _v4

Lat chQut _v4

Lat chQut _v4

v5.1

ouT_ 0

ouT 4

ouT 5

ouT_8

ouT_9

