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Abstract 

This in-depth analysis discusses the opportunities and 
challenges brought by the recent and the foreseeable 
developments of Artificial Intelligence into online 
platforms and marketplaces. The paper advocates the 
importance to support trustworthy, explainable AI (in 
order to fight discrimination and manipulation, and 
empower citizens), and societal-aware AI (in order to fight 
polarisation, monopolistic concentration and excessive 
inequality, and pursue diversity and openness).  
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EXECUTIVE SUMMARY 
Background 
 

Artificial Intelligence (AI) has progressed to the point where it is an essential component in near ly  
all sectors of today’s modern economy, with a significant impact on our private, social, and polit ical 
lives. AI refers to an ecosystem of models and technologies for perception, reasoning, interaction 
and learning. The return of AI to the limelight in the recent years is mainly related to learning from 
data, Machine Learning (ML), that made a jump ahead thanks to the emergence of Big Data. The 
mix is threefold: data reach the critical mass of examples to learn from, algorithms discover predictive 
patterns and patterns hidden in the data, the high-performance architectures succeed to compensate 
for the computing and storage resources needed. Based on this mix, AI managed to successfully 
tackle long-standing open challenges, such as understanding and translation of texts and speech, 
recognition of the content of images and video, and other tasks believed to require intelligence. 
Approximately ten years ago, it was noticed that some long-known learning models, hitherto 
ineffective to the mentioned tasks, if properly generalized and trained on a large set of example data, 
can make a qualitative leap. Indeed, such methods can learn, from the pixels of the images  or  from 
the words of the example texts, the general “concepts” that allow to recognize and classify accurately 
new images and new texts. 

The current stage of development of AI exhibits strengths and weaknesses. On the one hand, the 
learning capacity of AI models is growing, bringing extraordinary progress in robotic vision and 
autonomous driving, in automated text and speech translation, in medical diagnosis, in risk 
assessment, in predictive maintenance. On the other hand, the gap with other aspects of AI is 
growing, in particular, with reasoning and person-machine interaction, central aspects for the 
development of a human, ethical, and anthropocentric AI, that is the focus of the European approach. 
The opacity and nature of black boxes of AI models are growing, together with the risk of creating 
systems exposed to biases in training data, systems that even experts fail to understand. Tools are 
missing to allow AI developers to certify the reliability of their models. It is crucial to inject into AI 
technologies, ethical values of fairness (how to avoid unfair and discriminatory decisions), accuracy 
(how to provide reliable information), confidentiality (how to protect the privacy of the involved 
people) and transparency (how to make models and decisions comprehensible to all stakeholders ).  
This value-sensitive design approach, yet to be fully operationalised, is strongly needed for boosting 
widespread social acceptance of AI, without inhibiting its power.  

Furthermore, as increasingly complex sociotechnical systems emerge, consisting of many interacting 
people and intelligent and autonomous systems, AI acquires an important societal dimension. A key 
observation is that a crowd of intelligent individuals (assisted by AI tools) is not necessarily an 
intelligent crowd. On the contrary, it can be stupid in many cases, because of undesired, unintended 
network effects and emergent aggregated behavior. Examples abound in contemporary society. 
For example, using a car navigation to avoid a traffic jam on the main route can cause additional jams 
in the local alternative routes. In the field of opinion formation and diffusion, a crowd of citizens using 
social media as a source of information is subject to the algorithmic bias of the platform’s 
recommendation mechanisms suggesting personalised content. This bias will create echo 
chambers and filter bubbles, sometimes induced in an artificial way, in the sense that without the 
personalisation bias the crowd would reach a common shared opinion. Recommendations provided 
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by AI systems may make sense at an individual level but they may result in undesired collective 
effects of information disorder and radicalisation.  

The flow of information reaching us via the online media platforms and ecommerce marketplaces  is  
optimised not by the information content or product quality but by popularity and proximity to the 
target. This is typically performed in order to maximize platform usage. The recommendation 
algorithms suggest the interlocutors, the products and the contents at which we get exposed, based 
on matching profiles, promoting the most popular choices for people similar to us. As a result, we 
observe the appearance of the “rich get richer” phenomenon: popular users, contents and products  
get more and more popular. In the online marketplaces this would mean that a few bus inesses get  
the biggest share of the market while many have to share the rest. These businesses become the 
hubs of the network, gathering most of users’ purchases to the detriment of the vast majority.  In the 
social media, that would mean that certain popular peers or contents gather all the user’s attent ion, 
becoming the hubs of the social network. As a consequence of network effects of AI 
recommendation mechanisms for online marketplaces, search engines and social networks, the 
emergence of extreme inequality and monopolistic hubs is artificially amplified, while diversity of 
offers and easiness of access to markets are artificially impoverished. 

 

Aim  

 

There is a wide consensus that AI will bring forth changes that will be much more profound than any 
other technological revolution in human history. Depending on the course that this revolution takes, 
AI will either empower our ability to make more informed choices or reduce human autonomy; 
expand the human experience or replace it; create new forms of human activity or make existing jobs  
redundant; help distribute well-being for many or increase the concentration of power and wealth in 
the hands of a few; expand democracy in our societies or put it in danger. Our generation carries  the 
responsibility of shaping the AI revolution. The choices we face today are related to fundamental 
ethical issues about the impact of AI on society, in particular, how it affects labour, social interactions, 
healthcare, privacy, fairness, security, and markets.  

The current technological advancements and developments of AI that can occur in the near future, if 
driven along the path of a human-centric AI, could represent an important transformation factor for  
ecommerce/digital services and for the Internal Market. Novel AI platforms for ecommerce and digital 
services based on human-centric AI interaction mechanisms have the potential to mitigate 
monopolistic concentration, deliver more open and resilient markets, and better connect the 
diverse demands of European consumers to the diverse offer of European products and services, by  
fostering diversity “by-design”. AI-based recommendation and interaction mechanisms may help 
departing from the current purely “advertisement-centric” model, focusing on the interests of 
platforms in maximising intermediation revenues, to a systemic approach where focus is on the 
interest of citizens in accessing and sharing of high quality contents, the interest of consumers to 
broaden their choices and opportunities, and the interest of advertisers in broadening their audience 
and customer base. 

Within this landscape, the European strategy for the next-generation digital services and online 
platforms is of utmost importance, with impacts that will go far beyond consumer protection, 
towards shaping the digital society that will emerge. Coherently with the recent strategic white paper 
of the European Commission “On Artificial Intelligence – A European approach to excellence and trust”, 
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we recommend to develop the European provision on artificial intelligence in the area of ecommerce 
and digital services - in the context of reforming the E-commerce directive and introducing the 
Digital Services Act - with the aim to properly address and exploit the transformative impact of 
upcoming human-centric AI developments, to the purpose of social progress. Accordingly, our 
proposed recommendations to EU policy makers follow a double line of reasoning and 
interventions: topic-wise, and instrument-wise.  

Topic-wise, it is crucial to address and operationalise the following challenges:  

a) trustworthy, explainable AI in order to fight novel forms of discrimination and 
manipulation and empower citizens, and;  

b) societal-aware AI in order to fight polarisation and inequality and pursue diversity and 
openness. 

Instrument-wise, it is important to realise that the scientific and technological landscape is not yet 
fully mature to address all the open challenges discussed here. Therefore a mix of policies is  needed, 
that tackle the problem at three levels: 

a) a bold EU investment in fundamental and applied research in human-centric AI; 

b) a bold EU investment in creating novel online platforms and digital services embodying 
human-centric AI mechanisms (and/or in supporting the scaling of existing coherent 
initiatives); 

c) a coherent set of EU regulations concerning AI, big data and digital services, designed not 
only to seize the opportunities and mitigate risks, but also to inspire research & development 
in AI, big data and digital platforms towards an inclusive, equal and diverse society. 
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1. ARTIFICIAL INTELLIGENCE, BIG DATA, MACHINE LEARNING 

 

Artificial Intelligence (AI) has progressed to the point where it is an essential component in near ly  
all sectors of today’s modern economy, with a significant impact on nearly all areas of our private, 
social, and political lives.  

The term Artificial Intelligence refers to an ecosystem of models and technologies for  perception,  
reasoning, interaction and learning. The return of the term AI to the limelight in the recent years  is  
mainly related to this last aspect of learning from data: Machine Learning (ML) that made a jump 
ahead thanks to the emergence of Big Data. The mix is explosive: data reach the critical mass of 
examples to learn from, algorithms discover predictive patterns and patterns hidden in the data, the 
high-performance architectures succeed to compensate for the computing resources and storage 
needed. 

In this new spring, arriving after the long winter originating from the disillusionment of the eight ies ,  
AI managed to successfully tackle open challenges, such as understanding and trans lation of texts  
and speech, recognition of the content of images and video, and other tasks believed to require 
intelligence. Approximately ten years ago, it was noticed that some long-known learning models, 
such as artificial neural networks, hitherto ineffective to the mentioned tasks, if equipped with a huge 
number of internal variables (neurons) and associated parameters, and properly trained on large set  
of example data, suddenly can make a qualitative leap and are able to generalize, from the pixels  of 
the images or from the terms of the example texts, the general “concepts” that allow to recognize, 
classify, and accurately predict new images and new texts. A learning mode that requires new high-
performance computing paradigms. This frame, Artificial Intelligence = Big Data + Machine 
Learning, is widely confirmed today. 

As data-driven decision making becomes visible in everyday life, the interest around AI and Big Data 
is mounting. Society has shifted from being predominantly “analog” to “digital” in just  a few years :  
society, organizations, and people are increasingly interconnected. As a consequence of digitizat ion, 
data is collected about anything, at any time, and at any place. The spectacular growth of the digital 
universe, summarized by the term Big Data, makes it possible to record, observe, and analyse the 
behavior of people, machines, and organizations. 

KEY FINDINGS 

Modern AI is mostly learning from data. 

Pro:  

• ability to deal with unsolved problems requiring “intelligence”, such as understanding 
natural language and recognising contents of images. 

Cons:  

• other aspects of intelligence are still lagging behind, such as reasoning, adaptation to 
human environments and human-machine interaction; 

• quality of AI systems are totally dependent on quality of data. 
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The term Big Data has been used diversely in different communities, according to their topics of 
interest and priorities. A set of attributes that characterize Big Data: velocity, volume, variety and 
veracity, are often cited, and named the four V’s. Velocity relates to the streaming nature of data and 
its speed; volume is about the sheer size of such data, calling for filtering/compression strategies or  
special measure for storing and processing it; variety stands for heterogeneity of the data sources  
that can be involved, both in terms of formats and representation, and in terms of semantics; veracity 
points to data quality issues and trustworthiness of the information. In the recent discourse, a  fifth V 
has been added to the list, standing for value, aimed to emphasize the fact that turning Big Data 
sources and associated analytics tools into value (economic, social or scientific) is both important and 
far from trivial.  

Machine learning methods exploit large "training" datasets of examples to learn general rules  and 
models to classify data and predict outcomes (e.g., classify a taxpayer as fraudulent,  a  consumer  as  
loyal, a patient as affected by a specific disease, an image as representing a specific object, a post on a 
social media as expressing a positive emotion). These analytical models allow scientists to "produce 
reliable, repeatable decisions and results" and uncover "hidden insights" through learning from 
historical relationships and trends in the data. Machine learning tasks are typically classified into two 
broad categories, depending on whether there is a learning "signal" or "feedback" available to a 
learning system: supervised and unsupervised learning. In supervised learning tasks the computer  is  
presented with example inputs and their desired outputs, typically given by a "human expert",  and 
the goal is to learn a general rule (or function, model) that maps inputs to outputs. In unsupervised 
learning tasks, there are no labels given to the learning algorithm, leaving it on its own to find 
structure in its input. Unsupervised learning can be a goal in itself (discovering hidden patterns in 
data) or a means towards an end (feature learning). 

In this context, all the strengths and weaknesses of the current situation are highlighted. On the one 
hand, the capacity of machine learning models to generalize from training data that are larger and of 
higher quality, is growing; this capacity explains the extraordinary progress in image recognition and 
in robotic vision, in understanding text and speech, in automatic translation, in medical diagnosis ,  in 
risk assessment, in predictive maintenance. On the other hand, the gap with other aspects of AI is 
growing, in particular, reasoning and person-machine interaction, central aspects for the 
development of a human, ethical, and anthropocentric AI, that is the focus of the European approach. 
Accordingly, AI created unprecedented opportunities but also new risks, such as the opacity of AI 
models that makes it difficult, even for experts, to explain the rationale of their conclusions. This  can 
represent a critical point in technological and social terms, since the risk is real, as demonstrated by 
recent episodes, of training systems that are compromised by prejudice and discrimination bias, 
learned from the training data. 
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2. AI-RISKS AND CHALLENGES 

 

AI created unprecedented opportunities but also new risks. The exponential growth of the 
capabilities of AI models allows to reach levels of value and generalization never attained before. 
However, the opacity of these models has also grown and their nature of black box makes it difficult,  
even for experts, to explain the rationale of their conclusions. This can represent a critical point in 
technological and social terms, since the risk is real, as demonstrated by recent episodes, of t raining 
systems that are compromised by prejudice and discrimination bias, which learnt from the training 
data. It is therefore possible that “learning from the digital traces of past decisions can lead to 
incorporating invisibly existing prejudices into the resulting models, perpetuating them”, as reported 
in the work that launched the study of discrimination-aware data mining in 20081. 

Paraphrasing Frank Pasquale, author of The black box society2, we have seen increasingly opaque 
algorithms spread, employed to infer intimate traits of individuals. These algorithms yield 
classification and prediction models of behavioral traits of individuals, such as credit score, insurance 
risk, health status, propensity to crime, personal preferences and orientations, us ing personal data 
disseminated in the digital environment by citizens, with or sometimes without their awareness. Such 
automated decision-making systems are often black boxes that, observing the characteristics of the 
users, predict a class, a judgment, a vote and suggest decisions; but without explaining the reason of 
the proposed prediction, or recommendation. It is not just a matter of transparency. The models are 
trained on examples reconstructed on the basis of the digital traces of user activities, such as 
movements, purchases, online searches, opinions expressed on social networks. As a result, the 
models inherit the prejudices and defects - the biases - that are hidden in the training data, hiding 
them, in turn, in the decision algorithms that risk suggesting unfair, discriminatory or s imply  wrong 
choices, possibly without the awareness of the decision maker and the subject of the final decision. If 
a chat box, an AI that conversates with users on social networks, learns from the wrong examples, 

                                              
1 Pedreschi et al. 2008. 
2 Pasquale 2015. 

KEY FINDINGS 

Machine learning models are often black-boxes: 

• The logic of a decision-making AI model may be hidden even to developers and experts. 

Risks: 

• Learning from biased data (either by accident or by necessity); 

• Trained models for, e.g., on-board vision and obstacle recognition, may inherit bugs 
harmful for safety; 

• Profiling models for, e.g., predictive justice, may inherit discrimination of known (or  new) 
vulnerable groups. 

Direction to pursue: explainable, trustworthy AI: 

• Key for effective human-machine collaboration in high-stakes decision making 
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e.g., racist utterance, it will be racist in turn - and its creators will have to quickly and silent ly  remove 
it. Many cases that have already happened, like the one of the Twitter bot Tay released by Microsoft in 
2016 and quickly shut down after it learned offensive and racist behavior from online conversations 3, 
warn us that delegating choices to black box algorithms may reveal a bad idea. The cases in the next  
sections bring further evidence to this claim. 

2.1. Black boxes 
• Compas, owned by Northpointe Inc., is a predictive model of the risk of criminal recidivism, 

used until recently by various US Courts of Justice in support of judges' decisions on release 
requests. Journalists at Propublica.org have collected thousands of use cases of the model and 
shown that it has a strong racist bias: blacks who will not actually commit a cr ime again are 
assigned a double risk compared to whites in the same conditions4. The model,  developed 
with ML techniques, presumably inherited the bias present in the historical sentences and is  
affected by the fact that the American prison population over-represents blacks over whites; 

• The top three agencies for credit risk in the United States, Experian, TransUnion and Equifax 
are often discordant. In a study of 500,000 cases, 29% of credit applicants had a risk 
assessment with differences of more than 50 points from the three companies, which can 
mean tens of thousands of dollars of difference in overall interests. Such a wide variability 
suggests very different evaluation hypotheses, as well as opaque ones, or a strong 
arbitrariness5; 

• In the 1970s and 1980s, St. George's Hospital Medical School in London used software to filter 
job applications which was later found to be highly discriminatory towards women and 
ethnic minorities, inferred by surname and place of birth. Algorithmic discrimination is  not  a 
new phenomenon and is not necessarily due to ML 6; 

• A classifier based on DL can be very accurate with respect to training data, and at  the same 
time completely unreliable, for example because it has learned from bad quality data. In a 
case of image recognition aimed at distinguishing husky wolves in a large dataset of images , 
the resulting black box was dissected by researchers only to find out that the decision to 
classify an image as 'wolf' was based solely on the snow in the background7! The fault, of 
course, is not on DL, but on the accidental choice of training examples in which, evidently, 
each wolf had been photographed on the snow. So, a husky in the snow is automatically 
classified as a wolf. Now we carry this example on the vision system of our self-driving car: 
how can we be sure that it will be able to recognize correctly every object around us? 

• Various studies, such as the one mentioned in the note8, show that the texts on the web (but  
also on the media in general) contain bias and prejudices, such as the fact that the names of 
whites are more often associated with words with a positive emotional charge, while names 
of black people are more often associated with words with a negative emotional charge. 
Therefore, models trained on texts for the analysis of sentiment and opinions are highly likely  
to inherit the same prejudices; 

                                              
3 Tay (bot) https://en.wikipedia.org/wiki/Tay_(bot) [19-4-2020]. 
4 Machine Bias https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing [19-4-2020]. 
5 Carter et al. 2006. 
6 Lowry – Macpherson 1988. 
7 Ribeiro et al. 2016. 
8 Caliskan-Islam et al. 2016. 

https://en.wikipedia.org/wiki/Tay_(bot
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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• Bloomberg data journalists9 have shown how the automatic model, used by Amazon to select 
the neighbourhoods of American cities to offer “same-day delivery” for free, has an ethnic 
bias. The software, without the knowledge of the company, systematically excludes from the 
offer areas inhabited by ethnic minorities in many cities, while including neighbouring ones . 
Amazon replied to the journalistic investigation that it was not aware of the practice, because 
the ML model was totally autonomous and based its choices on previous customer activity. In 
short, it is the fault of the algorithm. 

2.2. “Right to Explanation” 
Through Machine Learning and Deep Learning (DL) we are creating systems that we don't know fully  
understand yet. The European legislator has become aware of the trap, and perhaps the most 
innovative and forward-looking part of the General Data Protection Regulation (GDPR), the new 
privacy regulation that came into force in Europe on May 25th of 2018, is precisely the right to 
explanation, or the right to obtain meaningful information on the logic adopted by any automatic 
decision system that has legal effects, or “similarly relevant”, for the people involved. Without a 
technology capable of explaining the logic of black boxes, however, the right to explanation is 
destined to remain a dead letter, or to outlaw many applications of opaque ML. It's not just about 
digital ethics, about avoiding discrimination and injustice, but also about security and corporate 
responsibility. In areas such as self-driving cars, robotic assistants, home automation and 
manufacturing IoT systems, personalised precision medicine, companies launch services and 
products with AI components that could inadvertently incorporate wrong decisions, crucial for safety, 
learned from errors or by spurious correlations in the learning data. For example, how to recognize an 
object in a photo by the properties not of the object itself but of the properties of the background, 
due to a systematic bias in the collection of learning examples. How can companies trust their 
products without understanding and validating their operation? Explainable AI technology is 
essential to create products with reliable AI components, to protect consumer safety and to limit 
industrial liability. Accordingly, the scientific use of ML, as in medicine, biology, economics  or  social 
sciences requires comprehensibility not only for trusting the results, but also for the open nature of 
scientific research, so that it can be shared and progressed. The challenge is tough and st imulat ing: 
an explanation must not only be correct and exhaustive, but also understandable to a plurality of 
subjects with different needs and competences, from the user being the subject of a decis ion, to AI 
solution developers, to researchers, to data scientists, to policy makers, supervisory author it ies,  civil 
rights associations, journalists. 

What is an “explanation” has already been investigated already by Aristotle in his Physics, a  t reat ise 
dating back in the 4th century BC. Today it is urgent to give a functional meaning, as an interface 
between people and the algorithms that suggest decisions, or that decide directly, so that  AI serves 
to enhance human capabilities, not to replace them. In general, the explanatory approaches differ for  
the different types of data from which you want to learn a model. For tabular data for  example, the 
explanation methods try to identify which variables contribute to a specific decision or predict ion in 
the form of if-then-else rules or decision trees. 

Over the past two years there has been an impetuous research effort on understandable AI ,  but  a 
technology for the explanation that is practical and systematically applicable has not  yet  emerged. 
There are two broad ways of dealing with the problem: 

                                              
9 Amazon Doesn’t Consider the Race of Its Customers. Should It? https://www.bloomberg.com/graphics/2016-amazon-same-day/ 

[19-4-2020]. 

https://www.bloomberg.com/graphics/2016-amazon-same-day/
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• explanation by-design: XbD. Given a set of decision data, how to build a “transparent 
automatic decision maker” that provides understandable suggestions;  

• explanation of the black-boxes: Bbx. Given a set of decisions produced by an “opaque 
automatic decision maker”, how to reconstruct an explanation for each decision. 

The most recent works in literature are discussed in the review10, organizing them according to the 
ontology illustrated in the figure below. Today we have encouraging results that allow us to 
reconstruct individual explanations, answers to questions such as “Why wasn't I chosen for the place I 
applied for? What should I change to overturn the decision?”  

Figure 1: Open the Black Box Problems 

 

Source: Guidotti et al., 2018. Open online access at: https://dl.acm.org/doi/10.1145/3236009 

The first distinction concerns XbD and Bbx. The latter can be further divided between Model 
Explanation, when the goal of explanation is the whole logic of the dark model, Outcome 
Explanation, when the goal is to explain decisions about a particular case, and Model Inspection, 
when the goal is to understand general properties of the dark model. 

We are rapidly evolving from a time when people coded algorithms, taking responsibility for the 
correctness and quality of the software produced and the choices represented in it ,  to a t ime when 
machines independently infer algorithms based on a sufficient number of examples of the expected 
input / output behaviour. In this disruptive scenario, making sure that the AI black  boxes  are open 
and understandable is functional not only to verify their correctness and quality, but above all to align 
the algorithms with human values and expectations and to preserve, or possibly to expand, the 
autonomy and awareness of our decisions11. 

2.3. Direction to pursue 
For all these reasons, the strategy for AI must develop on two synergistic levels: on one hand, it is 
crucial to innovate, experiment and systematically evaluate the application of the state of the art in AI 
in all scientific, social and industrial sectors, but it is not enough. On the other hand, it is necessary  
to intensify research efforts to deal with open problems. A trans-national and multidisciplinary 

                                              
10 Guidotti et al. 2018. 
11 Pedreschi et al. 2018. 

https://dl.acm.org/doi/10.1145/3236009
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approach is needed, that pivots on excellence in AI in research institutions to build a strong alliance 
with all other disciplines, including the social sciences, cognition and ethics.  

The opacity and nature of black boxes of AI models are growing, together with the risk of creating 
systems exposed to biases in training data, systems that even experts fail to understand. Tools  are 
missing to allow AI developers to certify the reliability of their models. It is crucial to inject into AI 
technologies, ethical values of fairness (how to avoid unfair and discriminatory decisions), accuracy 
(how to provide reliable information), confidentiality (how to protect the privacy of the involved 
people) and transparency (how to make models and decisions comprehensible to all stakeholders ).  
This value-sensitive design approach is aimed at boosting widespread social acceptance of AI, 
without inhibiting its power.  

Europe has set its own approach to AI, not only with the forward-looking GDPR, but with many more 
initiatives in order to put AI at the service of its citizens and economy. In its Communication 12, the 
European Commission puts forward the three main pillars for AI:  

a) Being ahead of technological developments and encouraging uptake by the public and 
private sectors; 

b) Prepare for socio-economic changes brought about by AI; 

c) Ensure an appropriate ethical and legal framework. 

On February 2020, a White Paper was published aiming to foster a European ecosystem of excellence 
and trust in AI, along with a Report on the safety and liability aspects of AI. The GDPR was a major step 
for building trust but actions are also necessary to ensure legal clarity in AI-based applications. There 
are several similar initiatives taken in the U.S.A.13 and China14 to promote the use and development of 
AI, but also to regulate it. 

We are already seeing the rate of AI’s penetration in real-world applications being limited by most  
systems’ ability to adequately interact with humans, by related issues of user acceptance, and by the 
capability of dealing with complex, dynamic, unpredictable environments. To be truly adopted on a 
social and industrial scale, AI must be able to amplify human potential, especially on a cognitive level,  
not aiming at replacing human expertise. Ethical constraints are stimuli to create better innovat ions , 
not obstacles to innovation. The GDPR, to put it with Tim Cook, Apple’s CEO, is not a problem but  a 
great opportunity. Values are principles of good design for a technology aiming at individual and 
social wellbeing. It is an exciting scientific and technological challenge, which requires fundamental 
multidisciplinary research for the development of new models. From statistical learning and 
correlations to causal reasoning. From black box decision models to interpretable models, to des ign 
AI systems that converse with humans to help them improve the quality of their decisions. To 
measure, predict and preserve the sustainability and resilience of the complex (techno-) social 
systems we inhabit. To design new ways of interaction between people and machines in a way that  
the former reach higher levels of awareness and the latter higher levels of learning and 
understanding of the context and of human reasoning. Finally, to design new decentralized and 
distributed ways for collection and data management, the energy that feeds the AI,  going beyond 
the current phase of extreme data centralization by a few monopolistic corporations. Indeed, these 
are hindering open science, innovation, common good and, with their monstrous date centres, 
environmental sustainability.  
                                              
12 Artificial Intelligence for Europe 2018. 
13 https://www.whitehouse.gov/ai/. 
14 A New Generation of Artificial Intelligence Development Plan, 2017. 

https://www.whitehouse.gov/ai/
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Whoever leads the way in future generations of AI technology will set the standards for the values  
and ethics embedded in it. AI’s development to date has brought us to an important crossroads: 
depending on the direction of future development, AI could destroy or create new jobs; empower 
citizens or impair their autonomy and privacy; increase the complexity of a globalized, 
interconnected world, thereby increasing the risk of systemic failures, or provide us with transparent , 
usable, understandable tools for taming that complexity, e.g., in epidemic emergencies  such as  the 
Covid-19 pandemic we are experiencing in these days. The goal to aim for is a Human- centric AI  at  
the benefit of humans at an individual and at a social level, systems which incorporate European 
ethical values by-design, which are able to understand and adapt to real environments, interact in 
complex social situations, and expand human capabilities, especially on a cognitive level. 

While there are aspects of AI where big non-EU corporations and countries may be better positioned, 
a specific European brand of AI that focuses on European values could be beneficial. The 
empowerment of humans and a benign impact on society can provide Europe with a unique 
competitive advantage and make a significant contribution to the well-being and prosperity of 
European citizens. On the big data landscape, while big corporations have an advantage on 
consumer behavioral data, Europe is better positioned for data coming from the public sector ,  such 
as health, education, etc., thanks to the well developed public administration and welfare systems, 
as well as for industrial data, coming from the ecosystem of large, medium and small industries that 
turned digital. 
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3. THE SOCIAL DIMENSION OF AI 

 

As increasingly complex sociotechnical systems emerge, consisting of many (explicitly or  implicit ly ) 
interacting people and intelligent and autonomous systems, AI acquires an important societal 
dimension. A key observation is that a crowd of (interacting) intelligent individuals is not 
necessarily an intelligent crowd. On the contrary, it can be stupid in many cases, because of 
undesired, unintended network effects and emergent aggregated behavior. Examples abound in 
contemporary society. For example, using a car navigation to avoid a traffic jam on the main route 
can cause additional jams in the local alternative routes. In the field of opinion formation and 
diffusion, a crowd of citizens using social media as a source of information is subject to the 
algorithmic bias of the platform’s recommendation mechanisms suggesting personalised 
content. This bias will create echo chambers and filter bubbles, sometimes induced in an artificial 
way, in the sense that without the personalisation bias the crowd would reach a common shared 
opinion. Recommendations provided by AI systems may make sense at an individual level but  they 
may result in undesired collective effects of information disorder and radicalisation.  

The interaction among individual choices may unfold dramatically into global challenges linked to 
economic inequality, environmental sustainability, and democracy. Aggregated network and 
societal effects of AI and their impacts on society are not sufficiently discussed in the public and not  
sufficiently addressed by AI research, despite the striking importance to understand and predict  the 
aggregated outcomes of sociotechnical AI-based systems and related complex social processes, as  
well as how to avoid their harmful effects. Such effects are a source of a whole new set of 
explainability, accountability, and trustworthiness issues, even assuming that we can solve those 
problems for an individual machine-learning-based AI system. Therefore, we cannot concentrate 
solely on making individual citizens or institutions more aware and capable of making informed 
decisions. We also need to study the emerging network effects of crowds of intelligent interacting 
agents, as well as the design of mechanisms for distributed collaboration that push toward the 
realization of the agreed set of values and objectives at collective level: sustainable mobility in cit ies ,  
diversity and pluralism in the public debate, and fair distribution of economic resources. Societal AI is  
emerging as a new field of investigation of potentially huge impact, requiring the next step ahead in 
trans-disciplinary integration of AI, data science, social sciences, psychology, network science, and 
complex systems. 

KEY FINDINGS 

Machine learning from Big Data: 

• ML is a form of collective intelligence, which discovers general patterns from human 
experience encoded in data. 

Discovered patterns of collective behaviour are applied to individual users/consumers: 

• online platforms apply general patterns/profiles to individuals; 

• based on an advertising logic; 

• targeted at maximising capture of users’ attention, clicks, likes, purchases. 
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3.1. Wisdom of crowds? 

 

 

Surowiecki15 in his book The Wisdom of Crowds provides many promising and intuitive examples  of a 
wise — and accurate — crowd. Nevertheless, he also presented situations (such as rational bubbles) 
in which the crowd produced very bad judgements, and argued that in these types of situations their  
cognition or cooperation failed because (in one way or another) the members of the crowd were too 
conscious of the opinions of others and began to emulate each other and conform, rather than think 
differently. 

One would expect that, with the advent of AI, the crowd, powered now by machines and algorithms, 
could instead be an intelligent crowd and make intelligent choices and take intelligent decisions. 
Alas, that’s not always the case. Due to the aggregated effect of interactions occurring in the complex 
networks surrounding us, a crowd of intelligent individuals may still be stupid. There are several 
examples in our everyday life, in online marketplaces, in online public conversation, in mobility  and 
traffic. 

Surowiecki states that there are three conditions for a group to be intelligent: diversity, 
independence, and decentralisation. He stresses the need for diversity within a crowd to ensure 
multiple viewpoints. In a wise crowd, “one person’s opinion should remain independent of those 
around them,” and individuals must “make their own opinion based on their individual knowledge.” 
Instead, in our complex social systems, individuals influence one another, and are influenced by the 
media they choose. As a consequence, the wisdom of the crowd effect often vanishes. 

                                              
15 Surowiecki 2004. 

AI-powered recommendation mechanisms strive to make individual users/customers more 
“intelligent”: 

• Hidden assumption: a crowd of intelligent individuals, powered by machines and 
algorithms, is an intelligent crowd. 

Unfortunately, this is not necessarily true: 

• A crowd of intelligent individuals may be very stupid; 

• This is due to the aggregated effect of interactions occurring in the complex networks 
surrounding us; 

• Examples: online marketplaces, online public conversation, traffic. 
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3.2. Social networks, search engines, online marketplaces 

 
 

The flow of information reaching us via the online media platforms is optimised not by the 
information content or relevance but by popularity and proximity to the target. This is typically 
performed in order to maximize platform usage. The recommendation algorithms suggest the 
interlocutors and the contents at which we get exposed, based on matching profiles, promoting the 
most popular choices for people similar to us. 

As a result, we notice the appearance of the “rich get richer” phenomenon: popular peers, contents  
and products get more and more popular. As shown in the picture below, in the online marketplaces 
this would mean that a few businesses get the biggest share of the market while many have to share 
the rest. These businesses become the hubs of the network, gathering most of users’ purchases to the 
detriment of the vast majority. In the social media, that would mean that certain popular peers or 
contents gather all the user’s attention and they, on their turn, become the hubs of the social 
network. 

Figure 2: Popularity ranking of business 

 

Source: Source: A. Kripaa, The Long Tail and Cloud-based ERP Solutions, Ramco Systems blog, accessed online at 
https://blogs.ramco.com/the-long-tail-and-cloud-based-erp-solutions on April 21, 2020  
  

Recommendation mechanisms: 

• Suggest most popular choices (peers, contents, products) for people like you (based on 
matching profiles); 

• These mechanisms are very effective for platforms to increase clicks. 

Network effects: 

• Emergence of hubs and extreme inequality; 

• Popular peers, contents, products get more and more popular; 

• Rich get richer, to the detriment of the vast majority; 

• Diversity is artificially impoverished. 

https://blogs.ramco.com/the-long-tail-and-cloud-based-erp-solutions
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A vital few, most popular products seize the more sales while many are way less popular with less 
sales. 

We need to design novel social AI mechanisms for online marketplaces, search engines and social 
networks, focused on mitigating the existing inequality introduced from the current  generation of 
recommendation systems. We need mechanisms for helping individuals acquiring access to diverse 
content, different people and opinions, to avoid that diversity is artificially impoverished. 

3.3. Opinion diffusion on online media platforms 
For centuries, people shaped own convictions thanks to the exchange of opinions with other people. 
These relationships, based on the level of mutual trust, play a fundamental role in the process that  
leads us to strengthen or change our opinions. With the spread of media and, recently, of social 
media we are witnessing a large-scale exploitation process, especially for business purposes, of the 
cognitive mechanism of the confirmation bias – the tendency to prefer information that is  close to 
our convictions, and induces us to interact with peers that share our preferences. How do these 
mechanisms alter the traditional ways of forming opinions? What impact do they have on 
fragmentation, polarisation and radicalisation of ideas? 

Social media are increasingly used to share ideas, but also, as the report Reuters 2018 on Digital News 
shows, to read and exchange news. This means that the interlocutors and the contents with which we 
interact, together with the external effects in the dynamics of opinions, become susceptible to the 
influences deriving from the interaction mechanisms of the social media platforms in use, built with a 
marketing objective: to maximize the number of users and the time they spend on the platform, 
catching their attention. To achieve this, the information that reaches them is not randomly selected. 
There is a precise algorithmic bias: we are systematically exposed to news related to the topics  we 
like most and to the opinions that are closest to ours, so as to be nudged to interact with the 
proposed contents and return to the platform. After all, marketing has always exploited a cognit ive 
mechanism that is innate with humans, the confirmation bias, defined as: «a mental process that 
consists in searching, selecting and interpreting information in order to place greater attent ion, and 
therefore attributing greater credibility to those who confirm own beliefs or hypotheses, and vice 
versa, ignoring or diminishing information that contradicts them. The phenomenon is stronger in the 
context of topics that arouse strong emotions or that touch deeply rooted beliefs»16. The mechanisms 
                                              
16 Plous 1993. 

Recommendations for like-minded peers and contents: 

• Effective for platforms to increase clicks; 

• Effective for advertisers? Questionable, due to selection effect stronger than real influence; 

• Dangerous for users: artificial reinforcement of own opinions and preferences, increased 
polarisation, radicalisation, bubbles. 

Network effects: 

• Reduction of diversity of opinions; 

• Threat to pluralistic debate; 

• Threat to the wisdom of the crowd (ultimately, to democracy). 
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of marketing, whether commercial, informational or political, leverage the confirmation bias, because 
each of us feels gratified when meeting subjects or contents that confirm their beliefs. Proposing to 
interact with people and content close to the beliefs of users and consumer preferences ensures a 
higher click rate, a greater probability of attracting purchases, attention, likes. Ultimately, greater 
revenue for the platform. 

This mechanism of confirmation bias is exploited by online platforms, for information search and 
social networking and media, which employ recommendation algorithms based on AI to catalyze 
users’ attention. As a side effect, the platform amplifies and reinforces individual bias, resulting in 
extreme polarisation of opinions and filter bubbles at the social level, with dramatically negative 
consequences on the pluralistic public debate needed to nurture democracy. In addit ion, access  to 
information is often maliciously biased by either commercially or politically motivated influence 
agents. 

The most shocking result of a research recently published in the journal PlosOne17 is that the number  
of groups with different opinions increases, within a population, with the increasing intensity of the 
algorithmic bias. In other words, online platforms can favor the fragmentation of opinions  causing 
the emergence of opposing "parties", or “bubbles”, even when, in the absence of bias, the population 
would reach consensus - a division therefore that is totally artificial, induced by the interaction 
mechanism of the platform that inhibits comparison between different positions. In practice, 
algorithmic bias leads to an increase in polarisation and radicalisation of opinions, amplifying the 
already powerful cognitive mechanism that we have incorporated, the confirmation bias. 

The second effect of algorithmic bias is on the speed of opinion formation: the changes of opinion 
of individuals are much slower when the bias is introduced, and therefore the population, as a whole, 
takes a much longer time to reach a stable situation. Even when it comes to consensus, the t ime to 
reach it becomes extremely long. 

The algorithmic bias of the platforms can profoundly influence the results of public debates and the 
formation of consensus in society. An apparently harmless mechanism, always used in marketing, if 
used on a large scale has a potentially destructive “network effect”, capable of creating and 
strengthening “echo chambers”, information bubbles, radicalizing public debate and 
destabilising democracy. This is a phenomenon we are witnessing with growing apprehension, 
registered by scholars and experts on social dynamics from all over the world18. This polarisation 
effect is probably even more dangerous for our democracy than fake news and the hate speech 
phenomenon, as the latter can be explained, in most cases, an effect of bubbles artificially reinforced 
by bias. 

It’s important to highlight however, that fake news is a serious phenomenon that got  amplified on 
online media platforms. It’s a phenomenon that has been present since before online media and even 
the Internet, but social media has been a major driver for fake news consumption. On social media, 
fake news is discussed and engaged in about as much as real news in spite of the fact  that  it  is  read 
ten times less. In a study from the IMCO committee19, fake news are redefined as malinformation, i.e.  
the triple conjunction of human malevolence, marketing malpractice and engineered malware, and 
the costs of this malevolent combination are thoroughly studied. Among these, there are economic 
costs but also, most importantly, two major societal costs: the integrity of information and the 
integrity of elections. Fake news thus creates challenges for both the sovereignty of Member States 
                                              
17 Sirbu et al. 2019. 
18 Schmidt et al. 2018. 
19 Divina Frau-Meigs 2018. 
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and for the cohesion of the European Union that are complex and may have far-reaching 
consequences. Fake news leads to information disorders related to the transverse effect of 
malinformation, i.e. the trans-border, transmedia, trans-lingual and trans-time nature of Internet 
networks. The direct and indirect impact of fake news, though not proven yet by various nascent 
research protocols, may lead to long-term counter veiling deterrence measures which will reduce 
freedom of speech and the freedom to receive and impart information. Thus efforts to inhibit fake 
news will damage democratic processes.  

But AI technology can also help at stopping fake news at almost all stages of the news process: 
editing, amplification and consumption 20. To stop fake news at editing and amplification online 
media platforms are a natural candidate for discussion. They can label results, disclose their select ion 
algorithms, and last but not least identify and control the bots – accounts that seem like real persons  
to people and particularly to the platform’s algorithms. In fact, bots are just programs that simulate a 
person using these platforms, and can determine the popularity of the news. Stopping bots could be 
easy if the platforms enforce the “real identity” of their users. Identifying bots and identifying fake 
news, can be done manually or automatically via AI algorithms that study the content and the social 
context of its source. 

Human-centric AI has a clear social dimension that may help us design novel platforms and 
mechanisms for access to news and information, focused on counterbalancing our built-in 
confirmation bias and transparently striving to expose people to assorted opinions, intelligently .  We 
imagine mechanisms for helping individuals and communities become informed on controversial 
issues by offering multiple perspectives, connecting opposing views and conflicting arguments , and 
fostering critical thought. For example, a robot in a group conversation can highlight information that 
was unavailable to the group, or suggest omitted sources of important information. Advances in 
person-machine interaction models based on explainable AI have the potential to reach novel 
cognitive trade-offs between our confirmation bias and our curiosity of novelty and diversity, making 
it possible for more sustainable and humanized information ecosystems to emerge. 

                                              
20 Žiga Turk 2018. 

Navigation systems offer recommendations and directions to reach a destination: 

• Make perfect sense to an individual driver; 

• May be meaningless and misleading collectively. 

Network effects: 

• Extraordinary situations, such as accidents or big events; 

• Polarisation effect: recommending most popular routes, thus artificially increasing traffic 
and risk in certain tracks while systematically avoiding alternative tracks and areas; 

• Again, diversity is compromised, with negative network effects and externalit ies  (largely 
underestimated today). 
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3.4. Mobility, traffic and online navigation services 
AI is a key factor in analysing and facilitating changes in cities and citizen behaviours related to 
mobility. Modern cities are the perfect example of environments where traffic monitor ing systems, 
and GPS-enabled individual mobility traces, provide useful information to recommend a route and 
direct a driver to reach a destination avoiding traffic jams. 

From the perspective of the individual driver, this system makes perfect sense. But collect ively ,  this  
can be sometimes meaningless and misleading. Anyone who has used a car navigation system to 
bypass a traffic jam knows. Each navigation system generates recommendations that make sense 
from an individual point of view, and the driver can easily understand the rationale behind the 
recommendations. However, the sum of decisions made by many navigation systems can have grave 
consequences on the traffic system as a whole: from the traffic jams on local alternative routes to 
ripples propagating through the system on a larger spatial scale, to long-term behavior changes that  
may lead to drivers permanently avoid certain areas (which can have a negative economic impact  on 
disadvantaged neighbourhoods), or artificially increase the risk of accidents on highly recommended 
roads.  

It is important to study the emergence of collective phenomena at metropolitan level in personal 
navigation assistance systems with different recommendation policies, with respect to different 
policies for navigation recommendations (such as diversity) and different collective optimisation 
criteria (fluidity of traffic, safety risks, environmental sustainability, urban segregat ion, response to 
emergencies, etc.). 
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4. CONCLUSIONS AND RECOMMENDATIONS 
There is a wide consensus that AI will bring forth changes that will be much more profound than any 
other technological revolution in human history. Depending on the course that this revolution takes, 
AI will either empower our ability to make more informed choices or reduce human autonomy; 
expand the human experience or replace it; create new forms of human activity or make existing jobs  
redundant; help distribute well-being for many or increase the concentration of power and wealth in 
the hands of a few; expand democracy in our societies or put it in danger. Our generation carries  the 
responsibility of shaping the AI revolution. The choices we face today are related to fundamental 
ethical issues about the impact of AI on society, in particular, how it affects labour, social interactions, 
healthcare, privacy, fairness, security, and markets.  

There is a need to develop the scientific foundations and technological breakthroughs to shape the 
AI revolution in a direction that is beneficial to humans on both individual and societal levels and that 
adheres to European ethical values and social, cultural, legal and political norms. The core challenge is 
the development of robust, trustworthy AI systems capable of what could be described as 
“understanding” humans, adapting to complex real-world environments and appropriately 
interacting in complex social settings. The aim is to facilitate AI systems that enhance human 
capabilities and empower individuals and society as a whole while respecting human autonomy, 
dignity and self determination.  

The current technological advancements and developments of AI along the mentioned lines, that can 
occur in the near future (in two to five years), could represent an important transformation factor  for  
ecommerce/digital services and for the Internal Market. Novel AI platforms for ecommerce and digital 
services based on AI interaction mechanisms have the potential to mitigate monopolistic 
concentration, deliver more open and resilient markets, and better connect the diverse demands of 
European consumers to the diverse offers of European products and services, by fostering diversity  
“by-design”. AI-based recommendation and interaction mechanisms may help departing from the 
current purely “advertisement-centric” model, focusing on interest of platforms in maximising 
exchange of content in order to maximise advertisement revenues, to a systemic approach where 
focus is on the interest of citizens in accessing and sharing of high quality contents, the interest of 
consumers to broaden their choices and opportunities, and the interest of advertisers in broadening 
their audience and customer base. 

In combination with on-going advancements in peer-to-peer networks and distributed ledger 
architectures (block-chain), AI interaction mechanisms have the potential to promote a rapid shift 
towards decentralized environments for ecommerce and digital services that are centred not  on the 
intermediary of the transactions, but rather on consumers and providers directly, aiming therefore at  
maximising satisfaction of consumers and providers, both individually and collectively ,  rather  than 
maximising the revenue of the intermediary. Therefore AI can have an impact on the Internal Market  
by pursuing objectives that are meaningful for consumers and providers, instead of success measures 
that are functional to intermediaries, and by mitigating the gate-keeper effect of current  platforms’ 
contracts. Clearly, such an ecosystem would be also beneficial to e-government and public 
procurement, and the same basic principles would apply both to marketplaces and information & 
media digital services, targeted towards the interest of consumers and providers to share high quality 
contents. 

Within this landscape, the European strategy for the next-generation digital services and online 
platforms is of utmost importance, with impacts that go far beyond consumer protection, shaping the 
digital society that will emerge. Coherently with the recent strategic white paper on AI released by 
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the European Commission (On Artificial Intelligence - A European approach to excellence and trust, 
February 2020), we recommend to develop the European provision on artificial intelligence in the 
area of ecommerce and digital services - in the context of reforming E-commerce directive and 
introducing the Digital Services Act - with the aim to ascertain effective and efficient rights, 
institutions and procedures in the future and to properly address and exploit the transformative 
impact of upcoming technological developments, to the purpose of social development. Accordingly, 
the proposed recommendations to EU policy makers follow a double line of reasoning and 
interventions: topic-wise, and instrument-wise.  

Topic-wise, it is crucial to address and operationalise the following challenges:  

• trustworthy, explainable AI in order to fight novel forms of discrimination and 
manipulation and empower citizens, and;  

• societal-aware AI in order to fight polarisation and inequality and pursue diversity and 
openness. 

Instrument-wise, it is important to realise that the scientific and technological landscape is not yet 
fully mature to address the open challenges above. Therefore a mix of policies is needed, that  tack le 
the problem at three levels: 

• a bold EU investment in fundamental and applied research in human-centric AI; 

• a bold EU investment in creating novel online platforms and digital services embodying 
human-centric AI mechanisms (and/or in supporting the scaling of existing coherent 
initiatives); 

• a coherent set of EU regulations concerning AI, big data and digital services, designed not 
only to seize the opportunities and mitigate risks, but also to inspire research & development 
in AI, big data and digital platforms towards an inclusive, equal and diverse society. 

4.1. Explainable AI: fostering trust in online platforms and marketplaces 
Explainable AI for high-stakes decision making. Decision making in, e.g., medicine, justice, job 
recruiting, etc., is essentially a sociotechnical system, where a decision maker interacts with var ious 
sources of information and decision-support tools, a process whose quality should be assessed in 
terms of the final, aggregated outcome — the quality of the decision — rather than assessing only  
the quality of the decision-support tool in isolation (e.g., in terms of its predictive accuracy and 
standalone precision). It is therefore important to develop tools that explain their predictions and 
recommendations in meaningful terms, a property rarely matched by AI systems, based on machine 
learning, available today. 

The explanation problem for a decision-support system can be understood as “where” to place a 
boundary between what algorithmic details the decision maker can safely ignore and what 
meaningful information the decision maker should absolutely know to make an informed decis ion. 
Thus, an explanation is intertwined with trustworthiness (what to safely ignore), comprehensibility  
(meaningfulness of the explanations), and accountability (humans keeping the ultimate responsibility 
for the decision). In this context, several questions emerge: what are the most critical features for 
explanatory AI? Is there a general structure for explanatory AI? How does an AI system reach a specific 
decision, and based on what rationale or reasons does it do so? Explanations should favor a human-
machine interaction via meaningful narratives expressed clearly and concisely through text and 
visualizations, or any other human-understandable format revealing the why, why-not, and what-if.  
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Even in domains where the stakes all less high, such as in personalised advertising on online 
platforms (social media, search engines, marketplaces), an adequate level of explainability of 
automated recommendation mechanisms is of great importance for two reasons. First, to empower 
consumers and citizens against discrimination and manipulations; second, to empower 
watchdogs and surveillance/enforcement agencies (for, e.g., non-discrimination, consumer 
protection and privacy) in performing their actions. It is already clear from several concrete cases that 
the outcome of automated profiling for targeted personalised advertising can, often inadvertently ,  
discriminate minority neighbourhoods and disadvantaged communities (such as systematically 
denying favourable prices and conditions), as well as exploit vulnerabilities (such as targeting people 
with addictive conditions with online betting ads). These phenomena are deeply rooted into the logic 
of machine learning, prone to inherit bias that is hidden in the training data. It is therefore key that  
explainable AI mechanisms, directed to diverse stakeholders (such as consumers and control 
institutions), are part of online platforms and marketplaces in an open and inspectionable format . A  
form of “right of explanation” for online platform and marketplaces, expanding and adapting the 
provisions adopted in the GDPR, might foster innovations in the sector of online advertising that, 
beyond bringing transparency and trust, could also improve the effectiveness of the system for  both 
advertisers and consumers. 

4.2. Societal-aware AI: fostering diversity in online platforms and 
marketplaces 

As discussed in this report, the current wave of recommendation mechanisms supported by AI in 
various online platforms (marketplaces, social media, navigation systems, etc.) is functional to a 
specific business model based on advertising and profiling and it is potentially dangerous not only for 
potential discrimination and manipulation of the individual user/customer (see Sect. 2) but also for far 
reaching consequences at societal scale in terms of increased polarisation and reduced diversity 
(Sect. 3). 

Diversity is the key strength of Europe at social, cultural and economic level. Europe should therefore 
strive for developing AI-powered tools and platforms that embrace and promote diversity and 
European values at all scales: 

• Online media and information ecosystems that intelligently promote pluralism and connect 
different viewpoints on complex controversial issues; 

• Online marketplaces that intelligently promote the diversity and quality of European 
products and companies at all scales; 

• Online platforms that intelligently use AI advances in multi-lingual translation to break the 
barriers among international communities, both within EU and the rest of the world, making 
the diversity of EU media, culture and production easily accessible (see, e.g. ,  EBU’s  EuroVox 
project 21 towards a diversity-oriented, multi-lingual digital platform for sharing high-quality  
public service news and media contents towards a potential population of 1 Billion people 
speaking 96 languages). 

In particular, novel platforms for news consumption and public conversation should, contrary to 
current practice, put in place algorithmic mechanisms that try to mitigate user confirmation bias 
rather than strengthen it, and find ways to expose users to contents and individuals  with different  
opinions, helping to get broader ideas of controversial or complex issues, observing them from 

                                              
21 https://tech.ebu.ch/eurovox. 

https://tech.ebu.ch/eurovox
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multiple points of view. A different public information ecosystem may be envisaged, aimed at 
diversity, which would also be essential to preserve and nourish our collective intelligence, or the 
wisdom of the crowd, at any scale, from communities to global citizenship. As discussed in this 
report and demonstrated by a long history of research studies and empirical evidence22, a multitude 
endowed with healthy diversity and independence of opinions can intelligently answer difficult 
questions (e.g. predicting an uncertain outcome), but diversity and, therefore, collective intelligence 
is quickly undermined by excessive influence and polarisation. The bias of current platforms is, in 
short, a danger, and measures are needed to stop or at least mitigate their effects, or even reverse 
them, as interdisciplinary researchers are trying to suggest 23.  

In the meantime, users could be informed of how news are conveyed on the feeds of the platforms 
and of the fact that this could influence their opinions, and perhaps the mechanisms implemented by 
the platforms could be slowly withdrawn. The consequence of the discussion in this report is that the 
current platforms for accessing information, both traditional and social media, based on the “free” 
service paid for by advertising and personalised marketing, are not (and cannot be) functional to fight 
polarisation and radicalisation, and to promote diversity and pluralism. The ultimate aim of the 
business model aimed at capturing the attention of users is, by definition, in conflict with that of 
promoting diversity and pluralism. Therefore, a different media ecosystem, aimed at helping 
citizens to deal with narratives and content other than their favorite or usual ones, should implement 
smart strategies to connect opposite and alternative visions. It should be based transparently on 
algorithmic bias that push towards diversity and pluralistic visions. It should be an open public 
platform, a common good, independent of the media, companies and governments, which pursues 
the aim of preserving socio-diversity, essential for democracy.  

Coherently with this picture, it is desirable that the EU pushes vigorous research along the lines of 
societal-aware AI, both with a strategic plan of fundamental and applied research in the EU  “brand” 
of human-centric AI, and with ad-hoc investments in novel EU-wide platforms such as those 
listed above, to be created from scratch or to be scaled leveraging promising existing init iat ives . At 
regulatory level, it would be desirable to devise sustainable requirements fostering diversity in 
existing commercial social media platforms and marketplaces, such as obligations to access 
advertising delivery data in proper formats in order to verify the exposure of advertisers, the 
performance of paid vs unpaid advertising, the compliance with minimal diversification 
requirements. AI and data science are not neutral technologies, they can be used for good or bad 
purposes; it is up to us, to our democratic debate, to Europe in particular, to decide which values  to 
instil by-design in these technologies to create a real information ecology. 

 

                                              
22 Surowiecki 2004. 
23 Aslay et al. 2018; Garimella et al. 2017. 
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ANNEX 
The human and social dimension of AI 

Prof. Dr. Dino Pedreschi, University of Pisa (I) 

Position paper (also presented at the first meeting of the OECD Network of AI Experts – ONE AI, Par is ,  
26-27 February 2020). 

There is a wide consensus that AI will bring forth changes that will be much more profound than any 
other technological revolution in human history. Depending on the course that this revolution takes, 
AI will either empower our ability to make more informed choices or reduce human autonomy; 
expand the human experience or replace it; create new forms of human activity or make existing jobs  
redundant; help distribute well-being for many or increase the concentration of power and wealth in 
the hands of a few; expand democracy in our societies or put it in danger. Our generation carries  the 
responsibility of shaping the AI revolution. The choices we face today are related to fundamental 
ethical issues about the impact of AI on society, in particular, how it affects labor, social interact ions , 
healthcare, privacy, fairness and security.  

I am a founding member of the HumanE AI network of research centers, set forth to develop the 
scientific foundations and technological breakthroughs needed to shape the AI revolution in a 
direction that is beneficial to humans on both individual and societal levels and that adheres to 
European ethical values and social, cultural, legal and political norms. The core challenge is the 
development of robust, trustworthy AI systems capable of what could be described as 
“understanding” humans, adapting to complex real-world environments and appropriately 
interacting in complex social settings. The aim is to facilitate AI systems that enhance human 
capabilities and empower individuals and society as a whole while respecting human autonomy, 
dignity and self determination.  

The research of our laboratory (KDD Lab, the Knowledge Discovery and Data Mining Lab of University 
of Pisa and CNR) revolves around data science and AI and their impacts on society. Two key directions 
are explainable AI and societal-aware AI. 

Explainable AI for high-stakes decision making. Decision making in, e.g., medicine, justice, job 
recruiting, etc., is essentially a sociotechnical system, where a decision maker interacts with var ious 
sources of information and decision-support tools, a process whose quality should be assessed in 
terms of the final, aggregated outcome — the quality of the decision — rather than assessing only  
the quality of the decision-support tool in isolation (e.g., in terms of its predictive accuracy and 
standalone precision). It is therefore important to develop tools that explain their predictions and 
recommendations in meaningful terms, a property rarely matched by AI systems, based on machine 
learning, available today. 

The explanation problem for a decision-support system can be understood as “where” to place a 
boundary between what algorithmic details the decision maker can safely ignore and what 
meaningful information the decision maker should absolutely know to make an informed decis ion. 
Thus, an explanation is intertwined with trustworthiness (what to safely ignore), comprehensibility  
(meaningfulness of the explanations), and accountability (humans keeping the ultimate responsibility 
for the decision). In this context, several questions emerge: what are the most critical features 
for explanatory AI? Is there a general structure for explanatory AI? How does an AI system reach a 
specific decision, and based on what rationale or reasons does it do so? Explanations should favor a 
human-machine interaction via meaningful narratives expressed clearly and concisely through text  
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and visualizations, or any other human-understandable format revealing the why, why-not, and 
what-if. We are working to concrete answers to these questions within the ERC grant XAI (Science and 
technology for the eXplanation of AI decision making), led by my colleague Fosca Giannotti. 

The social dimension of AI. As increasingly complex sociotechnical systems emerge, consisting of 
many (explicitly or implicitly) interacting people and intelligent and autonomous systems, AI acquires 
an important societal dimension. A key observation is that a crowd of (interacting) intelligent 
individuals is not necessarily an intelligent crowd. On the contrary, it can be stupid in many cases, 
because of undesired, unintended network effects and emergent aggregated behavior. Examples 
abound in contemporary society. Anyone who has used a car navigation system to bypass a t raffic 
jam knows. Each navigation system generates recommendations that make sense from an individual 
point of view, and the driver can easily understand the rationale behind the recommendations. 
However, the sum of decisions made by many navigation systems can have grave consequences on 
the traffic system as a whole: from the traffic jams on local alternative routes to ripples  propagating 
through the system on a larger spatial scale, to long-term behavior changes that may lead to dr ivers 
permanently avoid certain areas (which can have a negative economic impact on disadvantaged 
neighborhoods), or artificially increase the risk of accidents on highly recommended roads. The 
interaction among individual choices may unfold dramatically into global challenges linked to 
economic inequality, environmental sustainability, and democracy. In the field of opinion formation 
and diffusion, a crowd of citizens using social media as a source of information is subject to the 
algorithmic bias of the platform’s recommendation mechanisms suggesting personalised content . 
This bias will create echo chambers and filter bubbles, sometimes induced in an artificial way, in the 
sense that without the personalisation bias the crowd would reach a common shared opinion. Again, 
a recommender system that makes sense at an individual level may result in an undesired collect ive 
effect of information disorder and radicalisation. 

Aggregated network and societal effects and of AI and their (positive or negative) impacts on society  
are not sufficiently discussed in the public and not sufficiently addressed by AI research, despite the 
striking importance to understand and predict the aggregated outcomes of sociotechnical AI-based 
systems and related complex social processes, as well as how to avoid their harmful effects. Such 
effects are a source of a whole new set of explainability, accountability, and trustworthiness issues , 
even assuming that we can solve those problems for an individual machine-learning-based AI system. 
Therefore, we cannot concentrate solely on making individual citizens or institutions more aware and 
capable of making informed decisions. We also need to study the emerging network effects of crowds 
of intelligent interacting agents, as well as the design of mechanisms for distributed collaboration 
that push toward the realization of the agreed set of values and objectives at collective level: 
sustainable mobility in cities, diversity and pluralism in the public debate, and fair distribution of 
economic resources. We therefore advocate the emergence of societal AI as a new field of 
investigation of potentially huge impact, requiring the next step ahead in trans-disciplinary 
integration of AI, data science, social sciences, psychology, network science, and complex systems. 

Data Science and AI for social good. Our research vision is centered on leveraging data science and 
AI to understand complex social challenges and promote social progress. Our SoBigData research 
infrastructure and community, funded by the EU within H2020 from 2015 till 2024, is moving forward 
from a starting community of pioneers to a wide and diverse scientific movement, capable of 
empowering the next generation of responsible social data scientists, engaged in the grand societal 
challenges laid out in SoBigData’s exploratories: Societal Debates and Online Misinformation, 
Sustainable Cities for Citizens, Demography, Economics & Finance 2.0, Migration Studies, Sport Data 
Science, and Social Impact of Artificial Intelligence. 
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This in-depth analysis discusses the opportunities and challenges brought by the recent  and the 
foreseeable developments of Artificial Intelligence into online platforms and marketplaces. The 
paper advocates the importance to support trustworthy, explainable AI (in order to fight 
discrimination and manipulation, and empower citizens), and societal-aware AI (in order  to fight  
polarisation, monopolistic concentration and excessive inequality, and pursue diversity and 
openness).  
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	EXECUTIVE SUMMARY
	Background
	Artificial Intelligence (AI) has progressed to the point where it is an essential component in nearly all sectors of today’s modern economy, with a significant impact on our private, social, and political lives. AI refers to an ecosystem of models and technologies for perception, reasoning, interaction and learning. The return of AI to the limelight in the recent years is mainly related to learning from data, Machine Learning (ML), that made a jump ahead thanks to the emergence of Big Data. The mix is threefold: data reach the critical mass of examples to learn from, algorithms discover predictive patterns and patterns hidden in the data, the high-performance architectures succeed to compensate for the computing and storage resources needed. Based on this mix, AI managed to successfully tackle long-standing open challenges, such as understanding and translation of texts and speech, recognition of the content of images and video, and other tasks believed to require intelligence. Approximately ten years ago, it was noticed that some long-known learning models, hitherto ineffective to the mentioned tasks, if properly generalized and trained on a large set of example data, can make a qualitative leap. Indeed, such methods can learn, from the pixels of the images or from the words of the example texts, the general “concepts” that allow to recognize and classify accurately new images and new texts.
	The current stage of development of AI exhibits strengths and weaknesses. On the one hand, the learning capacity of AI models is growing, bringing extraordinary progress in robotic vision and autonomous driving, in automated text and speech translation, in medical diagnosis, in risk assessment, in predictive maintenance. On the other hand, the gap with other aspects of AI is growing, in particular, with reasoning and person-machine interaction, central aspects for the development of a human, ethical, and anthropocentric AI, that is the focus of the European approach. The opacity and nature of black boxes of AI models are growing, together with the risk of creating systems exposed to biases in training data, systems that even experts fail to understand. Tools are missing to allow AI developers to certify the reliability of their models. It is crucial to inject into AI technologies, ethical values of fairness (how to avoid unfair and discriminatory decisions), accuracy (how to provide reliable information), confidentiality (how to protect the privacy of the involved people) and transparency (how to make models and decisions comprehensible to all stakeholders). This value-sensitive design approach, yet to be fully operationalised, is strongly needed for boosting widespread social acceptance of AI, without inhibiting its power. 
	Furthermore, as increasingly complex sociotechnical systems emerge, consisting of many interacting people and intelligent and autonomous systems, AI acquires an important societal dimension. A key observation is that a crowd of intelligent individuals (assisted by AI tools) is not necessarily an intelligent crowd. On the contrary, it can be stupid in many cases, because of undesired, unintended network effects and emergent aggregated behavior. Examples abound in contemporary society. For example, using a car navigation to avoid a traffic jam on the main route can cause additional jams in the local alternative routes. In the field of opinion formation and diffusion, a crowd of citizens using social media as a source of information is subject to the algorithmic bias of the platform’s recommendation mechanisms suggesting personalised content. This bias will create echo chambers and filter bubbles, sometimes induced in an artificial way, in the sense that without the personalisation bias the crowd would reach a common shared opinion. Recommendations provided by AI systems may make sense at an individual level but they may result in undesired collective effects of information disorder and radicalisation. 
	The flow of information reaching us via the online media platforms and ecommerce marketplaces is optimised not by the information content or product quality but by popularity and proximity to the target. This is typically performed in order to maximize platform usage. The recommendation algorithms suggest the interlocutors, the products and the contents at which we get exposed, based on matching profiles, promoting the most popular choices for people similar to us. As a result, we observe the appearance of the “rich get richer” phenomenon: popular users, contents and products get more and more popular. In the online marketplaces this would mean that a few businesses get the biggest share of the market while many have to share the rest. These businesses become the hubs of the network, gathering most of users’ purchases to the detriment of the vast majority. In the social media, that would mean that certain popular peers or contents gather all the user’s attention, becoming the hubs of the social network. As a consequence of network effects of AI recommendation mechanisms for online marketplaces, search engines and social networks, the emergence of extreme inequality and monopolistic hubs is artificially amplified, while diversity of offers and easiness of access to markets are artificially impoverished.
	Aim 
	There is a wide consensus that AI will bring forth changes that will be much more profound than any other technological revolution in human history. Depending on the course that this revolution takes, AI will either empower our ability to make more informed choices or reduce human autonomy; expand the human experience or replace it; create new forms of human activity or make existing jobs redundant; help distribute well-being for many or increase the concentration of power and wealth in the hands of a few; expand democracy in our societies or put it in danger. Our generation carries the responsibility of shaping the AI revolution. The choices we face today are related to fundamental ethical issues about the impact of AI on society, in particular, how it affects labour, social interactions, healthcare, privacy, fairness, security, and markets. 
	The current technological advancements and developments of AI that can occur in the near future, if driven along the path of a human-centric AI, could represent an important transformation factor for ecommerce/digital services and for the Internal Market. Novel AI platforms for ecommerce and digital services based on human-centric AI interaction mechanisms have the potential to mitigate monopolistic concentration, deliver more open and resilient markets, and better connect the diverse demands of European consumers to the diverse offer of European products and services, by fostering diversity “by-design”. AI-based recommendation and interaction mechanisms may help departing from the current purely “advertisement-centric” model, focusing on the interests of platforms in maximising intermediation revenues, to a systemic approach where focus is on the interest of citizens in accessing and sharing of high quality contents, the interest of consumers to broaden their choices and opportunities, and the interest of advertisers in broadening their audience and customer base.
	Within this landscape, the European strategy for the next-generation digital services and online platforms is of utmost importance, with impacts that will go far beyond consumer protection, towards shaping the digital society that will emerge. Coherently with the recent strategic white paper of the European Commission “On Artificial Intelligence – A European approach to excellence and trust”, we recommend to develop the European provision on artificial intelligence in the area of ecommerce and digital services - in the context of reforming the E-commerce directive and introducing the Digital Services Act - with the aim to properly address and exploit the transformative impact of upcoming human-centric AI developments, to the purpose of social progress. Accordingly, our proposed recommendations to EU policy makers follow a double line of reasoning and interventions: topic-wise, and instrument-wise. 
	Topic-wise, it is crucial to address and operationalise the following challenges: 
	a) trustworthy, explainable AI in order to fight novel forms of discrimination and manipulation and empower citizens, and; 
	b) societal-aware AI in order to fight polarisation and inequality and pursue diversity and openness.
	Instrument-wise, it is important to realise that the scientific and technological landscape is not yet fully mature to address all the open challenges discussed here. Therefore a mix of policies is needed, that tackle the problem at three levels:
	a) a bold EU investment in fundamental and applied research in human-centric AI;
	b) a bold EU investment in creating novel online platforms and digital services embodying human-centric AI mechanisms (and/or in supporting the scaling of existing coherent initiatives);
	c) a coherent set of EU regulations concerning AI, big data and digital services, designed not only to seize the opportunities and mitigate risks, but also to inspire research & development in AI, big data and digital platforms towards an inclusive, equal and diverse society.
	1. Artificial Intelligence, big data, machine learning
	KEY FINDINGS
	Artificial Intelligence (AI) has progressed to the point where it is an essential component in nearly all sectors of today’s modern economy, with a significant impact on nearly all areas of our private, social, and political lives. 
	The term Artificial Intelligence refers to an ecosystem of models and technologies for perception, reasoning, interaction and learning. The return of the term AI to the limelight in the recent years is mainly related to this last aspect of learning from data: Machine Learning (ML) that made a jump ahead thanks to the emergence of Big Data. The mix is explosive: data reach the critical mass of examples to learn from, algorithms discover predictive patterns and patterns hidden in the data, the high-performance architectures succeed to compensate for the computing resources and storage needed.
	In this new spring, arriving after the long winter originating from the disillusionment of the eighties, AI managed to successfully tackle open challenges, such as understanding and translation of texts and speech, recognition of the content of images and video, and other tasks believed to require intelligence. Approximately ten years ago, it was noticed that some long-known learning models, such as artificial neural networks, hitherto ineffective to the mentioned tasks, if equipped with a huge number of internal variables (neurons) and associated parameters, and properly trained on large set of example data, suddenly can make a qualitative leap and are able to generalize, from the pixels of the images or from the terms of the example texts, the general “concepts” that allow to recognize, classify, and accurately predict new images and new texts. A learning mode that requires new high-performance computing paradigms. This frame, Artificial Intelligence = Big Data + Machine Learning, is widely confirmed today.
	As data-driven decision making becomes visible in everyday life, the interest around AI and Big Data is mounting. Society has shifted from being predominantly “analog” to “digital” in just a few years: society, organizations, and people are increasingly interconnected. As a consequence of digitization, data is collected about anything, at any time, and at any place. The spectacular growth of the digital universe, summarized by the term Big Data, makes it possible to record, observe, and analyse the behavior of people, machines, and organizations.
	The term Big Data has been used diversely in different communities, according to their topics of interest and priorities. A set of attributes that characterize Big Data: velocity, volume, variety and veracity, are often cited, and named the four V’s. Velocity relates to the streaming nature of data and its speed; volume is about the sheer size of such data, calling for filtering/compression strategies or special measure for storing and processing it; variety stands for heterogeneity of the data sources that can be involved, both in terms of formats and representation, and in terms of semantics; veracity points to data quality issues and trustworthiness of the information. In the recent discourse, a fifth V has been added to the list, standing for value, aimed to emphasize the fact that turning Big Data sources and associated analytics tools into value (economic, social or scientific) is both important and far from trivial. 
	Machine learning methods exploit large "training" datasets of examples to learn general rules and models to classify data and predict outcomes (e.g., classify a taxpayer as fraudulent, a consumer as loyal, a patient as affected by a specific disease, an image as representing a specific object, a post on a social media as expressing a positive emotion). These analytical models allow scientists to "produce reliable, repeatable decisions and results" and uncover "hidden insights" through learning from historical relationships and trends in the data. Machine learning tasks are typically classified into two broad categories, depending on whether there is a learning "signal" or "feedback" available to a learning system: supervised and unsupervised learning. In supervised learning tasks the computer is presented with example inputs and their desired outputs, typically given by a "human expert", and the goal is to learn a general rule (or function, model) that maps inputs to outputs. In unsupervised learning tasks, there are no labels given to the learning algorithm, leaving it on its own to find structure in its input. Unsupervised learning can be a goal in itself (discovering hidden patterns in data) or a means towards an end (feature learning).
	In this context, all the strengths and weaknesses of the current situation are highlighted. On the one hand, the capacity of machine learning models to generalize from training data that are larger and of higher quality, is growing; this capacity explains the extraordinary progress in image recognition and in robotic vision, in understanding text and speech, in automatic translation, in medical diagnosis, in risk assessment, in predictive maintenance. On the other hand, the gap with other aspects of AI is growing, in particular, reasoning and person-machine interaction, central aspects for the development of a human, ethical, and anthropocentric AI, that is the focus of the European approach. Accordingly, AI created unprecedented opportunities but also new risks, such as the opacity of AI models that makes it difficult, even for experts, to explain the rationale of their conclusions. This can represent a critical point in technological and social terms, since the risk is real, as demonstrated by recent episodes, of training systems that are compromised by prejudice and discrimination bias, learned from the training data.
	2. AI-RISKS and challenges
	2.1. Black boxes
	2.2. “Right to Explanation”
	2.3. Direction to pursue

	KEY FINDINGS
	AI created unprecedented opportunities but also new risks. The exponential growth of the capabilities of AI models allows to reach levels of value and generalization never attained before. However, the opacity of these models has also grown and their nature of black box makes it difficult, even for experts, to explain the rationale of their conclusions. This can represent a critical point in technological and social terms, since the risk is real, as demonstrated by recent episodes, of training systems that are compromised by prejudice and discrimination bias, which learnt from the training data. It is therefore possible that “learning from the digital traces of past decisions can lead to incorporating invisibly existing prejudices into the resulting models, perpetuating them”, as reported in the work that launched the study of discrimination-aware data mining in 2008.
	Paraphrasing Frank Pasquale, author of The black box society, we have seen increasingly opaque algorithms spread, employed to infer intimate traits of individuals. These algorithms yield classification and prediction models of behavioral traits of individuals, such as credit score, insurance risk, health status, propensity to crime, personal preferences and orientations, using personal data disseminated in the digital environment by citizens, with or sometimes without their awareness. Such automated decision-making systems are often black boxes that, observing the characteristics of the users, predict a class, a judgment, a vote and suggest decisions; but without explaining the reason of the proposed prediction, or recommendation. It is not just a matter of transparency. The models are trained on examples reconstructed on the basis of the digital traces of user activities, such as movements, purchases, online searches, opinions expressed on social networks. As a result, the models inherit the prejudices and defects - the biases - that are hidden in the training data, hiding them, in turn, in the decision algorithms that risk suggesting unfair, discriminatory or simply wrong choices, possibly without the awareness of the decision maker and the subject of the final decision. If a chat box, an AI that conversates with users on social networks, learns from the wrong examples, e.g., racist utterance, it will be racist in turn - and its creators will have to quickly and silently remove it. Many cases that have already happened, like the one of the Twitter bot Tay released by Microsoft in 2016 and quickly shut down after it learned offensive and racist behavior from online conversations, warn us that delegating choices to black box algorithms may reveal a bad idea. The cases in the next sections bring further evidence to this claim.
	 Compas, owned by Northpointe Inc., is a predictive model of the risk of criminal recidivism, used until recently by various US Courts of Justice in support of judges' decisions on release requests. Journalists at Propublica.org have collected thousands of use cases of the model and shown that it has a strong racist bias: blacks who will not actually commit a crime again are assigned a double risk compared to whites in the same conditions. The model, developed with ML techniques, presumably inherited the bias present in the historical sentences and is affected by the fact that the American prison population over-represents blacks over whites;
	 The top three agencies for credit risk in the United States, Experian, TransUnion and Equifax are often discordant. In a study of 500,000 cases, 29% of credit applicants had a risk assessment with differences of more than 50 points from the three companies, which can mean tens of thousands of dollars of difference in overall interests. Such a wide variability suggests very different evaluation hypotheses, as well as opaque ones, or a strong arbitrariness;
	 In the 1970s and 1980s, St. George's Hospital Medical School in London used software to filter job applications which was later found to be highly discriminatory towards women and ethnic minorities, inferred by surname and place of birth. Algorithmic discrimination is not a new phenomenon and is not necessarily due to ML;
	 A classifier based on DL can be very accurate with respect to training data, and at the same time completely unreliable, for example because it has learned from bad quality data. In a case of image recognition aimed at distinguishing husky wolves in a large dataset of images, the resulting black box was dissected by researchers only to find out that the decision to classify an image as 'wolf' was based solely on the snow in the background! The fault, of course, is not on DL, but on the accidental choice of training examples in which, evidently, each wolf had been photographed on the snow. So, a husky in the snow is automatically classified as a wolf. Now we carry this example on the vision system of our self-driving car: how can we be sure that it will be able to recognize correctly every object around us?
	 Various studies, such as the one mentioned in the note, show that the texts on the web (but also on the media in general) contain bias and prejudices, such as the fact that the names of whites are more often associated with words with a positive emotional charge, while names of black people are more often associated with words with a negative emotional charge. Therefore, models trained on texts for the analysis of sentiment and opinions are highly likely to inherit the same prejudices;
	 Bloomberg data journalists have shown how the automatic model, used by Amazon to select the neighbourhoods of American cities to offer “same-day delivery” for free, has an ethnic bias. The software, without the knowledge of the company, systematically excludes from the offer areas inhabited by ethnic minorities in many cities, while including neighbouring ones. Amazon replied to the journalistic investigation that it was not aware of the practice, because the ML model was totally autonomous and based its choices on previous customer activity. In short, it is the fault of the algorithm.
	Through Machine Learning and Deep Learning (DL) we are creating systems that we don't know fully understand yet. The European legislator has become aware of the trap, and perhaps the most innovative and forward-looking part of the General Data Protection Regulation (GDPR), the new privacy regulation that came into force in Europe on May 25th of 2018, is precisely the right to explanation, or the right to obtain meaningful information on the logic adopted by any automatic decision system that has legal effects, or “similarly relevant”, for the people involved. Without a technology capable of explaining the logic of black boxes, however, the right to explanation is destined to remain a dead letter, or to outlaw many applications of opaque ML. It's not just about digital ethics, about avoiding discrimination and injustice, but also about security and corporate responsibility. In areas such as self-driving cars, robotic assistants, home automation and manufacturing IoT systems, personalised precision medicine, companies launch services and products with AI components that could inadvertently incorporate wrong decisions, crucial for safety, learned from errors or by spurious correlations in the learning data. For example, how to recognize an object in a photo by the properties not of the object itself but of the properties of the background, due to a systematic bias in the collection of learning examples. How can companies trust their products without understanding and validating their operation? Explainable AI technology is essential to create products with reliable AI components, to protect consumer safety and to limit industrial liability. Accordingly, the scientific use of ML, as in medicine, biology, economics or social sciences requires comprehensibility not only for trusting the results, but also for the open nature of scientific research, so that it can be shared and progressed. The challenge is tough and stimulating: an explanation must not only be correct and exhaustive, but also understandable to a plurality of subjects with different needs and competences, from the user being the subject of a decision, to AI solution developers, to researchers, to data scientists, to policy makers, supervisory authorities, civil rights associations, journalists.
	What is an “explanation” has already been investigated already by Aristotle in his Physics, a treatise dating back in the 4th century BC. Today it is urgent to give a functional meaning, as an interface between people and the algorithms that suggest decisions, or that decide directly, so that AI serves to enhance human capabilities, not to replace them. In general, the explanatory approaches differ for the different types of data from which you want to learn a model. For tabular data for example, the explanation methods try to identify which variables contribute to a specific decision or prediction in the form of if-then-else rules or decision trees.
	Over the past two years there has been an impetuous research effort on understandable AI, but a technology for the explanation that is practical and systematically applicable has not yet emerged. There are two broad ways of dealing with the problem:
	 explanation by-design: XbD. Given a set of decision data, how to build a “transparent automatic decision maker” that provides understandable suggestions; 
	 explanation of the black-boxes: Bbx. Given a set of decisions produced by an “opaque automatic decision maker”, how to reconstruct an explanation for each decision.
	The most recent works in literature are discussed in the review, organizing them according to the ontology illustrated in the figure below. Today we have encouraging results that allow us to reconstruct individual explanations, answers to questions such as “Why wasn't I chosen for the place I applied for? What should I change to overturn the decision?” 
	Figure 1: Open the Black Box Problems
	Source: Guidotti et al., 2018. Open online access at: https://dl.acm.org/doi/10.1145/3236009
	The first distinction concerns XbD and Bbx. The latter can be further divided between Model Explanation, when the goal of explanation is the whole logic of the dark model, Outcome Explanation, when the goal is to explain decisions about a particular case, and Model Inspection, when the goal is to understand general properties of the dark model.
	We are rapidly evolving from a time when people coded algorithms, taking responsibility for the correctness and quality of the software produced and the choices represented in it, to a time when machines independently infer algorithms based on a sufficient number of examples of the expected input / output behaviour. In this disruptive scenario, making sure that the AI ​​black boxes are open and understandable is functional not only to verify their correctness and quality, but above all to align the algorithms with human values ​​and expectations and to preserve, or possibly to expand, the autonomy and awareness of our decisions.
	For all these reasons, the strategy for AI must develop on two synergistic levels: on one hand, it is crucial to innovate, experiment and systematically evaluate the application of the state of the art in AI in all scientific, social and industrial sectors, but it is not enough. On the other hand, it is necessary to intensify research efforts to deal with open problems. A trans-national and multidisciplinary approach is needed, that pivots on excellence in AI in research institutions to build a strong alliance with all other disciplines, including the social sciences, cognition and ethics. 
	The opacity and nature of black boxes of AI models are growing, together with the risk of creating systems exposed to biases in training data, systems that even experts fail to understand. Tools are missing to allow AI developers to certify the reliability of their models. It is crucial to inject into AI technologies, ethical values of fairness (how to avoid unfair and discriminatory decisions), accuracy (how to provide reliable information), confidentiality (how to protect the privacy of the involved people) and transparency (how to make models and decisions comprehensible to all stakeholders). This value-sensitive design approach is aimed at boosting widespread social acceptance of AI, without inhibiting its power. 
	Europe has set its own approach to AI, not only with the forward-looking GDPR, but with many more initiatives in order to put AI at the service of its citizens and economy. In its Communication, the European Commission puts forward the three main pillars for AI: 
	a) Being ahead of technological developments and encouraging uptake by the public and private sectors;
	b) Prepare for socio-economic changes brought about by AI;
	c) Ensure an appropriate ethical and legal framework.
	On February 2020, a White Paper was published aiming to foster a European ecosystem of excellence and trust in AI, along with a Report on the safety and liability aspects of AI. The GDPR was a major step for building trust but actions are also necessary to ensure legal clarity in AI-based applications. There are several similar initiatives taken in the U.S.A. and China to promote the use and development of AI, but also to regulate it.
	We are already seeing the rate of AI’s penetration in real-world applications being limited by most systems’ ability to adequately interact with humans, by related issues of user acceptance, and by the capability of dealing with complex, dynamic, unpredictable environments. To be truly adopted on a social and industrial scale, AI must be able to amplify human potential, especially on a cognitive level, not aiming at replacing human expertise. Ethical constraints are stimuli to create better innovations, not obstacles to innovation. The GDPR, to put it with Tim Cook, Apple’s CEO, is not a problem but a great opportunity. Values are principles of good design for a technology aiming at individual and social wellbeing. It is an exciting scientific and technological challenge, which requires fundamental multidisciplinary research for the development of new models. From statistical learning and correlations to causal reasoning. From black box decision models to interpretable models, to design AI systems that converse with humans to help them improve the quality of their decisions. To measure, predict and preserve the sustainability and resilience of the complex (techno-) social systems we inhabit. To design new ways of interaction between people and machines in a way that the former reach higher levels of awareness and the latter higher levels of learning and understanding of the context and of human reasoning. Finally, to design new decentralized and distributed ways for collection and data management, the energy that feeds the AI, going beyond the current phase of extreme data centralization by a few monopolistic corporations. Indeed, these are hindering open science, innovation, common good and, with their monstrous date centres, environmental sustainability. 
	Whoever leads the way in future generations of AI technology will set the standards for the values and ethics embedded in it. AI’s development to date has brought us to an important crossroads: depending on the direction of future development, AI could destroy or create new jobs; empower citizens or impair their autonomy and privacy; increase the complexity of a globalized, interconnected world, thereby increasing the risk of systemic failures, or provide us with transparent, usable, understandable tools for taming that complexity, e.g., in epidemic emergencies such as the Covid-19 pandemic we are experiencing in these days. The goal to aim for is a Human-centric AI at the benefit of humans at an individual and at a social level, systems which incorporate European ethical values by-design, which are able to understand and adapt to real environments, interact in complex social situations, and expand human capabilities, especially on a cognitive level.
	While there are aspects of AI where big non-EU corporations and countries may be better positioned, a specific European brand of AI that focuses on European values could be beneficial. The empowerment of humans and a benign impact on society can provide Europe with a unique competitive advantage and make a significant contribution to the well-being and prosperity of European citizens. On the big data landscape, while big corporations have an advantage on consumer behavioral data, Europe is better positioned for data coming from the public sector, such as health, education, etc., thanks to the well developed public administration and welfare systems, as well as for industrial data, coming from the ecosystem of large, medium and small industries that turned digital.
	3. The social dimension of AI
	3.1. Wisdom of crowds?
	3.2. Social networks, search engines, online marketplaces
	3.3. Opinion diffusion on online media platforms
	3.4. Mobility, traffic and online navigation services

	KEY FINDINGS
	As increasingly complex sociotechnical systems emerge, consisting of many (explicitly or implicitly) interacting people and intelligent and autonomous systems, AI acquires an important societal dimension. A key observation is that a crowd of (interacting) intelligent individuals is not necessarily an intelligent crowd. On the contrary, it can be stupid in many cases, because of undesired, unintended network effects and emergent aggregated behavior. Examples abound in contemporary society. For example, using a car navigation to avoid a traffic jam on the main route can cause additional jams in the local alternative routes. In the field of opinion formation and diffusion, a crowd of citizens using social media as a source of information is subject to the algorithmic bias of the platform’s recommendation mechanisms suggesting personalised content. This bias will create echo chambers and filter bubbles, sometimes induced in an artificial way, in the sense that without the personalisation bias the crowd would reach a common shared opinion. Recommendations provided by AI systems may make sense at an individual level but they may result in undesired collective effects of information disorder and radicalisation. 
	The interaction among individual choices may unfold dramatically into global challenges linked to economic inequality, environmental sustainability, and democracy. Aggregated network and societal effects of AI and their impacts on society are not sufficiently discussed in the public and not sufficiently addressed by AI research, despite the striking importance to understand and predict the aggregated outcomes of sociotechnical AI-based systems and related complex social processes, as well as how to avoid their harmful effects. Such effects are a source of a whole new set of explainability, accountability, and trustworthiness issues, even assuming that we can solve those problems for an individual machine-learning-based AI system. Therefore, we cannot concentrate solely on making individual citizens or institutions more aware and capable of making informed decisions. We also need to study the emerging network effects of crowds of intelligent interacting agents, as well as the design of mechanisms for distributed collaboration that push toward the realization of the agreed set of values and objectives at collective level: sustainable mobility in cities, diversity and pluralism in the public debate, and fair distribution of economic resources. Societal AI is emerging as a new field of investigation of potentially huge impact, requiring the next step ahead in trans-disciplinary integration of AI, data science, social sciences, psychology, network science, and complex systems.
	Surowiecki in his book The Wisdom of Crowds provides many promising and intuitive examples of a wise — and accurate — crowd. Nevertheless, he also presented situations (such as rational bubbles) in which the crowd produced very bad judgements, and argued that in these types of situations their cognition or cooperation failed because (in one way or another) the members of the crowd were too conscious of the opinions of others and began to emulate each other and conform, rather than think differently.
	One would expect that, with the advent of AI, the crowd, powered now by machines and algorithms, could instead be an intelligent crowd and make intelligent choices and take intelligent decisions. Alas, that’s not always the case. Due to the aggregated effect of interactions occurring in the complex networks surrounding us, a crowd of intelligent individuals may still be stupid. There are several examples in our everyday life, in online marketplaces, in online public conversation, in mobility and traffic.
	Surowiecki states that there are three conditions for a group to be intelligent: diversity, independence, and decentralisation. He stresses the need for diversity within a crowd to ensure multiple viewpoints. In a wise crowd, “one person’s opinion should remain independent of those around them,” and individuals must “make their own opinion based on their individual knowledge.” Instead, in our complex social systems, individuals influence one another, and are influenced by the media they choose. As a consequence, the wisdom of the crowd effect often vanishes.
	The flow of information reaching us via the online media platforms is optimised not by the information content or relevance but by popularity and proximity to the target. This is typically performed in order to maximize platform usage. The recommendation algorithms suggest the interlocutors and the contents at which we get exposed, based on matching profiles, promoting the most popular choices for people similar to us.
	As a result, we notice the appearance of the “rich get richer” phenomenon: popular peers, contents and products get more and more popular. As shown in the picture below, in the online marketplaces this would mean that a few businesses get the biggest share of the market while many have to share the rest. These businesses become the hubs of the network, gathering most of users’ purchases to the detriment of the vast majority. In the social media, that would mean that certain popular peers or contents gather all the user’s attention and they, on their turn, become the hubs of the social network.
	Figure 2: Popularity ranking of business
	Source: Source: A. Kripaa, The Long Tail and Cloud-based ERP Solutions, Ramco Systems blog, accessed online at https://blogs.ramco.com/the-long-tail-and-cloud-based-erp-solutions on April 21, 2020  
	A vital few, most popular products seize the more sales while many are way less popular with less sales.
	We need to design novel social AI mechanisms for online marketplaces, search engines and social networks, focused on mitigating the existing inequality introduced from the current generation of recommendation systems. We need mechanisms for helping individuals acquiring access to diverse content, different people and opinions, to avoid that diversity is artificially impoverished.
	For centuries, people shaped own convictions thanks to the exchange of opinions with other people. These relationships, based on the level of mutual trust, play a fundamental role in the process that leads us to strengthen or change our opinions. With the spread of media and, recently, of social media we are witnessing a large-scale exploitation process, especially for business purposes, of the cognitive mechanism of the confirmation bias – the tendency to prefer information that is close to our convictions, and induces us to interact with peers that share our preferences. How do these mechanisms alter the traditional ways of forming opinions? What impact do they have on fragmentation, polarisation and radicalisation of ideas?
	Social media are increasingly used to share ideas, but also, as the report Reuters 2018 on Digital News shows, to read and exchange news. This means that the interlocutors and the contents with which we interact, together with the external effects in the dynamics of opinions, become susceptible to the influences deriving from the interaction mechanisms of the social media platforms in use, built with a marketing objective: to maximize the number of users and the time they spend on the platform, catching their attention. To achieve this, the information that reaches them is not randomly selected. There is a precise algorithmic bias: we are systematically exposed to news related to the topics we like most and to the opinions that are closest to ours, so as to be nudged to interact with the proposed contents and return to the platform. After all, marketing has always exploited a cognitive mechanism that is innate with humans, the confirmation bias, defined as: «a mental process that consists in searching, selecting and interpreting information in order to place greater attention, and therefore attributing greater credibility to those who confirm own beliefs or hypotheses, and vice versa, ignoring or diminishing information that contradicts them. The phenomenon is stronger in the context of topics that arouse strong emotions or that touch deeply rooted beliefs». The mechanisms of marketing, whether commercial, informational or political, leverage the confirmation bias, because each of us feels gratified when meeting subjects or contents that confirm their beliefs. Proposing to interact with people and content close to the beliefs of users and consumer preferences ensures a higher click rate, a greater probability of attracting purchases, attention, likes. Ultimately, greater revenue for the platform.
	This mechanism of confirmation bias is exploited by online platforms, for information search and social networking and media, which employ recommendation algorithms based on AI to catalyze users’ attention. As a side effect, the platform amplifies and reinforces individual bias, resulting in extreme polarisation of opinions and filter bubbles at the social level, with dramatically negative consequences on the pluralistic public debate needed to nurture democracy. In addition, access to information is often maliciously biased by either commercially or politically motivated influence agents.
	The most shocking result of a research recently published in the journal PlosOne is that the number of groups with different opinions increases, within a population, with the increasing intensity of the algorithmic bias. In other words, online platforms can favor the fragmentation of opinions causing the emergence of opposing "parties", or “bubbles”, even when, in the absence of bias, the population would reach consensus - a division therefore that is totally artificial, induced by the interaction mechanism of the platform that inhibits comparison between different positions. In practice, algorithmic bias leads to an increase in polarisation and radicalisation of opinions, amplifying the already powerful cognitive mechanism that we have incorporated, the confirmation bias.
	The second effect of algorithmic bias is on the speed of opinion formation: the changes of opinion of individuals are much slower when the bias is introduced, and therefore the population, as a whole, takes a much longer time to reach a stable situation. Even when it comes to consensus, the time to reach it becomes extremely long.
	The algorithmic bias of the platforms can profoundly influence the results of public debates and the formation of consensus in society. An apparently harmless mechanism, always used in marketing, if used on a large scale has a potentially destructive “network effect”, capable of creating and strengthening “echo chambers”, information bubbles, radicalizing public debate and destabilising democracy. This is a phenomenon we are witnessing with growing apprehension, registered by scholars and experts on social dynamics from all over the world. This polarisation effect is probably even more dangerous for our democracy than fake news and the hate speech phenomenon, as the latter can be explained, in most cases, an effect of bubbles artificially reinforced by bias.
	It’s important to highlight however, that fake news is a serious phenomenon that got amplified on online media platforms. It’s a phenomenon that has been present since before online media and even the Internet, but social media has been a major driver for fake news consumption. On social media, fake news is discussed and engaged in about as much as real news in spite of the fact that it is read ten times less. In a study from the IMCO committee, fake news are redefined as malinformation, i.e. the triple conjunction of human malevolence, marketing malpractice and engineered malware, and the costs of this malevolent combination are thoroughly studied. Among these, there are economic costs but also, most importantly, two major societal costs: the integrity of information and the integrity of elections. Fake news thus creates challenges for both the sovereignty of Member States and for the cohesion of the European Union that are complex and may have far-reaching consequences. Fake news leads to information disorders related to the transverse effect of malinformation, i.e. the trans-border, transmedia, trans-lingual and trans-time nature of Internet networks. The direct and indirect impact of fake news, though not proven yet by various nascent research protocols, may lead to long-term counter veiling deterrence measures which will reduce freedom of speech and the freedom to receive and impart information. Thus efforts to inhibit fake news will damage democratic processes. 
	But AI technology can also help at stopping fake news at almost all stages of the news process: editing, amplification and consumption. To stop fake news at editing and amplification online media platforms are a natural candidate for discussion. They can label results, disclose their selection algorithms, and last but not least identify and control the bots – accounts that seem like real persons to people and particularly to the platform’s algorithms. In fact, bots are just programs that simulate a person using these platforms, and can determine the popularity of the news. Stopping bots could be easy if the platforms enforce the “real identity” of their users. Identifying bots and identifying fake news, can be done manually or automatically via AI algorithms that study the content and the social context of its source.
	Human-centric AI has a clear social dimension that may help us design novel platforms and mechanisms for access to news and information, focused on counterbalancing our built-in confirmation bias and transparently striving to expose people to assorted opinions, intelligently. We imagine mechanisms for helping individuals and communities become informed on controversial issues by offering multiple perspectives, connecting opposing views and conflicting arguments, and fostering critical thought. For example, a robot in a group conversation can highlight information that was unavailable to the group, or suggest omitted sources of important information. Advances in person-machine interaction models based on explainable AI have the potential to reach novel cognitive trade-offs between our confirmation bias and our curiosity of novelty and diversity, making it possible for more sustainable and humanized information ecosystems to emerge.
	AI is a key factor in analysing and facilitating changes in cities and citizen behaviours related to mobility. Modern cities are the perfect example of environments where traffic monitoring systems, and GPS-enabled individual mobility traces, provide useful information to recommend a route and direct a driver to reach a destination avoiding traffic jams.
	From the perspective of the individual driver, this system makes perfect sense. But collectively, this can be sometimes meaningless and misleading. Anyone who has used a car navigation system to bypass a traffic jam knows. Each navigation system generates recommendations that make sense from an individual point of view, and the driver can easily understand the rationale behind the recommendations. However, the sum of decisions made by many navigation systems can have grave consequences on the traffic system as a whole: from the traffic jams on local alternative routes to ripples propagating through the system on a larger spatial scale, to long-term behavior changes that may lead to drivers permanently avoid certain areas (which can have a negative economic impact on disadvantaged neighbourhoods), or artificially increase the risk of accidents on highly recommended roads. 
	It is important to study the emergence of collective phenomena at metropolitan level in personal navigation assistance systems with different recommendation policies, with respect to different policies for navigation recommendations (such as diversity) and different collective optimisation criteria (fluidity of traffic, safety risks, environmental sustainability, urban segregation, response to emergencies, etc.).
	4. conclusions and recommendations
	4.1. Explainable AI: fostering trust in online platforms and marketplaces
	4.2. Societal-aware AI: fostering diversity in online platforms and marketplaces

	There is a wide consensus that AI will bring forth changes that will be much more profound than any other technological revolution in human history. Depending on the course that this revolution takes, AI will either empower our ability to make more informed choices or reduce human autonomy; expand the human experience or replace it; create new forms of human activity or make existing jobs redundant; help distribute well-being for many or increase the concentration of power and wealth in the hands of a few; expand democracy in our societies or put it in danger. Our generation carries the responsibility of shaping the AI revolution. The choices we face today are related to fundamental ethical issues about the impact of AI on society, in particular, how it affects labour, social interactions, healthcare, privacy, fairness, security, and markets. 
	There is a need to develop the scientific foundations and technological breakthroughs to shape the AI revolution in a direction that is beneficial to humans on both individual and societal levels and that adheres to European ethical values and social, cultural, legal and political norms. The core challenge is the development of robust, trustworthy AI systems capable of what could be described as “understanding” humans, adapting to complex real-world environments and appropriately interacting in complex social settings. The aim is to facilitate AI systems that enhance human capabilities and empower individuals and society as a whole while respecting human autonomy, dignity and self determination. 
	The current technological advancements and developments of AI along the mentioned lines, that can occur in the near future (in two to five years), could represent an important transformation factor for ecommerce/digital services and for the Internal Market. Novel AI platforms for ecommerce and digital services based on AI interaction mechanisms have the potential to mitigate monopolistic concentration, deliver more open and resilient markets, and better connect the diverse demands of European consumers to the diverse offers of European products and services, by fostering diversity “by-design”. AI-based recommendation and interaction mechanisms may help departing from the current purely “advertisement-centric” model, focusing on interest of platforms in maximising exchange of content in order to maximise advertisement revenues, to a systemic approach where focus is on the interest of citizens in accessing and sharing of high quality contents, the interest of consumers to broaden their choices and opportunities, and the interest of advertisers in broadening their audience and customer base.
	In combination with on-going advancements in peer-to-peer networks and distributed ledger architectures (block-chain), AI interaction mechanisms have the potential to promote a rapid shift towards decentralized environments for ecommerce and digital services that are centred not on the intermediary of the transactions, but rather on consumers and providers directly, aiming therefore at maximising satisfaction of consumers and providers, both individually and collectively, rather than maximising the revenue of the intermediary. Therefore AI can have an impact on the Internal Market by pursuing objectives that are meaningful for consumers and providers, instead of success measures that are functional to intermediaries, and by mitigating the gate-keeper effect of current platforms’ contracts. Clearly, such an ecosystem would be also beneficial to e-government and public procurement, and the same basic principles would apply both to marketplaces and information & media digital services, targeted towards the interest of consumers and providers to share high quality contents.
	Within this landscape, the European strategy for the next-generation digital services and online platforms is of utmost importance, with impacts that go far beyond consumer protection, shaping the digital society that will emerge. Coherently with the recent strategic white paper on AI released by the European Commission (On Artificial Intelligence - A European approach to excellence and trust, February 2020), we recommend to develop the European provision on artificial intelligence in the area of ecommerce and digital services - in the context of reforming E-commerce directive and introducing the Digital Services Act - with the aim to ascertain effective and efficient rights, institutions and procedures in the future and to properly address and exploit the transformative impact of upcoming technological developments, to the purpose of social development. Accordingly, the proposed recommendations to EU policy makers follow a double line of reasoning and interventions: topic-wise, and instrument-wise. 
	Topic-wise, it is crucial to address and operationalise the following challenges: 
	 trustworthy, explainable AI in order to fight novel forms of discrimination and manipulation and empower citizens, and; 
	 societal-aware AI in order to fight polarisation and inequality and pursue diversity and openness.
	Instrument-wise, it is important to realise that the scientific and technological landscape is not yet fully mature to address the open challenges above. Therefore a mix of policies is needed, that tackle the problem at three levels:
	 a bold EU investment in fundamental and applied research in human-centric AI;
	 a bold EU investment in creating novel online platforms and digital services embodying human-centric AI mechanisms (and/or in supporting the scaling of existing coherent initiatives);
	 a coherent set of EU regulations concerning AI, big data and digital services, designed not only to seize the opportunities and mitigate risks, but also to inspire research & development in AI, big data and digital platforms towards an inclusive, equal and diverse society.
	Explainable AI for high-stakes decision making. Decision making in, e.g., medicine, justice, job recruiting, etc., is essentially a sociotechnical system, where a decision maker interacts with various sources of information and decision-support tools, a process whose quality should be assessed in terms of the final, aggregated outcome — the quality of the decision — rather than assessing only the quality of the decision-support tool in isolation (e.g., in terms of its predictive accuracy and standalone precision). It is therefore important to develop tools that explain their predictions and recommendations in meaningful terms, a property rarely matched by AI systems, based on machine learning, available today.
	The explanation problem for a decision-support system can be understood as “where” to place a boundary between what algorithmic details the decision maker can safely ignore and what meaningful information the decision maker should absolutely know to make an informed decision. Thus, an explanation is intertwined with trustworthiness (what to safely ignore), comprehensibility (meaningfulness of the explanations), and accountability (humans keeping the ultimate responsibility for the decision). In this context, several questions emerge: what are the most critical features for explanatory AI? Is there a general structure for explanatory AI? How does an AI system reach a specific decision, and based on what rationale or reasons does it do so? Explanations should favor a human-machine interaction via meaningful narratives expressed clearly and concisely through text and visualizations, or any other human-understandable format revealing the why, why-not, and what-if. 
	Even in domains where the stakes all less high, such as in personalised advertising on online platforms (social media, search engines, marketplaces), an adequate level of explainability of automated recommendation mechanisms is of great importance for two reasons. First, to empower consumers and citizens against discrimination and manipulations; second, to empower watchdogs and surveillance/enforcement agencies (for, e.g., non-discrimination, consumer protection and privacy) in performing their actions. It is already clear from several concrete cases that the outcome of automated profiling for targeted personalised advertising can, often inadvertently, discriminate minority neighbourhoods and disadvantaged communities (such as systematically denying favourable prices and conditions), as well as exploit vulnerabilities (such as targeting people with addictive conditions with online betting ads). These phenomena are deeply rooted into the logic of machine learning, prone to inherit bias that is hidden in the training data. It is therefore key that explainable AI mechanisms, directed to diverse stakeholders (such as consumers and control institutions), are part of online platforms and marketplaces in an open and inspectionable format. A form of “right of explanation” for online platform and marketplaces, expanding and adapting the provisions adopted in the GDPR, might foster innovations in the sector of online advertising that, beyond bringing transparency and trust, could also improve the effectiveness of the system for both advertisers and consumers.
	As discussed in this report, the current wave of recommendation mechanisms supported by AI in various online platforms (marketplaces, social media, navigation systems, etc.) is functional to a specific business model based on advertising and profiling and it is potentially dangerous not only for potential discrimination and manipulation of the individual user/customer (see Sect. 2) but also for far reaching consequences at societal scale in terms of increased polarisation and reduced diversity (Sect. 3).
	Diversity is the key strength of Europe at social, cultural and economic level. Europe should therefore strive for developing AI-powered tools and platforms that embrace and promote diversity and European values at all scales:
	 Online media and information ecosystems that intelligently promote pluralism and connect different viewpoints on complex controversial issues;
	 Online marketplaces that intelligently promote the diversity and quality of European products and companies at all scales;
	 Online platforms that intelligently use AI advances in multi-lingual translation to break the barriers among international communities, both within EU and the rest of the world, making the diversity of EU media, culture and production easily accessible (see, e.g., EBU’s EuroVox project towards a diversity-oriented, multi-lingual digital platform for sharing high-quality public service news and media contents towards a potential population of 1 Billion people speaking 96 languages).
	In particular, novel platforms for news consumption and public conversation should, contrary to current practice, put in place algorithmic mechanisms that try to mitigate user confirmation bias rather than strengthen it, and find ways to expose users to contents and individuals with different opinions, helping to get broader ideas of controversial or complex issues, observing them from multiple points of view. A different public information ecosystem may be envisaged, aimed at diversity, which would also be essential to preserve and nourish our collective intelligence, or the wisdom of the crowd, at any scale, from communities to global citizenship. As discussed in this report and demonstrated by a long history of research studies and empirical evidence, a multitude endowed with healthy diversity and independence of opinions can intelligently answer difficult questions (e.g. predicting an uncertain outcome), but diversity and, therefore, collective intelligence is quickly undermined by excessive influence and polarisation. The bias of current platforms is, in short, a danger, and measures are needed to stop or at least mitigate their effects, or even reverse them, as interdisciplinary researchers are trying to suggest. 
	In the meantime, users could be informed of how news are conveyed on the feeds of the platforms and of the fact that this could influence their opinions, and perhaps the mechanisms implemented by the platforms could be slowly withdrawn. The consequence of the discussion in this report is that the current platforms for accessing information, both traditional and social media, based on the “free” service paid for by advertising and personalised marketing, are not (and cannot be) functional to fight polarisation and radicalisation, and to promote diversity and pluralism. The ultimate aim of the business model aimed at capturing the attention of users is, by definition, in conflict with that of promoting diversity and pluralism. Therefore, a different media ecosystem, aimed at helping citizens to deal with narratives and content other than their favorite or usual ones, should implement smart strategies to connect opposite and alternative visions. It should be based transparently on algorithmic bias that push towards diversity and pluralistic visions. It should be an open public platform, a common good, independent of the media, companies and governments, which pursues the aim of preserving socio-diversity, essential for democracy. 
	Coherently with this picture, it is desirable that the EU pushes vigorous research along the lines of societal-aware AI, both with a strategic plan of fundamental and applied research in the EU “brand” of human-centric AI, and with ad-hoc investments in novel EU-wide platforms such as those listed above, to be created from scratch or to be scaled leveraging promising existing initiatives. At regulatory level, it would be desirable to devise sustainable requirements fostering diversity in existing commercial social media platforms and marketplaces, such as obligations to access advertising delivery data in proper formats in order to verify the exposure of advertisers, the performance of paid vs unpaid advertising, the compliance with minimal diversification requirements. AI and data science are not neutral technologies, they can be used for good or bad purposes; it is up to us, to our democratic debate, to Europe in particular, to decide which values to instil by-design in these technologies to create a real information ecology.
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	ANNEX
	The human and social dimension of AI
	Prof. Dr. Dino Pedreschi, University of Pisa (I)
	Position paper (also presented at the first meeting of the OECD Network of AI Experts – ONE AI, Paris, 26-27 February 2020).
	There is a wide consensus that AI will bring forth changes that will be much more profound than any other technological revolution in human history. Depending on the course that this revolution takes, AI will either empower our ability to make more informed choices or reduce human autonomy; expand the human experience or replace it; create new forms of human activity or make existing jobs redundant; help distribute well-being for many or increase the concentration of power and wealth in the hands of a few; expand democracy in our societies or put it in danger. Our generation carries the responsibility of shaping the AI revolution. The choices we face today are related to fundamental ethical issues about the impact of AI on society, in particular, how it affects labor, social interactions, healthcare, privacy, fairness and security. 
	I am a founding member of the HumanE AI network of research centers, set forth to develop the scientific foundations and technological breakthroughs needed to shape the AI revolution in a direction that is beneficial to humans on both individual and societal levels and that adheres to European ethical values and social, cultural, legal and political norms. The core challenge is the development of robust, trustworthy AI systems capable of what could be described as “understanding” humans, adapting to complex real-world environments and appropriately interacting in complex social settings. The aim is to facilitate AI systems that enhance human capabilities and empower individuals and society as a whole while respecting human autonomy, dignity and self determination. 
	The research of our laboratory (KDD Lab, the Knowledge Discovery and Data Mining Lab of University of Pisa and CNR) revolves around data science and AI and their impacts on society. Two key directions are explainable AI and societal-aware AI.
	Explainable AI for high-stakes decision making. Decision making in, e.g., medicine, justice, job recruiting, etc., is essentially a sociotechnical system, where a decision maker interacts with various sources of information and decision-support tools, a process whose quality should be assessed in terms of the final, aggregated outcome — the quality of the decision — rather than assessing only the quality of the decision-support tool in isolation (e.g., in terms of its predictive accuracy and standalone precision). It is therefore important to develop tools that explain their predictions and recommendations in meaningful terms, a property rarely matched by AI systems, based on machine learning, available today.
	The explanation problem for a decision-support system can be understood as “where” to place a boundary between what algorithmic details the decision maker can safely ignore and what meaningful information the decision maker should absolutely know to make an informed decision. Thus, an explanation is intertwined with trustworthiness (what to safely ignore), comprehensibility (meaningfulness of the explanations), and accountability (humans keeping the ultimate responsibility for the decision). In this context, several questions emerge: what are the most critical features for explanatory AI? Is there a general structure for explanatory AI? How does an AI system reach a specific decision, and based on what rationale or reasons does it do so? Explanations should favor a human-machine interaction via meaningful narratives expressed clearly and concisely through text and visualizations, or any other human-understandable format revealing the why, why-not, and what-if. We are working to concrete answers to these questions within the ERC grant XAI (Science and technology for the eXplanation of AI decision making), led by my colleague Fosca Giannotti.
	The social dimension of AI. As increasingly complex sociotechnical systems emerge, consisting of many (explicitly or implicitly) interacting people and intelligent and autonomous systems, AI acquires an important societal dimension. A key observation is that a crowd of (interacting) intelligent individuals is not necessarily an intelligent crowd. On the contrary, it can be stupid in many cases, because of undesired, unintended network effects and emergent aggregated behavior. Examples abound in contemporary society. Anyone who has used a car navigation system to bypass a traffic jam knows. Each navigation system generates recommendations that make sense from an individual point of view, and the driver can easily understand the rationale behind the recommendations. However, the sum of decisions made by many navigation systems can have grave consequences on the traffic system as a whole: from the traffic jams on local alternative routes to ripples propagating through the system on a larger spatial scale, to long-term behavior changes that may lead to drivers permanently avoid certain areas (which can have a negative economic impact on disadvantaged neighborhoods), or artificially increase the risk of accidents on highly recommended roads. The interaction among individual choices may unfold dramatically into global challenges linked to economic inequality, environmental sustainability, and democracy. In the field of opinion formation and diffusion, a crowd of citizens using social media as a source of information is subject to the algorithmic bias of the platform’s recommendation mechanisms suggesting personalised content. This bias will create echo chambers and filter bubbles, sometimes induced in an artificial way, in the sense that without the personalisation bias the crowd would reach a common shared opinion. Again, a recommender system that makes sense at an individual level may result in an undesired collective effect of information disorder and radicalisation.
	Aggregated network and societal effects and of AI and their (positive or negative) impacts on society are not sufficiently discussed in the public and not sufficiently addressed by AI research, despite the striking importance to understand and predict the aggregated outcomes of sociotechnical AI-based systems and related complex social processes, as well as how to avoid their harmful effects. Such effects are a source of a whole new set of explainability, accountability, and trustworthiness issues, even assuming that we can solve those problems for an individual machine-learning-based AI system. Therefore, we cannot concentrate solely on making individual citizens or institutions more aware and capable of making informed decisions. We also need to study the emerging network effects of crowds of intelligent interacting agents, as well as the design of mechanisms for distributed collaboration that push toward the realization of the agreed set of values and objectives at collective level: sustainable mobility in cities, diversity and pluralism in the public debate, and fair distribution of economic resources. We therefore advocate the emergence of societal AI as a new field of investigation of potentially huge impact, requiring the next step ahead in trans-disciplinary integration of AI, data science, social sciences, psychology, network science, and complex systems.
	Data Science and AI for social good. Our research vision is centered on leveraging data science and AI to understand complex social challenges and promote social progress. Our SoBigData research infrastructure and community, funded by the EU within H2020 from 2015 till 2024, is moving forward from a starting community of pioneers to a wide and diverse scientific movement, capable of empowering the next generation of responsible social data scientists, engaged in the grand societal challenges laid out in SoBigData’s exploratories: Societal Debates and Online Misinformation, Sustainable Cities for Citizens, Demography, Economics & Finance 2.0, Migration Studies, Sport Data Science, and Social Impact of Artificial Intelligence.

