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Abstract 

In recent years there has been a very significant increase in the percentage of trades in the 
global financial markets that are initiated and executed by automated “robot” algorithmic trading 
software systems, autonomously performing trading roles that a decade or more ago would 
have been performed by human traders. The anonymity of many current electronic trading 
systems, operated by major exchanges and multilateral trading facilities, mean that an 
individual trader, whether human or robot, never knows2 if the counterparty to a particular trade 
is a human or not. There are commonly-quoted estimates that the proportion of robot-executed 
trades is approaching 30%-70% on major European and US equity exchanges. In foreign-
exchange markets, where there are no central exchanges, the proportion of spot (immediate-
execution) transactions that are executed by robots is widely believed to be even higher. From 
this, it is clear that the current global financial markets involve a very significant degree of 
interaction between human and robot traders. 
 
The interactions between human traders in electronic markets has long been studied in the 
field known as Experimental Economics, and more recently the interactions between software-
agent traders in electronic markets has been the topic of various abstract research studies in 
so-called Agent-based Computational Economics (ACE). These two research fields are largely 
distinct: the first studies markets populated entirely by human traders; the second studies 
markets populated entirely by algorithmic software-agent traders. There is a surprising lack of 
studies of the interactions between human traders and robot traders. That is, there is very little 
scientific literature that explores heterogeneous markets, populated by both humans and 
robots. 
 
In this document we review the very small amount of published literature that does describe 
scientific studies of interactions between human and robot traders under experimental 
conditions. We contend that the relative lack of such studies is a serious omission from the 
literature. We propose that De Luca’s (2010) Open Exchange (OpEx) open-source design for 
studying human-robot interactions in electronic marketplaces should be used as a free de facto 
standard for future work in this area. We illustrate the use of OpEx by summarising recently 
published peer-reviewed accounts of early experiments with OpEx, and then present a detailed 
description and analysis of results from some new experiments, conducted specifically for this 
review document, where we relax some of the artificial experimental constraints that have been 
used in earlier work. 
 
Experiments with the OpEx system indicate that the previously reported outperformance of the 
algorithmic trading systems over humans may well be related to the artificial nature of the 
experiment design that was employed in the earlier research: a design essentially unchanged 
since the first experimental economics results were published in the early 1960’s. When the 
flow of orders in the market was trickled in gradually (rather than all orders being released 
simultaneously, which was an artificial constraint in the designs of the earlier experiments) the 

                                            

2 Anonymity  is desirable  for all Dealer‐to‐Dealer (D2D) electronic markets. Most  financial products are  traded electronically on 
D2D exchanges, including: equities, fixed income products, currency, commodities, and their vanilla derivatives such as futures and 
options. On  the  other  hand,  participants  to Dealer‐to‐Customer  (D2C) markets  undergo  a  negotiation mechanism  known  as 
Request for Quote (RFQ), whereby two known counterparties privately negotiate a deal. The human component in D2C markets is 
predominant, as computers are only used for off‐line calculations (as opposed to real‐time): for this reason, D2C markets are out of 
the scope of our study. 
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performance of the software agents was no longer so clearly superior. Furthermore, when the 
software agents were slowed to operate on the same sort of timescales that human traders act 
on, the data we have thus far indicates that the market dynamics alter, but further experiments 
would be required to establish the significance of this with appropriate levels of certainty.   
 

1. Introduction 

In recent years there has been a very significant increase in the percentage of trades in the 
global financial markets that are initiated and executed by automated “robot” algorithmic trading 
software systems, autonomously performing trading roles that a decade or more ago would 
have been performed by human traders. Furthermore, the anonymity of many current 
electronic trading systems, operated by major exchanges and multilateral trading facilities 
(MTFs), mean that an individual trader, whether human or robot, never knows if the 
counterparty to a particular trade is a human or not. There are commonly-quoted estimates that 
the proportion of robot-executed trades is approaching 50% on major European equity 
exchanges; and is nearer 75% on major US equity exchanges. In foreign-exchange markets, 
where there are no centralised national exchanges, the proportion of spot transactions that are 
executed by robots is widely believed to be even higher. From this, it is clear that the current 
global financial markets involve a very significant degree of interaction between human and 
robot traders. 
 
The interactions between human traders in electronic markets has long been studied in the 
field known as Experimental Economics, a field pioneered in the 1960’s by Vernon Smith, for 
which he was awarded the 2002 Nobel Prize in Economics. More recently, the interactions 
between trading strategies embodied as “robot” software, in simulated electronic markets, has 
been the topic of various research studies in so-called Agent-based Computational Economics 
(ACE). Despite the existence of these two research fields, the one that studies homogeneously 
human markets and the other that studies homogeneously robot markets, there is a surprising 
lack of studies of the interactions between human traders and robot traders. That is, there is 
very little scientific literature that explores heterogeneous markets, populated by both humans 
and algorithmic systems. 
 
In Section 2 of this report we provide as background a brief summary of work in experimental 
economics and ACE that are relevant here; in Section 3 we then go on to describe in more 
detail the very few papers that we have found that explicitly address studies of human traders 
interacting with robot traders under controlled experimental conditions.  
 
We argue here that the relative lack of such studies is a serious omission from the literature. 
The reasons why the study of human-robot trading interactions has been so overlooked for so 
long is something that we can only speculate about. It seems to us that one likely issue is that 
the intellectual focus of mainstream economics has long been exclusively on the idealised 
homo economicus – it is only comparatively recently that economists have become interested 
in “behavioural economics” (i.e., how humans actually behave with respect to economic 
activity, rather than how they would behave if they were perfect). Similarly, the focus in ACE 
seems for almost all of its history to have been on using software agents or “robots” as proxies 
for human subjects (rather than as first-class autonomous trading entities in their own right). 
So, in this sense at least, the lack of relevant literature may simply be a straightforward 
reflection of the fact that the question of how robot and human traders interact has for a very 
long time simply not been of much interest at all to researchers either in experimental 
economics or in ACE.  
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Another issue that we think may have played a role is that for a long time it was believed that to 
perform appropriate studies required prohibitively costly investment in experimental facilities, 
i.e. that the cost of the apparatus for performing controlled experiments involving humans 
interacting on artificial electronic markets was just too high. This may have been true one or 
two decades ago, but the ongoing exponential reductions in the real costs of computer and 
networking equipment mean that nowadays it is possible to conduct such experiments using 
hardware that costs only a few thousand pounds. Of course, buying the hardware is only half 
the story: there is also a need for appropriate software. Probably for many potential 
experimenters, the absence of any appropriate software was the bigger problem: armed with a 
big enough budget, anyone can buy a roomful of computers and some network gear to connect 
them together, but knowing how to write software for what is, in essence, a real-time mini 
stock-exchange, is another matter altogether.  
 
In 2010, recognising this need, one of us (De Luca) developed the necessary software, known 
as Open Exchange (OpEx), and full details of the design (including the source-code) is 
scheduled to be released as open-source in the near future.3 The intent of releasing OpEx as 
open-source is that it should hopefully then become the free de facto standard for future work 
in this area. Section 4 of this document describes the design and architecture of OpEx in some 
detail.  
 
In Section 5 we illustrate the use of OpEx by presenting a description and analysis of results 
from recent new experiments, conducted specifically for this review document, where we relax 
some of the artificial experimental constraints that have been used in earlier work. Results from 
our new experiments with OpEx (given in full in Appendix A) indicate that the previously 
reported outperformance of the algorithmic trading systems over humans are primarily speed-
related, and may also be related to the artificial nature of the experiment design. 
 

2. Background 

2.1 Experimental economics 
In 1962, a paper was published in the premier-league Journal of Political Economy by Vernon 
Smith, an academic economist at Purdue University (Smith, 1962). There, Smith described 
results from a series of laboratory experiments studying human traders interacting in a market, 
research that he had commenced in the late 1950’s. Smith’s 1962 paper was seminal in 
establishing the field now known as experimental economics, and in 2002 he was awarded the 

Nobel Prize in Economics4 for his distinguished work in this field. It is useful to review the 
experiment methods that Smith introduced in his 1962 paper because they continue to have 
significant influence, half a century later. 
 
Smith was interested in studying mechanisms by which buyers and sellers can come together 
to agree prices for transactions. In the economics literature, this mechanism is referred to as an 
auction, and there are many different types of auction. One type, seen in most high-street 

                                            

3 The costs of buying the OpEx hardware and developing the software were met from funds made available to Dave Cliff by the UK 
Engineering and Physical Sciences Research Council (EPSRC), grant number EP/I001603/1.  
4 Strictly speaking, there is no Nobel Prize in Economics. The Nobel Foundation has, since 1901, awarded Nobel Prizes in Physics, 
Chemistry, Medicine, Literature, and Peace. Since 1968, after a donation from Sweden’s central bank, it has also awarded what is 
currently officially called the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel. This is commonly referred 
to as the Nobel Prize in Economics. Especially by economists.  
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stores, is the posted offer auction: sellers post an “offer price” or “asking price”, and the buyers 
either take it or leave it. Users of the eBay.com online auction site engage in either posted-offer 
auctions (known in eBay’s terminology as “Buy It Now”) for immediate execution, or they 
engage in an online process mediated by eBay that implements a second-price open-bid 
auction where an end-time for the auction is specified, and buyers can announce bid-prices at 
any time until the auction ends, with those bids being visible to all participants in the auction 
(“open-bid”) and the item being sold to the buyer who posted the highest bid-price, but the 
transaction price being set by the value of the second-highest bid (“second-price”). This is a 
slight (but significant) variation on the auction mechanism that is used in sales of fine art and 
antiques, among other things: there, most often under the direction of an auctioneer, the 
buyers announce increasing bid-prices until only one buyer remains, and that buyer then takes 
the deal: technically this is a first-price open-bid auction, but it is colloquially known as the 
English auction mechanism because, in the UK at least, the word “auction” was for many years 
synonymous with just this one mechanism. In contrast, in the Netherlands, the auction 
mechanism used in the markets for tulip and daffodil flower-bulbs (for centuries a major sector 
in the Dutch economy) is essentially the inverse of the English auction: in what is widely 
referred to as a Dutch flower auction, the buyers stay silent and the sellers announce 
decreasing offer-prices, until a buyer announces that they are willing to transact at the current 
price. The list of auction types is long, but there is one particular type of auction that the rest of 
this review will concentrate on, and indeed is the type of auction that Smith first studied. This is 
known as the continuous double auction (CDA).  
 
The CDA can be thought of as the superposition of the English auction and Dutch flower 
auction, running simultaneously in the same space, and asynchronously -- without any 
auctioneer. In the CDA a buyer is free to announce a bid price at any time, and there is often 
an expectation (or even a rule) that the bid-prices should increase over time; and at the same 
time any seller is free to announce an offer-price (commonly referred to as an “ask”) at any 
time, with the expectation or rule that the offer-prices should decrease over time. Also, at any 
time, any buyer is free to accept any seller’s offer (but would typically only be interested in the 
current best offer) and any seller is free to accept any buyer’s bid, again with the primary focus 
being on the current best bid. There may be a clock running, and trading may start and end at 
specified times, but in general the “continuous” nature of the CDA means that buyers and 
sellers may join, act in, or leave the market at any time and that their actions are not 
coordinated by an auctioneer. The CDA is of great practical interest because it is the auction 
mechanism employed by almost every major financial market on the planet. Largely for that 
reason, Vernon Smith’s earliest experiments set out to explore the dynamics of CDA markets, 
populated by human traders, under experimental laboratory-style conditions.  
 
To do this, Smith reduced the complexity of the real-world CDA to the simplest, most minimal 
instantiation that he could conceive of. He recruited a set of willing human subjects (typically 
undergraduate students, sometimes also students on postgraduate courses), and randomly 
assigned them to be either “buyers” or “sellers”. To each of the sellers he gave one item of 
“stock” to sell: the thing they were handed had no real value (for the sake of argument, think of 
it as a matchstick). To each of the buyers he gave an amount of money (again, the money 
could have been valueless play-money from a board-game like Monopoly). The amount of 
money given to each buyer was private, a secret, known only to Smith and that buyer; the 
buyer could not spend money that they had not been given, and so in this way Smith could 
control the limit price for each buyer, i.e. the price above which they could not purchase an item 
of stock. Similarly, he privately told each seller their secret limit price: the price below which 
they should not sell their item of stock. All of the experiment’s traders, buyers and sellers, were 
then told that they should try to make a deal, but that a clock would be running for a period that 
Smith referred to as an experimental “trading day” but which in practice would last for 5 to 10 
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minutes, or would be ended when no-one remaining in the experiment wanted to trade. The 
subjects were informed that for each of them if they had not entered into a transaction by the
time the “day” ended, they would receive no reward; but if an individual trader had made a 
deal, their reward would be determined by the difference between the transaction price and
that trader’s limit price – their utility gained, i.e. the “profit” for a seller or the “saving” for a 
buyer. So, for example, if a buyer and a seller had limit prices of $1.50 and $0.20 respectiv
and agreed to transact at a price of $1.00, the buyer’s reward would be proportional to her 
$0.50 saving, and the seller’s reward would be proportional to his $0.80 profit (so in this cas
the seller has greater utility, having done better out of the deal than the buyer). At the end of 
each “day”, all unused assignments of stock and money would be cleared: nothing was carrie
over to the next period. 
 
H
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aving made these preparations, and having given the subjects appropriate instructions, the 
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f 

ty 

rice; 
 

, 

clock was started and the subjects were told to interact under the rules of the CDA: the traders
could announce a “quote” (a bid or an offer) at any time. Smith and his assistants observed 
what happened and noted the time of each quote, who made it, what its value was, and who
anyone, accepted that quote. As each trader was only given enough stock or currency to enter 
into one transaction, and then could do nothing, each trading day did not last more than a few 
minutes. But Smith and his assistants would then re-allocate stock and currency to the traders,
and declare the market to be open for another “day” of trading, which was monitored in the 
same way as the first. They would then repeat this process for several consecutive “days” –
typically 10 or fewer.  
 
A
the market’s supply and demand schedules. The market’s supply schedule is a specification o
how the total quantity supplied by producers of some item varies as a function of the price of 
that item: most often, the higher the price that buyers are willing to pay, the greater the quanti
that suppliers are willing to offer for sale. Similarly, the demand schedule specifies the 
relationship between the number of items demanded by buyers, again as a function of p
and, intuitively, most often as the price of an item increases, so there are fewer buyers willing
to pay the higher price. On a graph showing price on the horizontal axis, and quantity on the 
vertical axis, the supply curve will slope upwards and the demand curve will slope downwards
as shown in Figure 2.1.  
 

 
Figure 2.1:  Supply and Demand curves (here illustrated as straight lines) relate the 

r 
d 

equilibrium price.  

quantities supplied by sellers and demanded by buyers, respectively, to the price pe
item: as the price increases, the quantity supplied increases but the quantity demande
falls.  The point at which the two curves intersect is the theoretical equilibrium point for 
this supply and demand schedule: Q0 is the equilibrium quantity and P0 is the 
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As further illustration, consider a hypothetical example where, in one of Smith’s experiments, 
there are five buyers, denoted by letters A to E, and they have been allocated limit prices of 

0.50, $1.00, $,1.50, $2.00, and $2.50, respectively. As no buyer can pay more than $2.50, the 
t 

$
quantity demanded is zero above $2.50. If the price is in the range $2.01 to $2.50, there is jus
one buyer (A) who is able to transact in that price range, so the quantity demanded is 1 over 
that range. At prices in the range $1.51 to $2.00, both A and B are able to transact, and so the 
quantity demanded is 2 over that range. As the price goes lower and lower, more buyers are 
able to transact and hence the quantity demanded in the market increases, up to the point 
where, for the price range $0.00 to $0.50, all five buyers are able to transact. We can plot the 
demand curve for this experimental market as shown in Figure 2.2.  

 

 
Figure 2.2. A “stepped” demand-curve for a market with just five 

buyers, each able to purchase only one unit. See text for discussion. 

 
Referring ect at a 
point marked (Q0, P0): this is known as the market’s equilibrium point, and the corresponding 
alues P0 and Q0 are the equilibrium price and equilibrium quantity, respectively. This point on 
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e quantity demanded QD will be less than the 

quilibrium quantity Q0, and yet the quantity supplied QS will be greater than Q0. That is, QD< 

= 
 

back to Figure 2.1, it can be seen that the supply and demand curves inters

v
the graph is of great significance, because if transactions occur at the equilibrium price, then 
the allocation of scarce stock from sellers to buyers can be efficient, for a specific technical 
notion of efficiency. A common ideal of efficient allocation is the notion of Pareto efficiency. An 
allocation is Pareto efficient if no-one can be made better-off without someone else being mad
worse-off. Pareto efficient allocations can arise from free markets despite the fact that each 
trader in the market is competing, acting only to serve his or her self-interest: the traders 
appear to be led to an efficient allocation by an “invisible hand”. Markets are not guaranteed to 
always achieve optimal allocations (conditions in which they fail are well known), but one of t
primary reasons why market economies excite such interest is their ability to self-equilibra
That is, traders interacting via an appropriate auction mechanism and acting only in their own 
rational self-interest can collectively discover the equilibrium point. Thus it is reasonable to talk 
of the equilibration behaviour of a collection of traders interacting in some market mechanism 
as an “emergent behaviour” of the market.  
 
To illustrate this, consider a situation where transactions are consistently taking place at above
equilibrium prices. At these higher prices, th
e
Q0 < QS, and we can then expect competition among the sellers to result in reduction in their 
offer-prices; as the prices fall, so QS is reduced and QD increased, until eventually QD = Q0 

QS. Similarly, if ever transactions were consistently taking place at prices below the equilibrium
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price, we would have QD> Q0 > QS and competition among buyers would push bid-prices up, 
reducing QD and increasing QS, and hence leading prices back to the equilibrium point where
QD = Q0 = QS. Because the equilibrium is achieved as a result of competition among buyers 
pushing prices up, and/or competition among sellers pushing prices down, the balance-point i
a competitive equilibrium, which should be maintained until the market’s supply or demand 
schedules change. Of course, this is an idealised and simplistic argument. In reality there ma
be delays and sources of noise or error within the market system, meaning that perfect 
equilibrium is never reached, and the system may spend considerable periods of time in off-
equilibrium states. Whether a particular market system reaches equilibrium, and if so how, 
were the type of questions that Smith explored in his seminal 1962 paper.  
 
Smith’s paper explored the relationship between the nature of the supply and demand curve
in his experimental markets, and the market’s equilibration behaviour. Typic
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On the right-hand side is a trace of the transaction prices recorded each trading period (or 

                                           

h
price, but in subsequent trading periods the prices would show some degree of convergence to
the equilibrium. To quantify the degree of convergence, Smith introduced a “coefficient of 
convergence”, �, calculated for each trading period. This is defined as �=100(�o/P0) where �o 
is the root mean square (RMS) of the differences between the transaction prices in the period 
and the theoretical equilibrium price P0 (�o is manifestly analogous to the commonplace 
statistic the standard deviation, which is RMS deviation of samples from the mean sample-
value); hence � can be thought of as measure of price variability about the equilibrium price, 
expressed as a percentage of that equilibrium price. Smith also monitored how efficient th
allocations were in his experimental markets, by calculating a measure called the allocative
efficiency of the market, defined as the total utility actually earned by all the traders in a period
expressed as a percentage of the total combined maximum utility that could in principle be 
earned by all the traders: typically after one or two periods, human traders achieve allocative
efficiency scores very close to 100%.  
 
In the first eight experiments reported by Smith (1962), each trader was allowed to buy or sell 

only one unit of stock,5 although in late
experimented with changing the supply and demand curves during the experiment (i.e., after 
the subjects had been given a few days to get accustomed to one supply/demand schedule, at
the start of the next day’s trading a new set of limit prices, representing a new schedule, would
be distributed to them), and with having the buyers remain silent while only the sellers could 
quote offers, i.e. a switch from a CDA mechanism to a posted-offer auction.  
 
Smith’s results were, at the time, bordering on the revolutionary. They clearly established tha
markets with very small numbers of inexperienced traders could, with very litt
le
economic theory. He also showed that aspects of the supply and demand schedule could 
determine whether equilibrium was approached from above or below, and whether the 
predicted P0 was reached or the traders stabilised at some off-equilibrium value. For furthe
discussion of the significance of the results in Smith’s first paper, see Cliff (1997, pp.17-21
Figure 2.3, reproduced from Cliff (1997), shows the data from Smith’s first reported expe
using the visualisation method that Smith introduced and which has since become something
of a de facto standard in the literature. On the left-hand side of the chart is a representation o
the supply and demand curves, with dotted lines indicating the values of Q0 (6) and P0 ($2.00). 

 

5 Technically, the “stock” in experiments such as these is a unit of an arbitrary abstract commodity, because the items being traded 
have no qualities other than price by which they can be distinguished in the market.  



 Studies on interactions between human traders and Algorithmic Trading Systems 

“day” in Smith’s terminology), with the numbers running along the bottom showing the number 
of transactions in each period. 

 
Figure 2.3:  redrawn from Smith’s (1962) Chart 1: results from the first-ever 
experimental economics study of traders interacting in the continuous double auction 
mechanism. This image is reproduced, with the permission of the author, from Figure 6 
of (Cliff, 1997). See text for explanation. 

F
c
m tinued to introduce innovations in experimental 
economics throughout his career. Most notably, growing tired of the slow and error-prone 

each 

 

ding 

dy 
-

xies for, or replacements of, human traders, and 
perimental study of markets populated by such “robot” traders is now a relatively mature 

here are two communities of researchers who have been active in the study of markets 

ollowing the publication of Smith’s 1962 paper, an entire research field grew around his 
entral idea of conducting laboratory experiments on human traders to better understand the 
icrostructure of market dynamics. Smith con

nature of having human assistants manually record the sequence of quotes and trades in 
market experiment, he devised and implemented a network of computer terminals that the 
experiment’s subjects would be asked to sit at, one terminal per trader, allowing the traders to
enter their quotes and accept counterparties for transactions, and via which Smith and his 
colleagues could control the amount and type of information about current market activity that 
the traders were presented with. He did this many years before electronic screen-based tra
was commonplace in real-world financial markets. Summaries of past and current work in 
experimental economics are to be found in the following publications: Davis & Holt, 1992; 
Kagel & Roth, 1995; Guala, 2005; Smith, 2005 & 2006; Plott & Smith, 2008; Bardsley et al., 
2009; and Durlauf & Blume, 2009. 
  
When Smith commenced his research, the only economic agents that it was possible to stu
via experiments were human ones. But, in the last twenty years, autonomous software trader
agents have been developed as pro
ex
field, as we shall see in the next section.  
 
 

2.2 Agent-Based Systems 
 
T
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populated by autonomous software trader-agents: economists, and computer scientists. It is 
mpt a detailed historical analysis of how research 
 and then came to overlap, intersect, and cross-fertilise 

thing 
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mehow combine those sensor readings with their internal state (possibly via learning 
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ly referred to as a “robot trader”) can exist in 

 

 
 

isation and administration over to the Swedish Institute for Computer Science 

 

 

                                           

beyond the scope of this paper to atte
terests in these two fields convergedin

over the course of the last twenty years. The story we tell here will, of necessity, be some
of a caricature, but we believe it to be accurate in spirit even if it does skim over an awful lot o
detail. 
 
In brief, we will note here simply that in computer science, in the late 1980’s and early 1990’s, 
researchers interested in engineering artificial intelligence (AI) systems started to talk in terms 
of working on autonomous agents: self-contained entities that could sense their environment 
nd soa

and/or reasoning mechanisms) to take actions that are appropriate to that environment, in the 
pursuit of the agent’s “aims” or “goals”, without the need for external control. This definition fits 
a wide range of entities: animals are autonomous agents; and a mobile robot can be an 
autonomous agent too, if it is sufficiently independent of human control. Both animals and 
robots typically require sensors (eyes, ears, cameras, microphones) to detect aspects of the 
physical environment they find themselves in, and actuators (muscles, motors) to take 
appropriate actions with. To ensure coherent coordination between the sensors and the 
actuators (also referred to as sensory-motor co-ordination), physical agents typically have a
specific embodiment “frame” (skeleton, chassis).  
 
But not all environments of interest are physical ones: some are entirely virtual, and altho
the autonomous agents that inhabit virtual environments are disembodied entities they still 
need to engage in coordinated sensing and acting. As is clear in the present-day financial 

arkets, an autonomous software trader (commonm
disembodied form, “sensing” various dynamic streams of market information, integrating that 
changing sensory data with its internal state (which may involve historical data), and taking 
appropriate actions such as issuing buy or sell orders into the market, or cancelling existing
orders. For  overviews of autonomous agent research in AI, see Maes (1990, 1994). 
Wooldridge & Jennings (1995), Jennings et al. (1998), Jennings et al. (2001), and Sterling & 
Taveter (2009).   
 
Much relevant work in the AI community has been devoted to the Trading Agent Competition
(TAC) established in 2000 by Michael Wellman, a professor at the University of Michigan, who
devised the original TAC (see e.g. Wellman et al., 2002) and ran it for several years before 
anding its organh

(SICS).6 The original TAC, now discontinued, involved agents acting as personal travel 
arrangers: the agents were required to negotiate with multiple suppliers for air fares, ground 
transport, hotels, etc, to assemble a travel package for a client. A subsequent addition to the 
TAC involved a separate contest framed as a supply-chain management problem, and is 
known as TAC-SCM. In 2011, TAC involves three contests: TAC-SCM, a TAC for selling online 
advertising, and a TAC for Market Design (known as “CAT”) where the competition is to 
develop new market mechanisms rather than new trading agents. In all the TAC contests, the
focus is very much on software agents interacting with other software agents, rather than on 
exploring the interaction dynamics of human and automated traders. The dynamics and 
microstructure of markets involving both human and software-agent traders interacting with one 
another is, as far as we know, something that has never been studied by the TAC research 
community. Conspicuous by its absence from the list of TAC contests is any mention of a TAC
suited for, or modelled on, trading in real-world financial markets. We do not know why TAC 

 

6 The web‐page for the TAC at SICS is http://www.sics.se/tac/.  
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has never involved contests directly relevant to current financial markets (as opposed to 
possible future ones); it seems to us to be an error of omission. 
 
Nevertheless, other AI researchers have addressed issues directly relevant to financial 
markets. Most notably, Prof. Michael Kearns at the University of Pennsylvania developed a 
significant simulator, in partnership with Lehman Brothers, called the Penn-Lehman Autom
Trading (PLAT) Project, which ran 2003-2006 (Kearns & Ortiz, 2
s

ated 
003). The PLAT website7 

tates: “PLAT is a broad investigation of algorithms and strategies for automated trading in 
ge 
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orld 
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eal or virtual money) against real-time market data-feeds. The emphasis in these 
ontests is on the participants fine-tuning individual trading algorithms: because each algorithm 
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ttractive because it is resilient: there is no single central point of 
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fewer resources. MBC requires the development of trading-agent software (indeed, it was the 

                                           

financial markets and related environments. The project makes use of the Penn Exchan
Simulator (PXS), a simulator for automated trading that uses real-world, real-time stock mark
data available over modern Electronic Crossing Networks (ECNs)”. Again, the focus here was 
on research that developed better software-agent traders, and because of the use of real-w
market price data, those traders were price-takers only: they could not influence the prices v
their own actions. PLAT was not intended for the study of human-agent interactions in mark
scenarios.  
 
More recently, in 2010 Prof. Philip Treleaven and Dr. Dan Brown at University College London 
initiated the UCL Algorithmic Trading Competition,8 a contest in which automated trading 
systems can compete against one another in an effort to make the most profit while trading 
(with either r
c
is a “price-taker”, buying or selling at whatever price is shown on the data-feed, and because 
an individual algorithm’s transaction cannot significantly shift the price of the instrument be
traded (i.e., there is no “market impact” effect of high-volume transactions), each algorithm c
be thought of as trading in vacuo: interactions with other traders, be they human or algorithmic
are simply not an issue.  
 
Largely independent of the development of autonomous-agent research in AI, but at roughly 
the same time, other computer scientists and systems engineers were turning their attention to 
the problem of controlling or managing large-scale systems in a decentralised fashion. 
Decentralised control is a
v
center” results in loss of control of the entire system. Traditional centralised control systems 
also frequently suffer problems as the scale of the system being controlled increases: above 
some threshold system-size or number of components, centralised control systems ofte
crippling slow-downs or collapses because of the sheer volume of data that needs to be 
assimilated and digested before appropriate actions can be determined. In 1988, Mark Miller 
and Eric Drexler published two landmark papers (1988a, 1988b) where they argued for using
artificial computational microeconomic systems for decentralised dynamic balancing of supply
and demand of scarce resources in a large-scale distributed systems, an approach that 
subsequently became known as market-based control (MBC: see, e.g., Clearwater, 1996
an MBC system, scarce resources are bought and sold by groups of autonomous software 
agents acting as buyers (for resource-consumers) or sellers (for resource-providers). Probably
the most famous MBC system was developed at Xerox PARC research labs by Clearwater et 
al. (1996), where PARC’s traditional air-conditioning control system serving 53 offices wa
replaced by an MBC system involving software agents buying and selling air in various 
conditions, and the MBC system was shown to give better distribution of temperatures and u

 

7 http://www.cis.upenn.edu/~mkearns/projects/plat.html.  
8 See http://www.financialcomputing.org/phd‐programme/conferences‐events. 

http://www.financialcomputing.org/phd-programme/conferences-events
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initial motivation for the ZIP algorithm discussed at length later in this document) but because 
the aim in MBC is for highly automated, autonomous, resource-allocation and control systems,
there is no tradition within the MBC literature of studying the interactions of human and robo
traders in electronic marketplaces.  
 
At pretty much the same time as computer scientists were starting to work on autonomous-
agent AI systems and on MBC, but almost entirely independently, various academic 
economists were turning their attention to the use of computer simulations to explore the kind 
of issues that Smith and other experimental economists had been studying by running lab 
sessions populated by groups of hum
e

 
t 

an traders. At least in part, the motivation for the 
conomists was the fact that running experiments like those that Smith had pioneered was a 
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ket are no good at price 
iscovery, Kaplan’s Sniper won’t contribute anything to the process: it will “steal” any deal, 
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costly process. Brian Arthur, an economist working at the Santa Fe Institute, proposed in 19
that “software automata” could be engineered to behave like human economic agents
explored the use of a simple machine learning algorithm to develop artificial autonomous 
agents that could be calibrated against human learning data from psychology experiments 
(Arthur, 1993). Subsequent to this, he and various colleagues collaborated on the Santa
Stock Market, a simulated CDA-based stock market in which the market dynamics of different
interacting automata (i.e., agents) could be studied: see Palmer et al. (1994), LeBaron et al. 
(1999), and also Ehrentreich (2007). An international contest with a $10,000 prize was 
organized at the Santa Fe Institute, where researchers from around the world could submi
automata that would then be pitted against each other in a series of trading contests in an 
attempt to identify the best trading strategy (Rust, Miller, & Palmer, 1993). In much the same
way that a similar contest organized years earlier by Robert Axelrod identified a surprisingly 
simple winning strategy for the iterated Prisoner’s Dilemma game (Axelrod, 1984 & 1997), the
surprise winner of the Santa Fe contest was a surprisingly simple strategy, submitted by
Kaplan, which is now widely known as “Kaplan’s Sniper”. 
 
Kaplan’s Sniper is a surprisingly robust and effective trader algorithm which outperformed all 
the competition at the Santa Fe contest, including more complex trading algorithms that used
traditional optimization approaches, statistical predictions of future transaction prices, and/or 
machine learning algorithms. The Sniper strategy is remarkably easy to explain: it sits quietly 
on the sidelines doing nothing at all, merely observing the 
th
the best offer is less than the smallest transaction price in the previous period, or until there is
not much time until the market closes. When any of these conditions are met, the Sniper jumps
in and “steals the deal” by hitting the best bid/offer so long as that deal makes the Sniper a 
profit greater than its pre-set minimum profitability threshold.  
 
The Sniper is, perhaps, too simple. Close inspection of the description of the strategy reveals 
that it doesn’t adapt to market activity, and therefore doesn’t engage in the self-equilibrating 
price-discovery process that is one of the major reasons for interest in CDA markets. A Sniper 
trader is essentially parasitic, benefiting from the price-discovery work of other strategies 
present in the market; if the other strategies present in the mar
d
even deals at prices a long way from equilibrium. The clearest demonstration of the 
shortcomings of Kaplan’s Sniper comes when all traders in a CDA market are each playing th
Sniper strategy: each of them sits there, doing nothing, waiting for someone else to act, and so 
there is a total lack of market activity until the “not much time left” triggers a sudden burst of 
activity, despite which no equilibration occurs. The real lesson of Kaplan’s contribution is
demonstrates that a very simple strategy can do surprisingly well in CDA markets so long a
can free-ride on the price-discovery activities of other traders in the market. 



 Studies on interactions between human traders and Algorithmic Trading Systems 

In the same year that the paper describing Kaplan’s victory in the Santa Fe CDA-trading 
competition was published, a landmark paper involving a mix of traditional human experimental 
economics and software-agent market studies was published in the Journal of Political 
Economy by economists Dhananjay Gode and Shyam Sunder (Gode & Sunder, 1993). Gode & 
Sunder were interested in understanding how much of the efficiency of a CDA is due to the 
intelligence of the traders, and how much of it is due to the organisation of the market. To 
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a third round of experiments. Although 
ode & Sunder’s 1994 paper includes a description of the market data made available to the 

nder 

market per transaction than the human traders did, but the AI traders required even more than 

explore this, they introduced the idea of running zero-intelligence (ZI) trading agents in 
computer-simulated CDA market experiments, the structure of which were much the same as 
those first introduced by Smith in 1962. Gode & Sunder ran five sets of computer-based
experiments with humans as a control, and then replaced the human traders with various types 
of ZI trader. The “zero intelligence” name can be interpreted literally: the degree of intelligence 
that ZI traders have in their strategies is zero, or very-near-to-zero. Gode & Sunder’s most 
minimal ZI traders simply generated random prices for bids and offers, drawn from a un
distribution over the range from zero to some arbitrary system-maximum. As these ZI traders 
had no economic constraints at all, they were named ZI-U (for Unconstrained). If a ZI buyer’s 
randomly-generated bid price was greater than the most recent ZI seller’s randomly-generated 
offer price, then the fact that the prices “cross” meant that the two traders entered into a 
transaction (and vice versa for when a seller’s bid crosses below the most recent best bid). 
 
The next step up from ZI-U, reasoned Gode & Sunder, was a trader that still generated random
prices for bids or offers, but instead used a uniform distribution bounded from above (for 
buyers) or from below (for sellers) by the trader’s limit price. That is, the ZI-C (for Constrained) 
trader was allowed to generate random bid or offer prices subject to the one constraint th
random-prices should not create the possibility of the trader entering into loss-making deals.
 
Gode & Sunder ran experimental-economics lab-tests with ZI-U, ZI-C, and human traders in 
five different markets, and monitored the allocative efficiency of the transaction-price time
series in each. The results from the ZI-U traders were, it is simplest to say, plain useless: each 
of their transaction-price time-series showed no sign of equilibration; it looked like random 
noise, which is exactly what it was. The surprise though was that the time series from the ZI-C
e
theoretical equilibrium price within each trading “day”, and the allocative efficiency scores for 
the ZI-C market experiments were extremely close to those of the human ones. The conclu
drawn from this was that much of the “intelligence” in the systems lies in the dynamics, the 
emergent behavior, of the CDA market mechanism, and not in the traders. A second issue 
demonstrated by Gode & Sunder’s 1993 results was that while high allocative efficiency scores
were clearly no guarantee that the traders in the market possessed significant intelligence 
(because human and ZI traders each scored roughly the same on allocative efficiency), the 
results from the two types of trader could be distinguished by their profit dispersion scores. 
Profit dispersion is a measure of the extent to which the profit/utility generated by each 
individual trader in the market experiment differs from the profit that would be expected of th
if all transactions took place at the equilibrium price.  
 
In a second paper published shortly afterwards (Gode & Sunder, 1994), Gode & Sunder 
presented results from experiments where, first of all, human traders interacted in a series o
CDA experiments; next, those humans were then each invited to design an AI program 
(i.e., a “robot”) to compete in a second round of robot-vs-robot CDA experiments; and then 
finally the AI robots were replaced by ZI-C traders for 
G
AI robots, no specific details of the individual AI robots’ algorithms were given. Gode & Su
report that, on the average, the ZI traders required more bids and offers to be quoted into the 
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the ZI’s.  As with their 1993 paper, in 1994 Gode & Sunder found that there were no significant
differences in the allocative efficiency figures for the human, AI, and ZI traders, but that they
could be told apart by their profit dispersion statistics.  
 
Gode & Sunder’s results were striking, and rapidly attracted considerable attention, yet from 
the perspective of scientific methodology there was a curious omission from their work: both in
their own narrative, and when others cited their papers, there was a lack of a detailed causal 
mechanistic explanation for why the ZI-markets managed to produce such remarkably human-
like price dynamics. The ZI markets are nothing more than a bunch of stochastic processes 
(the individual ZI traders) engaging in nonlinear interact

 
 

 

ions with each other (via the CDA 
arket mechanism), and so prima facie one might expect some mathematical analysis of the 
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m
nonlinear stochastic system to offer an explanation for the results. However, the explanation 
offered in the contemporary economics literature for why ZI markets behave as they did 
seemed instead to rest on vague hand-waving appeals to the idea that the “intelligence” in the
system lies in the CDA market mechanism rather than the heads of the traders. 
 
In 1997, one of us (Cliff, 1997) presented the first detailed mathematical analysis and 
replication of Gode & Sunder’s ZI results. The mathematical analysis was not particularly 
complicated, but it demonstrated that the ability of ZI-C traders to converge on the equilibrium
price in the CDA market was very heavily dependent on the shape of the market’s supply
demand curves. Put simply, the nature of the specific supply and demand curves used by 
Gode & Sunder in their 1993 paper was such that a purely theoretical analysis (i.
s
experiments would be equal or near to the theoretical equilibrium price given by the 
intersection of those supply and demand curves. (Put more bluntly: they didn’t really need
run their CDA experiments; the mathematical analysis lets us know the results before the 
experiments have taken place). Furthermore, from this analysis, it was possible to demonstrate
that if the supply and demand curves in Gode & Sunder’s 1993 paper were shaped differen
the ZI-markets would have converged on transaction prices that were very different from the 
theoretical equilibrium price, and hence would not have scored at all well on allocative 
efficiency. That is, the ZI traders operating in differently-shaped CDA markets would 
very wrong; they would have failed to equilibrate. 
 
Cliff demonstrated that these differently-shaped supply and demand curves did not have to be 
at all unusual: supply/demand profiles familiar from the experimental economics literature all 
the way back to Smith’s 1962 paper were sufficient to cause the ZI markets to fail to 
equilibrate.9 Cliff reinforced his theoretical analysis by writing computer programs that 
implemented an independent replication of Gode & Sunder’s ZI-market experiments, and the 
failures that were predicted from his theoretical an
‘r
required of the traders in a CDA market, zero is certainly not enough (Cliff & Bruten, 1998a). 
 
After Cliff had demonstrated that ZI-C traders failed to equilibrate in CDA markets wit
commonplace supply and demand schedules, he then developed a new trading algorith
did not exhibit the same failures that ZI-C traders did. Inspired by the minimalism of Gode & 
Sunder’s approach, Cliff’s named his algorithm Zero-Intelligence-Plus, or ZIP. Unlike ZI-C, Z

 

9 Technically, ZI‐C markets will fail to equilibrate when there is a sufficiently large difference in the absolute values of the gradients 
of the supply and demand curves, and/or in so‐called “box‐shaped” supply/demand schedules where both supply and demand are 
perfectly elastic (that is, the curves are flat) and there is an excess of either demand or supply.   
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trader quotes a price that it generates by combining its (private, fixed) limit-price with its margin
coefficient. For example, a seller with a limit price of $2.00 and a margin of 10% will quote 

 

2.20 (i.e., $2.00 plus 10%), while a buyer with the same limit and margin will quote $1.80 (i.e., 
t each 
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ket 

as 
ly 

of 
 & 

ry in 
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 by multiplying the utility gain from a 

$
$2.00 minus $10%). A ZIP trader’s margin is, like its limit price, private to that trader; bu
trader can alter its margin over time, in response to events in the market. Cliff devised a 
minimally simple “decision tree”, a set of simple if-then heuristics, to determine when a ZIP 
trader should lower its margin, and when it should raise it, and he then introduced some long-
established machine-learning mathematics, which he rearranged for use in determining by h
much the ZIP trader’s margin should be changed (see Cliff & Bruten 1998b for a brief 
description; or Cliff 1997 for full details and illustrative program-code).   
 
Thus, significantly, ZIP was not only autonomous (i.e., capable of generating its own orders 
without human intervention, much like ZI-C) it was also adaptive. ZIP’s adaptivity meant t
“learned” an appropriate margin on the basis of its “experience” in the marketplace, and if th
was a change in the market (such as a shift in supply and/or demand, possibly altering the 
equilibrium point) then ZIP traders could rapidly adapt to the new market conditions. Cliff 
(1997) demonstrated that ZIP traders did not suffer the failures that affected Gode & S
ZI-C in CDA markets, and also that ZIP traders could give reliable behav
m
traders was an emphasis on minimalism, attempting to identify the simplest possible trader-
algorithm that could reliably give human-like market dynamics. In essence, ZIP was written to 
make the academic point that while Gode & Sunder-style zero intelligence was not enough, it 
only required a little bit more than zero intelligence to get interestingly human-like CDA mar
dynamics. There was no intention when developing ZIP of creating something that could 
outperform human traders, nor of making anything that could be of use in the real-world 
financial markets. However, in the years after publication of the ZIP algorithm, it first became 
well known for outperforming human traders (discussed below in Section 3.1); and then its 
minimal simplicity – and hence comparatively high speed of execution – proved to be of 
interest when technology developments in the global financial markets led to intense 
competition in the area of low-latency trading (see e.g. Cliff, Brown, & Treleaven 2011).  
 
Cliff’s (1997) ZIP algorithm was not the only adaptive autonomous trading algorithm that w
developed in the latter half of the 1990s. At pretty much exactly the same time, but entire
independently, Steve Gjerstad was working on his PhD in economics with his advisor John 
Dickhaut, and the two of them co-authored a paper in 1998 that summarised a core aspect 
Gjerstad’s PhD research, which sought to offer a more convincing explanation than Gode
Sunder’s (1993) of how interaction among adaptive agents could lead to price-discove
CDA markets (Gjerstad & Dickhaut, 1998). Their paper did not give a name to the trading
a
simply as the Gjerstad-Dickhaut, or GD, algorithm.  
 
GD is a relatively sophisticated algorithm that requires each GD trader to compute its own 
private “belief function” using data from recent market activity; this function indicates the 
probability, for every possible bid or offer price, that a bid or offer would be accepted at that 
price. It uses a standard mathematical approach (cubic spline interpolation) to compute valu
of the belief function for prices that do not occur in the history list.10 When a GD trader com
to determine a price to quote in the market, it chooses a price which maximizes its expected 
gain: for each possible price, this is simply calculated

                                            

  Our  opinion  is  that  GD’s  specification  of  cubic‐spline  interpolation  is  something  of  a  red  herring:  any  of  many10   smooth 
interpolation processes would probably yield very similar results.  
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transaction at that price by the belief-function’s probability of the quote being accepted at tha
price. Gjerstad and Dickhaut demonstrated that CDA markets populated by GD traders 
exhibited the kind of transaction-price dynamics that were familiar from human CDA 
experiments.  
 
The GD algorithm was later found to require a minor modification to reduce price volatility: the 
modification was simply that the definition of the belief function should be altered so that
returned a zero-probability of acceptance for bids lower than the previous lowest tran
price and also 

t 

 it 
saction 

a zero for offers higher than the previous highest transaction price. This modified 
D, or MGD, algorithm has been a commonly-used benchmark in the literature ever since.  

t 
I-C was not intelligent enough, and so he developed ZIP in response; and finally Gjerstad & 
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 2001, Gerald Tesauro and Raj Das reported on results from experiments they conducted at 

mpted 
em to develop the MGD modification of GD described above. A similar minor modification 

 

ro & Das, 2001).  

T
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In subsequent work, Tesauro and Das worked with IBM colleagues William Walsh and Jeffrey 
Kephart (Walsh, et al., 2002) to explore the interaction dynamics not merely between pairs of 
robot strategies (such as MGD-vs-ZIP) but instead between three strategies in simultaneous 
competition. Walsh et al. explored the “population dynamics” of CDA markets with various 

G
 
So, by the late 1990’s, there were several autonomous “robot” trading algorithms for CDA 
markets that had attracted attention in the research community: Kaplan’s Sniper had won the 
Santa Fe CDA competition; subsequently Gode & Sunder’s ZI-C traders had initially appeared 
to give surprisingly human-like CDA market dynamics, but Cliff then demonstrated that in fac
Z
Dickhaut had published the GD algorithm as a tool for explaining issues in the economics o
CDA markets. While Kaplan’s Sniper had been shown to work well in strategically 
heterogeneous markets (i.e., markets with a mix of different trader strategies or robot 
algorithms), ZI-C, ZIP, and GD had been evaluated only in strategically homogeneous markets
(i.e., markets where all traders were trading the same strategy, but with different limit prices 
and internal parameters for each trader).  
 
The issue of how the ZI-C, ZIP, and GD/MGD robot algorithms fare when they compet
each other in strategically heterogeneous markets was explored in a series of papers by a 
team of researchers at IBM’s T.J.Watson Research Labs in New York State, USA.  
 
In
IBM where they tested populations of trading-agents using pairs of algorithms chosen from ZI-
C, Kaplan, ZIP, GD, and MGD, in real-time market experiments where traders had to trade 
multiple units with different limit prices. It was this more realistic environment that pro
th
was required for ZIP but Tesauro & Das did not alter the name of that algorithm. Tesauro & 
Das first performed strategically homogeneous population tests for validation by comparison to
the previously-published results for each algorithm. They then performed “balanced-group” 
tests in which: 

 
 “…buyers and sellers are evenly split between two types of [trader] agent [algorithm], and 
every agent of one type has a counterpart of the other type with identical limit prices. 
…we believe [this] test to be the fairest way to test two different algorithms against each 
other.” (Tesau
 
he results from these tests indicated that, in robot-vs-robot experiments at least, MGD 
onsistently outperformed the other algorithms. In the language of game-theory, MGD 
dominated” the other strategies. 

mixtures of ZIP, GD, and Kaplan-Sniper traders, and characterised the dynamics for all 
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possible mixture ratios. Again, the results indicated that in general MGD was dominant.  
 
IBM’s studies of interactions amon
e

g different robot strategies have been replicated and 
xtended in PhD theses by Iain Toft (2007) and Perukrishnen Vytelingum (2008). Both theses 
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offer support for the results claimed by IBM, although Toft reports that the difference between 
the performance advantage of MGD over ZIP did not appear to be particularly significant, and 
that in some of his MGD-vs.-ZIP experiments it was his implementation of ZIP that 
outperformed MGD (Toft, 2007, p.154). In a novel extension, Toft (2007, pp.182-184) descr
the results from a six-way competition involving ZI-C, Kaplan’s Sniper, MGD, ZIP, and tw
other CDA trading algorithms, the “A-FL” algorithm of He et al. (2003), and the minimal “S
a
algorithms are tested in the same market experiments together, competing against each
in the same CDA market (with each algorithm being played by two buyers and two sellers): in 
these experiments, ZIP and GD were again clearly dominant, with ZIP having the upper hand.11

 
IBM was not the only large computer company to have invested in a sizeable resea
working on automated trading agents. In 1996, Steve Gjerstad, inventor of the GD algorithm, 
had left academia to join Hewlett-Packard Labs in Palo Alto, California, although in 1999 he
moved to IBM’s T.J Watson Research Labs to join team of researchers whose work was 
described above. In 1998, Dave Cliff, inventor of ZIP, had also left academia to join He
Packard Labs’ Agent Technology Group, a similar-sized team to IBM’s, based at HP’s 
European research labs in Bristol, England. At both HP and IBM, research was focused on 
studies of interacting software agents, but both companies had also invested in experimental 
e
same for IBM). At HP, the experimental economics lab was used in a largely conventional 
manner: to study the interaction of human traders in electronically-mediated markets, in much
the same way that Smith had established years before (for an example of work done in HP’s
experimental economics facility, see Cliff & Preist, 2001). The IBM team, however, put the
experimental economics laboratory to a truly novel use: they conducted the first ever 
experiments where human traders and autonomous “robot” software agents interacted 
the same market, allowing for systematic comparison of human-robot interactions in 
electronically mediated marketplaces. The revolutionary nature of IBM’s work, and the surprise
outcome of their experiments, generated global media coverage when their first results were 
published at the 2001 International Joint Conference on Artificial Intelligence (IJCAI), the 
premier peer-reviewed conference in the field. We explore the topic of human-robot 
interactions in detail in the next section. 
 

 
 

 

11 Toft (2007, p.185) notes that his results contradict those claimed by He et al. (2003) for the A-FL algorithm, and states: 
“[Toft’s] early results with A-FL were consistent with results in the originating paper, therefore the disparity is attributed to 
difficulty in implementing and configuring the agent. An A-FL agent requires extensive and meticulous configuration. … there 
are a total of 34 parameters, a considerable number for a [sic] agent that reasons with their limit price, the outstanding bid and 
offer, and the median price only. Without reference implementations of agents for a particular market structure it is difficult to 
reproduce previously published results when the agent is complex or the originating literature lacks implementation details. By 
comparison, and in stark contrast to A-FL, [ZIP] and [MGD] are comparatively simple agents with comprehensively 
documented implementations and configurations.” 
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3. Humans-vs-robots 

The 2001 IJCAI paper published by members of the IBM team (Raj Das, James Hanson, Jeff 
ephart, & Gerald Tesauro) is described in some detail in Section 3.1. Given the 
roundbreaking nature of that paper, it seems reasonable to expect that in the decade since 
ere would have been a significant number of additional papers published by authors around 

the world, replicating and extending the work of the IBM team. Surprisingly, this is not the case. 
To the best of our knowledge (and this is something that we have invested considerable 
effort12 in establishing), the total number of papers that either replicate or extend the IBM 
robots-vs.-humans work can be counted on the fingers of one hand: there are two papers by 
Jens Grossklags and Carsten Schmidt (2003, 2006) which we describe in Section 3.2; and 
there are two 2011 papers by Marco De Luca and Dave Cliff (two of the authors of this review) 
which we summarize in Section 3.3. We conclude with a speculative discussion, in Section 3.4, 
of possible reasons for this surprising lack of published research that has built on IBM’s 
seminal study.  
 
3.1 Das, Hanson, Kephart, & Tesauro (2001) 
 
Das et al. were all IBM researchers working at the IBM T.J.Watson Research Labs. Their 2001 
paper describes how they pitted human traders against trading agents in an experimental 
economics lab: they ran some control experiments where human traders sat at trader 
interfaces running on desktop PCs and communicated with a central “exchange” server PC, as 
was (by then) routine practice in experimental economics labs; they had also, as we saw in 
Section 2.2, previously run experiments where the only traders communicating with the server 
were “robot” software agents, as is common in ACE experiments and in MBC research and 
development. 
 
And then they ran a series of experiments in which they explored the dynamics of markets in 
which some of the traders were humans, and others were robots. Somewhat astonishingly, this 
had never been done before: the paper by the IBM team is the first study of human-robot 
interactions in the CDA.  
 
The algorithms they tested against humans included versions of ZIP and MGD, modified to 
work with the order-book that their experimental-economics facility provided: this is a step 
closer to the reality of real-world electronic exchanges, which routinely show a list or queue of 
the n current best bids and offers, ordered best to worst (we illustrate an order book from OpEx 
later, in Figure 4.2). In Smith’s early experiments, and in the ZI/ZIP/GD trading-agent research 
that Smith’s work subsequently inspired, traders could only interact with each other by taking 
the current best bid or the current best offer, or by making a quote that improved on the best 

                                           

K
g
th

 

12 Using Google Scholar (scholar.google.com) one of us (Szostek)  identified more than 150 papers known to Google that cite the 
original IBM IJCAI paper (Das, et al., 2001) and then read each of those papers in sufficient detail to determine whether the reason 
for citing IBM’s work was because the citing paper was reporting on results from human‐vs‐robot experiments, or whether the IBM 
paper was merely referred to in passing. The only papers  found that actually reported on new human‐robot experiments were the 
two (2003, 2006) by Grossklags & Schmidt, which we describe in Section 3.2. It is plausible that somewhere there exists one or more 
peer‐reviewed papers that do report on human‐vs‐robot work but don’t cite the Das et al. paper, or ones that do cite it but which 
do not exist in a machine‐readable form on the Internet and hence have not been detected by Google: we cannot rule out either of 
these possibilities, but we think them both unlikely. As further corroboration of our claim that the papers discussed here are the 
only papers that report on human‐vs‐robot experiments, we note that in two major survey/review papers (Duffy, 2006; Grossklags 
& Hall, 2007) the only human‐robot auction‐market experiments discussed are the one we describe in Sections 3.1 & 3.2. 
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bid or offer (that is, the markets showed an order book with n=1). Because Gjerstad’s GD 
ant modification for it to work with an order book of length n>1 

ers generating pathological bursts of market activity, Das et al. 
referred to it as the Modified GD, or MGD, algorithm. 

ers running 
 

ternal 
nd 

 
 issued with a wakeup when a trade occurred (that is, they slept through 

uotes that did not result in transactions).  

as et al. (2001) conducted six experiments: one ZIP-slow, one ZIP-fast, and four MGD-fast. In 

plots 
lving 

e 

as et al. made two major qualitative observations. The first was that in their human-robot CDA 
 

 ZIP 
, the mix of humans and robots interacting with each other impaired 

e CDA’s equilibration dynamic. The second was that both ZIP and MGD agents consistently 

than for MGD: average surplus and efficiency for MGD were 10130 and 102.3%, respectively, 
but for ZIP they were 10883 and 103.0%. Das et al. did not discuss this; it seems likely that 
they did not consider the difference between ZIP and MGD to be statistically significant, and in 

iew, 
coming from the research labs of IBM, gathered a lot of attention. The clear implication was 

algorithm required some signific
and to avoid groups of GD trad

 
The computational simplicity of both ZIP and MGD mean that software-agent trad
these algorithms can execute at superhuman speeds. To ensure that there was a reasonable
chance of the human participants in their experiments interacting with the software agents in 
the experimental markets, Das et al. imposed a “sleep-wake” cycle on the software agents in 
their experiments: while awake, each robot would interact with the market, adjusting its in
variables in response to market events and possibly also issuing a quote into the market, a
would then go into a “sleep” state, rendering itself inactive until it received a wake-up signal. 
Each robot’s sleep-time was a fixed period of s seconds, with some small random variation 
added of up to ±25% so that the robots did not all have identical sleep times. Das et al. used 
two variations of the sleep cycle: in their “fast” experiments, s=1 and robots were woken up 
whenever a new quote was made or trade occurred; in their “slow” experiments, s=5 and
robots were only
q
 
D
each experiment there was an equal number of humans and robots, and all the robots would 
be running the same strategy (i.e., either all ZIP or all MGD). Das et al. presented detailed 
of market activity from two experiments (one involving humans-vs-MGD, the other invo
humans-vs-ZIP), and summarised the results from all six experiments in a data-table showing 
the “surplus” (actual profit extracted) and efficiency (actual surplus expressed as a percentag
of the surplus that would result if all transactions took place at the market’s theoretical 
equilibrium price) for humans and for robots.   
 
D
markets, transaction prices were consistently and significantly off-equilibrium, which is strange
given the CDA’s widely-reported attractiveness as a mechanism for discovery of the underlying 
equilibrium price when populated entirely by humans, and also when populated entirely by
or MGD robots: somehow
th
and significantly beat the human traders: in all six of Das et al.’s experiments, human-trader 
efficiency scores are less than those of robot-traders (over the six experiments, average 
human surplus was 7358 against average robot surplus of 10381; average human efficiency 
was 87.6% against average robot efficiency of 102.6%). Of the two robot strategies, MGD 
scores best, but also scores worst, and close inspection of the data-table given by Das et al. 
shows that the mean values of both the surplus and the market efficiency were higher for ZIP 

any case were probably not interested in establishing which of the two robot algorithms was 
superior: Das et al. did not perform any MGD–slow experiments, and did not perform equal 
number of ZIP and MGD experiments, so drawing meaningful comparisons between ZIP and 
MGD is not possible from their data. 
 
Das et al., stated in the introduction to their paper that: “…the successful demonstration of 
machine superiority in the CDA and other common auctions could have a much more direct 
and powerful impact – one that might be measured in billions of dollars annually.” This v
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that, in the forseeable future, employing humans at the point of execution in the financial 
markets might soon cease to make economic sense: faster, cheaper, software technology 
could replace the rather expensive and rather slow human traders in the financial markets. This
view of the near future, and its wider implications, was explored in depth in a subsequent repor
co-produced by IBM Business Consulting Services an
T

 
t 

d The Economist Intelligence Unit, titled 
he Trader is Dead, Long Live The Trader! (IBM, 2006). 

f 

a 
 

of 
an 
bout 

raders assumed that all the counterparties they 
teracted with via the trading interfaces were fellow humans); in other human-vs-robot 

man-
per, Grossklags & Schmidt make some 

aluable methodological observations:  

 

 
m 

e/ignorance of the presence of robot traders on the 
ehaviour of human traders. So, while Grossklags & Schmidt might reasonably be described 

Without an independent replication, any experimental claim is always under some doubt: it is 

 
3.2 Grossklags & Schmidt (2003, 2006) 
 
In their 2003 paper, Grossklags & Schmidt studied the extent to which the market behaviour o
human traders in the CDA was altered by their knowledge of whether robot traders were 
present in the same market or not, using an electronic CDA where each human trader 
interacted with the other market participants via a trader-interface running on a PC. They ran 
control experiment where only human traders were present in the CDA market, to establish a
baseline for “normal” human behavior in their markets. They then ran experiments where a 
number of robot traders, each operating a simple automated arbitrage strategy (i.e., not one 
the trading algorithms explored by Das et al., 2001), were also present alongside the hum
traders. In some of their humans-vs-robots experiments, the human traders were not told a
the presence of the robots (and hence the t
in
experiments, the humans were told that the market included some robot traders. Thus, there 
were three distinct “treatments”: the baseline control market with no robots; the market with 
robots but uninformed humans; and the market with robots and informed humans. Grossklags 
& Schmidt performed six independent experiments for each treatment, giving a total of 18 
sessions.  They found that when human traders were told that the market included robot 
traders, the market was more efficient; and (surprisingly) that when the humans were not told 
about the presence of robots, the human-vs-robot market was less efficient than the hu
only market. In the conclusions of their 2003 pa
v

 
“On a methodological level we are concerned with the rather high variability of 
individual session averages for efficiency and behavioral variables observed in this 
and other market experiments.  
 
“We feel confident that our design and the statistical analysis … provide a good 
description of the underlying effects. Evidence on CDA markets relying on a single 
independent observation for each treatment should be treated carefully and may 
require further repetitions.” (Grossklags & Schmidt, 2003). 

 
Grossklags & Schmidt’s 2006 paper is an expanded version of their 2003 paper. It includes 
more in-depth discussion of related work, more detailed analysis of the results, and a verbatim
transcript of the instructions issued to the human traders, but does not include any substantive 
new results or insights.  
 
Grossklags & Schmidt owed an obvious debt of inspiration to Das et al. (2001), and they duly
cited that paper, but it is clear that Grossklags & Schmidt were using a different robot algorith
to any of the ones employed by Das et al., and more significantly they were exploring a 
different issue: the effect of knowledg
b
as having been inspired by the IBM work; they had certainly not replicated it.  
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(with the greatest of respect to the experimenters involved) always possible that there was 
some experimental error or confounding factor that the original experimenters were not awar
of, which led them to draw an incorrect conclusion. For any experimental work, as soon as
has been independently replicated, the likelihood of it being in error is greatly reduced (but 
eliminated: there is always the possibility that the experimenters who performed the replication 
happened to make the same mistake as the originators of the experiment). To the best of our 
knowledge, the first and only replication of the results presented by Das et al. (2001) came a 
decade later, when De Luca & Cliff published a paper in e

e 
 it 
not 

arly 2011, discussed next.  

.3 De Luca & Cliff  (2011a, 2011b) 

hine 
 and 

 

 the 

at 

 which 

 
ers 

esults from our own replications of IBM's human vs. 
IP experiments and from our world-first experiments that test humans vs. GDX. Our 

t 

 
hereby replicating Das et al.’s results for the first time in a decade, and vindicating Tesauro & 

 led to the development of a strategy loosely based on ZIP, with 
ignificant novel extensions, which he named the Adaptive Aggressive (AA) strategy, and in his 

 

 

3
 
As we discussed in Section 3.1, although Das et al.’s (2001) work had demonstrated mac
superiority in the CDA, the difference between the performance of IBM’s MGD algorithm
ZIP was so small that it was unlikely to be statistically significant. Put another way, IBM had 
shown that algorithmic trading systems could beat humans, but not that IBM’s algorithm was 
the undisputed champion. Researchers at IBM continued to work on improving the 
performance of the MGD algorithm, and a year later IBMers Tesauro & Bredin (2002) published
results from an extended version of MGD, which they named GDX. In that paper, Tesauro & 
Bredin demonstrated that GDX could consistently outperform ZIP in agent-vs-agent 
experiments, and in their paper they wrote: "We suggest that this algorithm [GDX] may offer
best performance of any published CDA bidding strategy.”13 
 
This claim seems reasonable enough, given Tesauro & Bredin’s published results, but it is 
important to note that Tesauro & Bredin did not test GDX against human traders, which is 
perhaps why they expressed some caution in the phrasing of their claim: they suggested th
GDX may offer the best performance. The only way to tell for sure is to test GDX against 
humans, in much the same way that Das et al. had tested MGD and ZIP against humans. 
Noting that no-one had done this, and indeed that apparently no-one had ever published a 
replication of any of Das et al.’s result, De Luca & Cliff published a paper in early 2011 in
they wrote: 

“To the best of our knowledge, GDX has never been tested against human trad
under experimental conditions. In this paper, we report on the first such test: we 
present detailed analysis of the r
Z
overall findings are that, both when competing against ZIP in pure agent vs. agen
experiments and when competing against human traders, GDX's performance is 
significantly better than the performance of ZIP.” (De Luca & Cliff, 2011a) 

T
Bredin’s claim for supremacy of GDX made nine years earlier.  
 
However, in that nine-year interval, Perukrishnen Vytelingum’s PhD research at the university 
of Southampton, UK, had
s
PhD thesis he had demonstrated that AA could consistently out-perform GDX in robot-vs-robot

                                            

13 For completeness, we note here that Toft (2007, p.171) states that he was unable to replicate the performance claimed for GDX by 
Tesauro & Bredin (2002). 
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experiments (Vytelingum, 2006; Vytelingum, et al. 2008).  
 
H
2011a paper, the obvious next question for De Luca & Cliff to ask was whether Vytelingum’s 
AA could also outperform GDX in human-vs-robot experiments. If it could, AA would be the 
new ‘undisputed champion’ trader-agent strategy. This was a question that De Luca & Cliff 
answered in their second 2011 paper (De Luca & Cliff, 2011b), presented at the 2011 IJCAI 
conference, the same conference at which Das et al. had published their first human-vs.-robot 
results a decade previously.  
 

The results presented by De Luca & Cliff (2011b) at IJCAI confirmed Vytelingum's claim (by 
independent replication) that AA outperforms ZIP, MGD, and GDX in agent-vs.-agent 

aving experimentally verified GDX’s dominance over all other traders (human or robot) in their 

xperiments, and then provided the first-ever demonstration that when AA robots compete 
against human traders in human-vs.-robot CDA experiments, AA's performance against 

and GDX. In a direct paraphrase of the words of 
efore claim that, on the basis of the 

of 

 

 

tive 

  agents  interact  in  experimental  auction‐market  conditions.  To  the  best  of  our 
oted  to 
  market 
ked  at 
cts, in 
ilarly, 

rested  in 
operations 

on of the future 
 
 

 freeing humans from the tiresome 
tasks of negotiating or executing commercial  transactions. The  fact  that global  financial markets 
are, right now, populated by interacting human and robot traders seems to be a fact that has passed 
by (or, at least, has not been judged to be particularly relevant by) both academic economists and 
AI autonomous‐agent researchers.  

e

humans is superior to that of ZIP, MGD, 
esauro & Bredin (2002), De Luca & Cliff wrote: “We therT

available evidence, AA may offer the best performance of any published bidding strategy.”  
At the time of writing, the results presented by De Luca & Cliff (2011b) have not yet been 
independently replicated, and should therefore be treated accordingly. However, in Section 4 
this review, we describe the details of the OpEx system that was used by De Luca & Cliff for 
their experiments, and De Luca’s plan is to publish the full OpEx source-code under an 
appropriate Creative Commons open-source copyright-release scheme in due course: once 
OpEx is available as a free, common standard for running human-vs.-agent experiments, the 
hope is that there will then be a significant increase in the frequency with which human-agent
experiments are replicated and extended. The curious lack of any reasonable history of 
replication and extension is something that we discuss in the next section.  
 
3.4 Discussion 
 
In concluding our review of the literature that we presented in Sections 2 and 3, we think there
are three significant issues that deserve to be highlighted: 
 
 The histories of experimental economics and autonomous agent research are, from the perspec

of  this  review,  essentially non‐intersecting. That  is,  apart  from  the  few papers  that we discussed 
here, neither field appears to have devoted any significant attention to understanding how humans 
and  autonomous
knowledge,  all  research  in  the  experimental  economics  literature  has  been  dev
understanding  how  humans  interact  with  one  another  in  the  context  of  various
mechanisms;  and  in  agent‐based  computational  economics  (ACE)  economists  have  wor
developing autonomous trading agents, but their agents are always proxies for human subje
the manner discussed by Arthur  (1993) and exemplified by Gjerstad & Dickhaut  (1998). Sim
while  a  sizeable  proportion  of  excellent work  by  computer‐science/AI  researchers  inte
developing  autonomous  agents  has  been  heavily  inspired  by  classical  economics,  by 
research, and by game theory, seemingly all of that has been directed toward a visi
where groups of autonomous agents interact with one another (i.e., so‐called multi‐agent systems)
with minimal involvement from humans: in so‐called agent‐mediated e‐commerce, for instance, the
motivation seems to be largely that agent shall speak unto agent,
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 As might be expected  from a Nobel Laureate, Smith’s work has had a huge and  lasting  influence
But  the extent  to which  the methods  that Smith  first described  in his  1962 paper are still  in
essentially unchanged,  in experimental work half a century  later  is truly striking: the experiments 
reported by Gode & Sunder (1993, 1994), by Cliff (1997), by Cliff & Bruten (1998a, 1998b), by Gjerstad
& Dickhaut (1998), by the IBM team (Tesauro & Das, 2001;

. 
 use, 

 
 Das, Hanson, Kephart, & Tesauro, 2001; 

and Tesauro & Bredin, 2002), by Grossklags & Schmidt  (2003, 2006), by Vytelingum  et al.  (2006, 

ct, 
h 

aps 

 

ero,  lack of replication and extension of IBM’s pioneering agent‐human 
studies, work  that was  first published  in 2001.  In  the decade  since  then, Grossklags and Schmidt 

rk. 
liff (2011a) 

nces 
il it has 
 poor 

tion 

 

g the 
he “lab-in-a-box” 

pproach. But of course there is little point buying the hardware if one does not have 
are to run on it. In the next section, we give a description of Open Exchange 

pEx), an experimental economics software system designed and implemented by one of us 
 

nd then in Section 5 we present as-

2008), and most  recently by De Luca & Cliff  (2011a, 2011b) are all essentially based on exactly  the 
experiment  design  that  Smith  introduced  in  1962:  the market  only  trades  one  type  of  abstra
commodity,  financial  instrument,  and  its  trading  is  broken  into  discrete  periods  (“days”)  wit
simultaneous replenishment of all stock or money for all traders at the start of each day. Perh
after 50 years it is time to be a little more adventurous in formulating experiments.  

 There  is a startling, near‐z

(2003, 2006) performed one experiment  that was  related  to, but did not  replicate,  the  IBM wo
The only replication of IBM’s work that we know of is the one published by De Luca & C
and the only extension is by the same authors (2011b). Given that in most well‐established scie
the veracity of an experimental result is (for the best‐willed of reasons) not well trusted unt
been replicated, this seems like something of a systemic failure: why, exactly, is there such a
tradition of replication? 

 
It seems plausible that the final point, concerning the lack of replication, is due to a percep
that the costs of performing experiments that study human-agent interactions is so high that 
only major corporate research labs (such as IBM’s or HP’s) can afford to invest in the 
necessary facilities. While this may have been true a decade or more ago, the continuing
Moore’s Law reductions in the cost of computing equipment mean that it is now possible to 
purchase all the necessary equipment for a few thousand pounds, and it will all comfortably fit 
inside a large suitcase. This is significant: it means that the entire “laboratory” is sufficiently 
mobile that it can be taken to venues where experiment subjects are, rather than requirin
subjects to come to the Laboratory: De Luca & Cliff (2011a) refer to this as t
a
appropriate softw
(O
(De Luca), which is intended to be released as free open-source software sometime in the near
future, as a resource for use by the research community; a
yet-unpublished results from new experiments with OpEx where (with respect to the second 
point, above) we explore a more adventurous, and more realistic, experiment design.  
 
Our hope is that the release of OpEx will result in a significant increase in the number of 
experimental studies of human-robot trading interactions; we would be highly gratified if it is 
somewhat less than ten years before the results presented in Section 5 are independently 
replicated, or refuted even. 
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4. Open Exchange (OpEx) 

Open Exchange is the experimental economics market simulator designed and developed by 
De Luca over 2009-2010. The first results from experiments with OpEx were published in (De 
Luca & Cliff, 2011a, 2011b), summarized previously in Section 3.3. In Section 5 we present 
new results, not yet published elsewhere, from additional sets of OpEx experiments. Before 
that, in this section, we describe the design of OpEx itself.  
 
Figure 4.1 illustrates the interaction between the core components in a simple configuration. 
The connections between the components on the left hand side show the flow of order data. 
Orders represent the traders' instructions to buy or sell a specific quantity of a given product at 
a particular price condition. Human traders enter their orders in the Trading GUI, a graphical 
application that allows users to view the market order book (i.e. the descending-ordered list of 
currently outstanding bids, and the ascending-ordered list of currently outstanding offers), their 

iate sender. It is worth noting that order data are private, as 
nly the originator of an order receives the order completion data relative to that specific order, 

 
r to 

 

ling to 

 
 a 

dafone's 
tock is shown in Figure 4.2. The leftmost two and the rightmost two columns represent the buy 

f a 
 

ice 
pmost row contains the best bid (highest buy) and best ask 

(lowest sell) price of an instrument. The maximum number of levels in an order book is known 
as its depth. The Trading GUI subscribes to the market data bus and displays the order book in 
real-time, so that the traders can adjust their orders to match the market conditions. Market 

                                           

“blotter” (personal history of orders and trades), and, in case of a Sales Trading simulation, 
their assignments. Agent traders, on the other hand, produce orders automatically, without the 
need of human intervention, on the basis of the market conditions that they observe. Once 
generated, orders are sent to the Order Manager, which routes them to the appropriate order 
processor (in this example, the single Exchange) depending on the destination specified by the 
sender. Once received by the Exchange, orders are processed according to the specific order 
matching logic implemented and order completion data is passed back to the Order Manager, 
which dispatches it to the appropr
o
which will let her know its progress.14 Conversely, market data are published on the Market 
Data Bus and can be seen by every market participant. 
 
The order matching logic that we will cover in detail here is the price-time priority matching
logic, which constitutes the basis for the CDA. The Exchange assigns an individual containe
all the orders for each product (or instrument), and all the orders for the instrument are grouped
into the particular container; the container is called the order book, which is empty when the 
trading day starts and changes when orders for that specific instrument are entered and 
executed. All buy orders (bids) are first sorted in descending order of price, and in ascending 
order of time for any equal prices. This means that bid orders from traders that are wil
pay the highest price have priority over orders at lower prices, and when two orders have the 
same bid price, the order that was entered earlier has priority over any subsequent orders at 
that same price. Similarly, all sell orders (asks, or offers) are first sorted in ascending order of 
offer price, and in ascending order of time for equal prices. Thus, offer orders where traders are
willing to accept the lowest price have the highest priority, and the order entered earlier gains
higher priority when two orders have equal offer price. A hypothetical order book for Vo
s
side (bids) and the sell side (asks) of the order book, respectively. Each side is made up o
number of rows, or levels, each of which describes the quantity available on the market at the
specified price. Levels are sorted by descending price in the buy side, and by ascending pr
in the sell side, so that the to

 

14 This is in line with real‐world electronic trading scenarios, where anonymity is often an indispensable requirement. 
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data is yet more crucial for robot-trader agents that, lacking any human intervention, base their 
der book.15 decisions entirely on the data in the or

 

 
 
Figure 4.1: an instance of Open Exchange. The solid lines and the dotted lines 
represent the flow of order data, respectively the requests and the replies. The sparsely 

o 
d 

 
 
 

                                           

dotted lines indicate the market data flow, from the Exchange back to the order 
generators through the Market Data Bus. 

 
The order matching logic that we will cover in detail here is the price-time priority matching 
logic, which constitutes the basis for the CDA. The Exchange assigns an individual container t
all the orders for each product (or instrument), and all the orders for the instrument are groupe
into the particular container; the container is called the order book, which is empty when the 
trading day starts and changes when orders for that specific instrument are entered and 
executed. All buy orders (bids) are first sorted in descending order of price, and in ascending 
order of time for any equal prices. This means that bid orders from traders that are willing to 
pay the highest price have priority over orders at lower prices, and when two orders have the 
same bid price, the order that was entered earlier has priority over any subsequent orders at 
that same price. Similarly, all sell orders (asks, or offers) are first sorted in ascending order of 
offer price, and in ascending order of time for equal prices. Thus, offer orders where traders are 
willing to accept the lowest price have the highest priority, and the order entered earlier gains a
higher priority when two orders have equal offer price. A hypothetical order book for Vodafone's
stock is shown in Figure 4.2. The leftmost two and the rightmost two columns represent the buy
side (bids) and the sell side (asks) of the order book, respectively. Each side is made up of a 
number of rows, or levels, each of which describes the quantity available on the market at the 
specified price. Levels are sorted by descending price in the buy side, and by ascending price 
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15  The  order  book  is  actually  one  of  the market  indicators  that  are  essential  to  the  activity  of  real‐world  stock
 trading systems. 
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in the sell side, so that the topmost row contains the best bid (highest buy) and best ask 
(lowest sell) price of an instrument. The maximum number of levels in an order book is known 

s its depth. The Trading GUI subscribes to the market data bus and displays the order book in 
real-time, so that the traders can adjust their orders to match the market conditions. Market 
data is yet more crucial for robot-trader agents that, lacking any human intervention, base their 
decisions entirely on the data in the order book.16 

 

a

 
 

Figure 4.2:  A hypothetical order book for Vodafone's stock, as 
displayed by OpEx Trading GUI.  This book has a depth of three. 

 
One instance of OpEx is identified by the unique instance of the Configuration Server, which all 
the components of that instance refer to. The Configuration Server provides the components 
with their configuration, so that each component can connect to the specific services it needs. 
A e, and 
a
d
o ion of 
Agents and Trading GUIs, both proprietary and sales. Simulating sales trading scenarios 

quires the Assignment Server, the OpEx component that dispatches each instruction (or 
he 

                                           

 minimal functional instance of OpEx would include one Order Manager, one Exchang
t least two order generators (each either an Agent or a Trading GUI). However, thanks to its 
istributed architecture, OpEx can scale easily to virtually any number of order processors and 
rder generators; in particular, the order generators in an instance can be any combinat

re
assignment) to the appropriate agent entitled to execute it. The assignments are stored on t
database as well as the configuration of the components. OpEx also stores in the database 
several data that change dynamically in the course of trading simulations, including order 
progress data, trades, quotes, and supply and demand curves. Post-experiment data analysis 
can thus benefit from all the advantages of Data Base Management Systems (DBMSs), 
particularly facilitating the creation of reports and charts. 
 
In the Open Exchange framework, automated trading agents are implemented as individual 
plugins running on an instance of the AgentHost. In line with the distributed architecture of 
OpEx, there can be multiple instances of the Agent Host, each one running a particular set of 
Agents. Every Agent implements one specific algorithm and has its own configuration settings, 
loaded at startup. One instance of the Agent Host is capable of running multiple instances of 
the same Agent, so that more than one automated trader following a specific strategy can 
participate in the market simultaneously. The behaviour of an OpEx Agent consists of cyclically 
listening to stimuli and reacting to them sequentially by performing one or more actions. Agents 
are idle as they wait for the next stimulus, whereas they perform calculations and can send a 
signal to the market when they are active. Each stimulus is produced by a specific source 

 

16  The  order  book  is  actually  one  of  the market  indicators  that  are  essential  to  the  activity  of  real‐world  stock  traders  and 
algorithmic trading systems. 
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asynchronously, and it is conveyed to a common stimulus collector together with all the other 
unprocessed stimuli. Sorted chronologically, the resulting stimuli queue is then processed
sequentially by the appropriate processor. The strategy of an Agent is univocally determined by
defining the reaction to four different classes of stimuli: Timer, Quote, Session, and New 
Assignment. The internal alarm mechanism of an Agent produces a Timer stimulus 
periodically, with the frequency specified in that Agent’s preferences. When the alarm rings, a 
Primary Timer stimulus is generated. However, age

 
 

nts also allow Secondary Timer stimuli, 
which are periodically generated between two consecutive Primary Timer stimuli in order to 
achieve timed events at finer granularity.17 Quote stimuli are produced by the market data 
listener of an Agent every time a market participant sends a new order or amends an existing 
one. Unlike Timer stimuli, Quote stimuli bring information about the timestamp of the event: the 
price of the order; the quantity; the direction (buy or sell) and whether the order has been 
accepted (i.e. the order has crossed an existing order on the contra-side of the book, leading to 
a trade) or rejected (i.e. the order has not matched any orders on the opposite side, therefore it 
ended in the appropriate price queue in the book). Session stimuli are also captured from the 
market data listener, and indicate whether the market has just opened, or it has just closed. In 
addition, a Session stimulus indicates how long the next session is going to last, and when it is 
going to start. Finally, New Assignment stimuli are produced by the assignment listener of an 
Agent every time there is a new assignment
These stimuli ument, 
quantity and li they 
receive it: this way, an assignment cannot be traded until the previous one has been 

ary 

r a 
s of the development process. Each 

r 

                                           

 ready to be processed for that specific Agent. 
carry complete assignment information, including quote direction, instr
mit price. Agents process assignments sequentially, in the same order 

completed. Every time the market closes, the assignments for every Agent are reset, and new 
assignments are sent at the start of the next trading session, right after the market-open 
Session stimulus. 
 
Our choice of timing mechanism is consistent with the previous IBM work (Das et al., 2001), 
where similar timing rules were used to regulate the activity of the agents. However, the results 
presented by Das et al. are from experiments run using two different timer periods (“fast”, 1 
second; and “slow”, 5 seconds) for the different algorithms; this is an issue that we discuss in 
Section 5. In our work reported here, the “fast” configuration corresponds to the agents’ prim
and secondary timer period set to 1 second, while the “slow” configuration timing settings are 
10 seconds for the primary timer, and 2.5 seconds for the secondary timer. 
 
Architecture 
The most common use-case of OpEx consists of several human traders using individual 
physical machines to trade either with each other, or with automated traders: the need fo
distributed architecture was established in the early stage
instance of the Trading GUI denotes a client of the Configuration Server, to which the GUI 
connects to on start-up, in order to notify the system of its presence and to retrieve its 
configuration settings. The connection with the Configuration Server is held by the GUI, and 
kept alive by sending heartbeat messages to the server, until the GUI is shut down, only after 
the system has been logically notified of the exit of that instance from the pool of running 
applications. This client/server paradigm applies to all other OpEx components: Order 
Manager, Exchange, Agent Host and Assignment Server. The advantages of using this 
approach are dual: first, it constitutes a centralised mechanism that regulates the running 
status of the components; second, it reduces the amount of local static configuration of the 
components to the bare minimum, that is the network location of the Configuration Server (afte

 

y awake an agent in order to perform calculations, but, unlike Primary Timer stimuli, they never lead 
to perform an action on the market (i.e. send a new order to buy or sell, or cancel an order). 
17 Secondary Timer stimuli ma
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a component has connected, it can use the more sophisticated mechanisms described later 
this section to retrieve its configuration).One of the fundamental functionalities the Trading G
and the Sales GUI implement is order entry: human traders participate in the market by 
entering and sending order requests. The order data generated by the GUIs include all the 
information required by the order matching logic. However, orders are not sent directly to t
Exchange but through the Order Manager. The reasons why we created this component are 
multiple. First, because the number of order requests (including creation, amendment and 
cancellation) in a high frequency platform is significantly high, the requests need to be labeled 
carefully in order to be managed: the Order Manager acts as an on-demand centralised unique
ID generator, and provides the order generator applications with a token that univocally 
identifies their requests across the whole instance. Secondly, the Order Manager isolates the 
routing functionality from the clients and promotes decoupling between order generators an
order processors. Custom routing rules can be set up for individual components or groups of
components in a centralised fashion, making it easier to configure networks involving many
components. A further system functionality factored out by the Order Manager is dyna
persistency: as requests, responses and updates from and to all the components flow through 
it, the Order Manager stores these data into the database. Finally, the Order Manager als
reduces the numbe
p

in 
UI 

he 
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mic data 

o 
r of connections required to attach N order generators to M order 

rocessors: the N*M links required to link each source with each destination is reduced down 

o the exchanges 
rough legacy software or in-house solutions, often referred to as market gateways. Market 

t implement any matching logic: they act as logical routers of trading data traffic 

l 
 the 

e 

le 
rket 

exchanges, this allows the development and testing of pair trading strategies (i.e. two 
instruments traded at the same time) and portfolio trading (i.e. a basket of any number of 
instruments traded simultaneously). Having one thread per order book processor also allows 

and/or a higher priority to 

Name Vendor Free Languages and APIs 
supported 

MQ Series IBM No Java, .C/C++, .NET 
JMS Sun Yes Java 
MarketView 
PSH 

ION 
Trading 

No Java, C/C++, .NET 

MSMQ Microsoft Yes (comes with 
Windows) 

.NET 

Rendezvous TIBCO No Java, C/C++, .NET, Perl 
 

to N+M. 
 
In commercial algorithmic trading systems, orders are ultimately matched by electronic 
exchanges such as London Stock Exchange (LSE), Chicago Board of Trade (CBOT) and 
Tokyo Commodity Exchange (TOCOM). These market exchanges are separate entities from 
the financial institutions that act as market players, and their systems are interconnected by a 
high-speed WAN link. Usually, hedge funds and investment banks connect t
th
gateways do no
between market exchanges and their subscribers, decoupling the infrastructure of the 
exchange from that of the institution. OpEx, on the other hand, does not offer market 
connectivity to real world exchanges, therefore it lacks a separate market gateway component 
and implements the order matching logic in the Exchange component. Depending on globa
routing rules and the routing instructions attached to them, the Order Manager forwards
orders received from the GUIs and the Agent Hosts to the appropriate Exchanges. In a simpl
configuration, all the orders produced by the order generators in an instance are routed to one 
Exchange, which processes them according to the rules of the CDA. When it starts, the 
Exchange spawns as many order book processors as the instruments configured in its 
application settings. Each order book processor runs in a separate thread, so that multip
instruments can be traded simultaneously across one instance. In line with commercial ma

fine tuning for each instrument, which is useful if some instruments require more processing 
power than others. This can be achieved by assigning more CPUs 
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th uid inst nts and ate the illiquid ones to one CPU. Within an order book 
processor, order requests are ha d sequentially in a FI shion: no order requests can be 
processed until the current request has finished processin nal mechanism 
guarantees the order book is consistent bef
re s processe der b altered an pdated copy is both stored 
in  publi nto the ata Bus, so tha pants are 
informed of the changes. The status of the order is also updated according to the order state 
machine and the updated copy order is sent back to the Order Manager, which in turn saves it 

a 

 in 
ital 

hoice 

r 

of 
hird, both 

setting up the parameters and collecting results for each component from its physical 
etwork location would constitute a much more time-consuming and error-prone process. 

e more liq rume alloc
ndle FO fa

g. This transactio
ore and after every order allocation. When a 

ook is usually 
rket D

quest i d, the or d the u
ternally and shed o  Ma t all the market partici

and forwards it back to the originator. Unlike commercial systems, where the only public dat
available is the order book, the Exchange also publishes quote data: every time a creation or 
amendment request is processed, the market participants are informed about the order price, 
the quantity, and whether the order was accepted (partially or completely filled) or rejected (no 
trades were made and the order was added to the order book). This mechanism was put
place for compatibility with the automated agents we analysed, which use quote data as a v
part of their calculations.18 Finally, if a trade happens, the Exchange sends the relevant trade 
data to the Order Manager, to be stored in the database: for both counterparties, trade data 
include trade price, quantity traded, and counterparty name. 
 
OpEx uses a database as a centralized repository of data, both to retrieve the configuration 
settings of the components and to store the data produced during the simulations. This c
was made for several reasons. First, the system benefits from most of the built-in features of 
DBMSs: concurrency, necessary when multiple components need to write data 
simultaneously; atomicity, which guarantees that data are consistent before and afte
each transaction; backup and recovery, crucial to take snapshots of the data at 
particular times and to import and export data across different installations of the system; 
indexing and query, indispensable for data manipulation and to generate reports. Second, the 
data in the database are well-structured and strongly typed: this saves a significant amount 
time when the data need to be analysed, since there is no need for pre-processing. T
configuration data and results for all components are retrieved from and stored into one 
location: 
n
 

Component Order Market Trade Quote 
GUI SL SL SL SL 
Order 
Manager 

SL SL SL SL 

Exchange SL SL SL SL 
Agent Host SL SL SL SL 

Table 2: The distribution of data services (S) and listeners (L) plug-ins 
across producers and consumers of dynamic data. Tick signs and crosses
represent the presence or the absence of the particular plug-in, 
respectively. 

The requirements outlined here imply intensive communication among the components, mostly
in the form of messaging: sending and receiving pieces of structured data across remote 
network locations. Since both push and pull communication are employed according to the 

                                           

 

 

 

 It can be easily proved that only partial quote data can be inferred from market data. Suppose that there are only two price levels
 the order book: b on the buy side, and a on the sell side, both for one unit only. If after a market data update only on
vels is left, for example a, then we are sure that the order at price b was traded (in absence of cancellations), but we canno
e price at which the aggressive order was sent: any sell order at a price  less than or equal to b would satisfy the conditions

18  
in e of the two 
le t know 
th  to 
generate a trade. 
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specific task, we adopted a hybrid messaging paradigm between publish/subscribe (pub/sub) 
and Remote Procedure Call (RPC). Commercial high-frequency trading systems rely on 
different messaging solutions: some of them use custom libraries developed in-house; some 
others employ third-party libraries. We excluded the option to develop from scratch a 
messaging library built on top of sockets for timing reasons, and instead reviewed a few 
available libraries, summarised in Table 1. All the libraries satisfy the messaging requirements 
of OpEx, however we chose MSMQ because it is distributed with Microsoft Windows and it is 
part of the .NET framework, which we preferred to other technologies for the richness and ease
of use of its IDE, graphical libraries and tools. The MSMQ API exposes basic methods to 
manipulate message queues and exchange messages between remote network locations, 
through which we built the hybrid communication mechanism

Component Order Market Trade Quote 
GUI SL SL SL SL 
Order 
Manager 

SL SL SL SL 

Exchange SL SL SL SL 
Agent Host SL SL SL SL 

 

Table 3: The distribution of data services (S) and 

 

 mentioned above. Dynamic data 

r 
ed 

f an 
also embeds an order data service, as it 

ropagates the order messages to the appropriate destination(s) according to both the global 
routing rules and the particular location specified in the order message. Messages are sent by 
the data service to th ming que he order data listener plug-in built in the 
Exchange(s), which responds by sending messages
data service of the O ager. I case cati he E ge(s) is loaded at 
start-up by the Order as pa s con tion s. Th  market data plug-
ins are f market 
data tr  the 
data b e transmitted from 
GUI to Order Manager and from Order Manager to Exchange, market data updates are 
announced publicly using multicast.19 We preferred this solution to the iterative point-to-point 

belonging to a particular category is sent by a specific data service, and received by the 
corresponding data listener. Thus OpEx employs services and listeners for order data, market 
data, quote data and trade data. Both services and listeners run as in-process-plug-ins of the 
different applications, according to the specific application needs, as shown in Table 2, and 
comprise a remote outgoing queue, to which messages are sent, and a local incoming queue, 
from which messages are received. The order data service embedded in GUIs and Agent 
Hosts points to the Order Manager’s listener, so that an order corresponds to a message sent 
by the order generator and received by the Order Manager. Once the message is received, the 
listener acknowledges the reception to the data service plug-in by sending an order message 
back to the originator. It is worth noting that, while the network location of the Order Manage
has to be known by the order generators (in fact, it is found in the application settings retriev
at start-up), the Order Manager learns the location of GUIs and Agent Hosts as they start 
sending orders, dynamically building a data structure that associates a particular instance o
pplication to its network location. The Order Manager a

p

e inco ue of t
 back to the incoming queue of the order 

rder Man n this , the lo on of t xchan
 Manager rt of it figura setting e way

 attached to components follows a similar pattern: the Exchange, originator o
affic, implements a market data service, while GUIs and Agent Hosts subscribe to
y employing a market data listener. However, unlike order data that ar

                                            

19 A multicast  is a single stream of data (i.e., a set of packets) that  is transmitted simultaneously to selected multiple hosts who 
have joined the appropriate multicast group. In contrast to broadcasts (which are used on some LANs), multicast clients receive the 
data  stream only  if  they have previously  elected  to do  so  (i.e., by  joining  the  specific multicast group  address). Multicasting  is 
suitable for the situation in which there is a large amount of information to be transmitted to various (but usually not all) hosts on 
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alternative bec t da te m que an a er dynamic data category 
in the system a ecause the of int  two applications 
that populate a ce of O  mo us, t itting es only once avoids data 
replication and ions, reduces band ncy by a factor equal to 
the number of nd u ly fa cala Trad  service and listener are 
implemented in Exchange and Order Man espe y, so formation can flow from 
the former to the latter in order to be stored in the database. Quote data listener and service 
are equally embedded in Exchange reason; Agent Hosts also 
include a lis t of the calculations performed 
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a network.  It  is  commonly used when distributing  real  time audio and  video  to  the  set of hosts  that have  joined a distributed 
conference. It is also used by video servers for sending out networked television channels. 
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5. New experiments 

In this section we present results from a new series of artificial trading experiments between 
humans and agents, using the OpEx framework, where we begin to explore the performance o
well-known robot trading algorithms in experimental settings that are closer to the reality of the
global financial markets: we move away from the artificial constraint of regular simultaneous 
replenishments of currency and stock, using instead a continuous drip-feed; we also explore 
the extent to which the outperformance of robots over humans is an effect of the robots’ greater 
speed. 

f 
 

5.1 Methods 
OpEx was used by two of us (Szostek & Cartlidge) as an experimental platform to conduct a 
series of experiments between humans and robots trading in an artificial market, over April-
May 2011. Following the structure used previously (De Luca & Cliff, 2011a, 2011b), each 
experiment involved six human traders (three buyers and three sellers) and six robot traders 
(three buyers and three sellers). Human participants were seated around a rectangular table 
with buyers on one side and sellers opposite. Before starting each experiment, participants 
were given a brief introduction to the rules of the market and allowed some time to familiarize 
themselves with the Sales Trading GUI (this briefing and the short tutorial typically took less 
than 10 minutes). When training was complete the market was reset to ensure the removal of 
any residual orders in the system. Participants were then notified that the experiment was 
about to begin and reminded that their aim was to maximize profit. Each experiment lasted 20 
minutes,20 during which the market was continuously open for trading.  
 
Having the market be continuously open throughout the experiment is a significant difference 
from the usual “periodic” experiment design where the market repeatedly opens, trades for a 
period (or “day”), closes, and then re-opens with fresh replenishment for all traders for each 
trading period; i.e., the design that was used in Smith’s (1962) original experiments. The move 
away from periodic experiment designs to continuous trading is a step nearer to the situation in 
the real-world financial markets where buyers and sellers continuously and asynchronously 
enter and leave the market at all times, and where trading activity can “follow the sun” around 
the planet, with at least one major trading venue open somewhere in the world at any time of 
day or night. The design of the continuous-market experiments that we use here is taken from 
earlier experimental economics work performed at Hewlett-Packard Labs by Cliff & Preist in 
1998 (reported in Cliff & Preist, 2001), the design of which was in turn directly inspired by Smith 
& Williams (1983). 
 
At the start of each experiment, the market was empty and traders had no order assignments.  
New assignments were periodically sent to traders following the permit schedule shown in 
Table 4, with each trader receiving 6 assignments every 170 seconds. From Table 4, we see 
the limit price of each assignment and the time step that the assignment is sent to each trader: 
after 10s, for example, human Buyer 2 and robot Buyer 2 each receive a buy order assignment 
with limit price 340; and human Seller 2 and robot Seller 2 each receive a sell order 
assignment with limit price 60.  After 170s the permit schedule repeats, producing 7 full permit 
cycles during the 20 minutes experiment (no assignments were sent in the final 10s).   

  

 

                                            

20 One experiment  (UoB1‐AA‐slow) was actually  run  for  the  longer duration of  30 minutes, but  for  consistency with  the other 
experiments  described here, we only analyze and discuss the results for the first 20 minutes of that experiment.  
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Table 4:  Order permits for traders showing limit prices of each order 
assignment. Traders receive six assignment types during each cycle of 170s. 
Numbers in brackets show the time step that each order assignment is sent, 
in 10-second multiples – so (4) means 40s. 
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For each permit cycle, the sequence of limit prices for order assignments were arranged in an
arithmetic progression (hence, assignments early in the cycle were easiest to execute, havin
either high buy, or low sell, limit prices). Received assignments were queued in a traders’ 
personal assignment queue until the trader decided to execute the order. Traders were able t
work orders from their assignments in any order and at any time, thus enabling them to have 
multiple simultaneous orders on the exchange order book. Unable to make a loss, traders w
forced to submit buy (sell) orders at less than (greater than) or equal to the limit price. Profit 
was then calculated as the difference between execution price and limit price for each order. 
For fairness, the maximum theoretical profit available to each player was deliberately kept 
equal. Figure 5.1 Figure shows the demand and supply schedules generated by the permit
schedule in Table 4. It can be seen that demand and supply is symmetric and unbiased, with a
theoretical market equilibrium price P0=200.    
 

 
Figure 5.1: Demand and supply schedules for traders in the market.  The 
theoretical market equilibrium price is P0=200. 

 
Experiments were run under several conditions (refer to Table 5 for a summary). For each run, 
robot agents were all of the same type, either AA or ZIP, and were set at the same speed, 
either fast or slow. Under the slow condition, robot agents were set to wake from sleep and act 
very 10s, and were additionally enabled to perform internal calculations (but no actionse

2
) every 

.5s. Under the fast condition, robots were able to both calculate and act every 1.0s. Human 
participants were separated into two groups, experienced finance professionals and 

ed non-financial postgraduate students. Experiments using experienced 

were all 

inexperienc
participants were run at TradeTech2011, Europe’s premier trading technology conference for 
industry professionals (held at the Excel Centre, London, April 2011). Participants 
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registered conference delegates who responded to adverts and public announcements of the 
experiment during the conference. To encourage participation and subsequent competition, the 
one participant with the greatest efficiency (profit as a proportion of maximum theoretical profit) 
at the end of the experiment was rewarded with an iPad2 tablet computer (valued at £400), and 
the five remaining participants received no reward at all. Experiments using inexperienced 
participants were run at the University of Bristol during April and May 2011 using postgraduate 
students in non-financial but analytical subjects (i.e., these students had skills suitable for a 
professional career in finance, but did not l 
finan nts 
recei r 
(mos

work in the industry, and had no professiona
cial experience). For inexperienced experiments, in each experiment all six participa
ved £20 in cash for participating, with a further £40 cash bonus awarded to the winne
t efficient), and £20 cash bonus for second place.21  

  
 

 
Table 5: Summary of experiment conditions. 

 

 
5.2 Results 
We present here the results from a series of experiments performed during April and May 
2011, grouped into five conditions. Table 4 lists our acronyms for the various conditions that 
our experiments involved: the robots were either AA or ZIP; inspired by the IBM 2001 study, 
their sleep-wake cycle was either “Fast” (1.0s sleep) or “Slow” (10.0s sleep); and the human 
subjects were either postgraduate students from the University of Bristol (“UoB”), or finance 
professionals who attended the TradeTech2011 trading-technology conference in London 
(“TT”). The specific combinations we tested were: UoB-AA-Fast; UoB-AA-Slow; UoB-ZIP-Fast; 
TT-AA-Fast; and TT-ZIP-Fast. Experiments were run twice for all conditions.  
 
Figure 5.2 shows the time-series of quotes (buy and sell orders submitted to the exchange) for 
experi s 
selecte ents, 

fer to  accepted and rejected offers 

ment TT1-AA-Fast, with human quotes in red and agents in blue. This data set i
d as a representative example of market activity; for full results from all experim
 Appendix A. Filled and open-faced markers showre

respectively, with triangles representing bids and squares representing offers. Vertical lines 
denote the start and end of each permit cycle (170s) and the dashed horizontal line shows the 
theoretical market equilibrium price, P0=200.  

                                            

  Financial  assistance  in  funding  the  prizes  used  to  incentivize  the  participants  in  our  experiments was  provided  by  Syrit21 ta 
Algorithmics Ltd: we are very grateful to Syritta for their support of our research. 
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Figure 5.2: Series of quotes from participants in experiment TT1-AA-Fast, 
with human data red and agent data blue. See text for explanation and 
discussion. 

 
 can be seen that ther ent from both humans 
nd agents. Initially, the prices quoted are consistently below P0, but by permit-cycle 2 they 
ecome roughly symmetric about P0 and remain this way until market close, with the traders’ 

ices converging on the theoretical equilibrium. Interestingly, near the beginning of 
nts 

er, 

h 

ice 

ries of execution 
rices from the same experiment, shown in Figure 1.3. Here, we see that after an initial 

It e is regular market activity throughout the experim
a
b
transaction pr
each cycle, there appears a filled red square at a price of approximately p=50. This represe
a human seller having a quote accepted at a price well below the equilibrium P0=200. Howev
this does not imply that the seller is executing at a foolishly low price. Rather, they are 
examples of aggressive market orders: bids (offers) placed on the exchange at a relatively hig
(low) price in order to execute at the current best sell (buy) price, thus effectively taking the 
market price. Since London Stock Exchange rules apply, matched orders execute at the pr
of the order that arrived first. Thus, a market ask with a very low limit price will often execute at 
a much higher value. A clearer pattern emerges when we consider the time-se
p
exploratory period, trades execute at a price relatively close to P0.  
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Figure 1.3: Series of trades from participants in experiment TT1-AA-Fast.  Trades 

les; 
w the 

e 
arket equilibrium price, P0. 

t 

rd 
0  is a desirable 

property, describing a stable market trading close to equilibrium. In Figure 5.4, mean  is 
plotted for each permit-replenishment cycle under each experimental condition. 

between humans are shown by clear squares; between agents by clear circ
and between a human and agent by filled square. Vertical dashed lines sho
beginning of each permit cycle; the horizontal dashed line represents th
theoretical m

 
From Figure 1.3, it is clear that the majority of trading activity appears in clusters at the 
beginning of each permit cycle. This is an artefact of the permit schedule (Table 4). At the star
of the permit cycle, the easiest assignments to trade are sent, i.e., buy (sell) orders with high 
(low) limit prices relative to P0. Between 90-170s, traders receive assignments with buy (sell) 
limit prices below (above) P0 (i.e., demand and supply to the right of equilibrium in Figure 5.1). 
Unable to form a natural match, these order assignments are difficult to trade and sit on the 
order book waiting to be filled. It is not until the start of a new cycle that these orders can be 
filled and a burst of activity ensues.  
 
From Figure 1.3, it appears that trading activity in each permit cycle progressively converges 
toward P0. Price convergence toward equilibrium is a theoretical property of ideal markets in 
economics and can be quantifiably measured using Smith’s alpha () coefficient: calculated as 
the root mean square deviation of trade prices from the equilibrium price (i.e., the standa
deviation of trade prices around P rather than the mean). A low value of 
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Figure 5.4: Mean value of Smith’s alpha measure (vertical axis), i.e. the 
root mean square deviation of transaction prices from the underlying 
theoretical equilibrium price P0; for each 170-second replenishment 
cycle, over a total of 7 cycles (horizontal axis), for each experiment 
condition. In all experiments, the market settles to a near steady-state 
condition within the first 170-second cycle. Data from TT experiments 
are shown as dashed lines; data from UoB experiments are shown as 

Und
acti rice 
leve  much 
los

further 

 

 
n 

ents under the same conditions (UoB-AA-fast, solid red 
ne); although by cycles 6 and 7 the  scores for professionals (TT-AA-fast) are 

we 

rty pairings: 
agent<human, human<agent, human<human, and agent<agent; where X<Y denotes: “Y hits 
(executes against) an offer previously posted on the order book by X”.  
 

solid lines.  Error bars omitted for clarity.  
 

er all conditions,  is highest during the initial cycle. Intuitively, this is due to the volatile 
vity of the market shortly after opening as traders probe demand and supply at varying p
ls. By the second cycle,  drops significantly, indicating that the market is trading
er to equilibrium. Under most conditions, the market then remains relatively stable, with c

little variation, suggesting that the cyclical nature of the experimental setup counteracts 
convergence once the initial learning period is over. Only the combination of experienced 
financial professionals and the AA algorithm (TT-AA-fast) produces a progressive pattern of 
convergence, with  steadily reducing throughout. Overall, ZIP agents (blue) produce higher 
than AA (red and green lines), suggesting AA encourages more stable market convergence. 
Similarly, finance professionals (dashed lines) appear to encourage lower  than inexperienced
students (solid lines). Finally, reducing the reaction times of agents (UoB-AA-slow, solid gree
line) produces lower  than faster ag
li
indistinguishable from those for UoB-AA-slow. This interesting result suggests that when 
agents are able to react quickly to market data there is an increase in price volatility and that, 
when the activity of robot traders is reined in, even inexperienced human traders can produce 
relatively high market stability (the lowest  under all conditions). To explore this possibility, 
will now take a more detailed look at the behaviour of the traders in these experiments.  
 
Table 6 displays the proportion of trades executed by each of the four counterpa
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Table 6: Execution counterparties as a proportion of all trades.  X<Y denotes: 
“Y hits an offer previously posted on the order book by X” 

 
Under all conditions, agents perform more execution hits than humans (final two columns). This 
dynamic can be more clearly seen by plotting the relative frequency of executions by 
counterp hese 
distributio se 
profiles o
 
 

arty. Figure 5.5 (UoB-AA-Fast) and Figure 5.6 (UoB-AA-Slow) show plots  of t
ns against time since last order assignment, effectively displaying the respon
f traders to new assignments (sent every 10s).   

 
Figure 5.5: Relative frequency distribution of trade executions for UoB-AA-Fast. 

 
 

 
Figure 5.6: Relative frequency distribution of trade executions for UoB-AA-Slow. 
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We see that agents react more quickly than humans to new assignments, with a significant 
majority of agents’ executions occurring within the first 2s.  In contrast, humans have a more 
even distribution, with a modal maximum at approximately 5s. For all fast-agent conditions, 
distributions are qualitatively similar to Figure 5.5. However, when agents are slowed (Figure 
5.6), we see that the majority of executions are agents hitting humans in the first 2s after a new 
assignment enters the market, with humans trading more passively throughout. When agents 
are fast (Fig.5.5) they are able to trade between themselves before humans can react to new 
market orders: A<A executions in the first 2s account for more than one quarter of all 
exe wed 
(Fig cutions when agents are 
lowed thus results in less market volatility and lower .  

 of the 
 

cutions (red dash). However, this proportion of trades is reduced when agents are slo
 5.6). The combination of human passivity and reduced A<A exe

s
 
However, Smith’s  is only one market metric. We are also interested in the efficiency
market (profit extracted by the traders, as a proportion of maximum theoretical profit) and the
relative efficiency of different trading algorithms (see Table 7).    
 

 
Table 7: Summary of results. For each experiment the table displays: the 
number of experimental repetitions; the average efficiency of agents and 
humans; the percentage difference between agents’ surplus and humans’ 
surplus; the market efficiency and the profit dispersion. Lower profit dispersion 
and higher mean efficiency values are better. 

 
For all conditions, the relative ranking of

ixe s 
r humans and agents. UoB-AA-Fast was the o ly condition under which agents generated 

greater profit than humans, although the difference was marginal. In terms of profit, both AA-
Fast and ZIP-Fast performed better against inexperienced UoB humans than against 
experienced TT humans, suggesting that professional traders were tougher competitors than 
postgraduate students; also, against both students and professionals, AA-Fast performed 
better than ZIP-Fast. Profit dispersion, shown in the final column (lower values are better) 
suggests that AA-Fast consistently produces lower profit dispersion than ZIP-Fast. Overall, 
Table 7 suggests that AA is a more efficient trading algorithm than ZIP.  
 
However, the data in Table 6 shows that, across all conditions, in our experiments the humans 
are more efficient than the agents: the mean efficiency for humans over the ten experiments is 
0.95, while the mean efficiency for robots is 0.90. We applied a Robust Rank-Order (RRO) test 
(Feltovich, 2003) to the raw efficiency data from the ten experiments. The RRO is a 
nonparametric test that is better-suited to these experiments than the more commonly-used 
Wilcoxon-Mann-Whitney ‘U’ test. The outcome of our RRO test indicates that the difference 
between the humans’ efficiency and that of the agents is significant at the 2.5% level (that is, 
0.01

gents are. This is a surprising result, and is in stark contrast with the results from Das et al. 
(2001). Further experimentation and analysis is required to determine the precise reason for 

 agents and humans within each experiment were 
d. However, performance differences become clearer when comparing the mean scorem

fo n

0<p<0.025), and that hence the humans are more efficient in our experiments than the 
a
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this. As it stands, because the primary difference between our experiments and those of Das
al. (2001) is the abandonment of the regular periodic replenishments, it seems plausible that 
the machine superiority in the CDA claimed by IBM may have been an artefact of their 
experiment design.  
 
We also used the RRO to test for significance of difference between the human traders’ 
efficiency scores in the TT and UoB experiments. That is, we wanted to see if the markets 
populated by finance professionals (TT) were more efficient than the naïve subjects (U
With the data that our experiments have generated thus far, a visual inspection indicates that it
might be plausible that the market-efficiency of the TT markets are better than that of the UoB-
market data, but the RRO does not find a significant resul

 et 

oB). 
 

t at 9% or less (i.e., p>0.090). It is 
ossible that with a larger sample (i.e., more experiments), or with analysis of our existing 

o explore that prospect, we analyzed the scores for Smith’s  (i.e., root mean square 
deviation of transaction prices from the underlying theoretical equilibrium price) for all the AA-
fast and ZIP-fast data summarized in Figure 5.4. We were interested in the steady-state 
behavior of the markets, in replenishment cycles 2-7, rather than the initial transient behavior 
that all our experiments show in cycle 1 as they settle to equilibrium conditions. We again used 
the RRO test, and our four key findings for cycles 2-7 are: 
 

1. Over all “fast” experiments, the  scores of ZIP were worse than those of AA (p<0.0005). 

2. Over all “fast” experiments, the  scores of UoB were worse than those of TT (0.05<p<0.1). 

3. There was no significant difference between  scores of TT‐AA‐fast and UoB‐AA‐fast. 

4.

Find
pop
indi etween the trading behavior of finance 

rofessionals (TT data) and that of naïve subjects (UoB data). Findings [3] and [4] indicate that 

ns 

’s 
e 

e results can 

he 

d 

p
results using a more sophisticated comparator metric than aggregate market efficiency, a 
significant difference in trading behaviour might be detected.  
 
T

 The  scores of UoB‐ZIP‐fast were worse than those of TT‐ZIP‐fast (p<0.0005). 

 
ing [1] reinforces the conclusion in (De Luca & Cliff 2011b): human-agent markets 
ulated by AA traders perform better than those populated by ZIP traders. Finding [2] 
cates that there is indeed a detectable difference b

p
the difference identified in Finding [2] is due to the relative sophistication of AA over ZIP: in 
human-vs-ZIP markets, professional traders score better on  than naïve traders do, but in 
human-vs.-AA markets, that difference is no longer detectable. Precisely why this is so remai
a topic for further research, although it is perhaps a moot point: our results indicate that AA 
clearly dominates ZIP, and so questions about the performance of ZIP are now largely of 
historical interest.  
 
The final question we should address is the issue concerning the extent to which the market
scores for Smith’s  metric change when the robot traders are slowed down in their respons
times. Currently we have data from two UoB-AA-Slow experiments. Thes
reasonably be compared to the two sets of results we have from UoB-AA-Fast, or arguably 
(considering Finding 3, above) from the four sets of results we have from the combined UoB-
AA-Fast and TT-AA-Fast experiments. Either way, it is safe to say that we are very firmly in the 
realms of small-sample comparative statistics: the choice here is between running (n=2, m=2) 
vs. (n=2, m=4) tests; the RRO test is only defined for (m>2, n>2). In Figure 5.7 we illustrate t
mean and standard deviations of the scores for UoB-AA-Fast and UoB-AA-Slow, in an 
expanded “close-up” form (this is the same data that was shown in Figure 5.4). As can be 
seen, the evidence we have thus far suggests that when the agents are slowed, the market’s 
performance as measured by the  metric improves, but further experiments would be require
to generate sufficient data to firmly resolve this issue.  
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Figure 5.7: “Close-up” comparison of Smith’s metric for all our AA-Fast data 

background 
s and “robot” 

trading algorithms (autonomous software agents), and summarized the surprisingly small 
nd 

 

, using the OpEx framework, where we started to explore the performance 

  

 in 

 
here has been designed to more accurately reflect real financial markets, with a continuously 

(UoB and TT: n=4) and UoB-AA-Slow experiments (n=2). As in Figure 5.4, 
vertical axis is ; horizontal axis is replenishment cycle number over which -
value is calculated. Lower values of are better; data plotted is mean  over n 
experiments; error bars indicate the standard deviation about the mean. 

 

6. Discussion & conclusions 

In this review document we have given, in Sections 2 and 3, a brief overview of the 
literature relevant to the scientific study of interactions between human trader

number of papers that have addressed the core issue of interactions between humans a
robots in auction markets. The only peer-reviewed papers that we have found are those 
published by the IBM researchers, by Grossklags & Schmidt, and by De Luca & Cliff, all of 
which rely very heavily on the experiment design introduced by Smith in his 1962 paper.  
 
In an attempt to boost replication and further research in this area, in Section 4 we presented
details of OpEx, a platform intended for release as a free, open-source resource that can 
become a common base for the research community to use and to extend over time.  
 
Then in Section 5 we presented results from a new series of trading experiments between 
humans and agents
of well-known robot trading algorithms in experimental settings that are closer to the reality of 
the global financial markets (i.e., we moved away from the artificial constraint of regular 
simultaneous replenishments of currency and stock, toward a continuous drip-feed) and in 
settings where the effect of the robots’ greater speed than human traders could be explored.
 
While it is difficult to draw cast-iron conclusions from the small set of new results presented 
here, our results do provide a teasing insight into the effects that agent strategy, agent speed, 
human experience and experiment-design have on the dynamics of heterogeneous human-
agent markets. In general, agents perform less well (are less efficient) than humans across the 
majority of conditions in our new experiments. This is a surprising result that appears to be
conflict with previous OpEx experiments and the literature in general, where agents are 
generally found to outperform humans. However, unlike previous experiments, the set-up used
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open exchange, asynchronous order assignments distributed at a slow pace (one per trader 
every 30s), and the ability for traders to work multiple assignments in any sequence and at any 
time. This additional “realism” appears to favour humans, affording them more time to 
formulate a coherent strategy that can be used for the duration of the experiment. Humans are 
generally inclined to post orders on the book and wait for a match, whereas agents are more 
likely to send an aggressive market order soon after receiving an assignment. While this 
strategy favours agents in faster markets, it falters under the experimental conditions chosen 
here. We flag this as a warning to carefully frame results in the context of the experimental 
conditions in which they are generated.  
 
Following this advice, we note that the success of humans observed here might not be a direct 
result of “realism”, but rather an artefact of the permit schedule or some other experimental 
condition. Thus, it is not our conclusion from the results gathered here that humans will 
outperform these agents in real financial markets. However, we can safely conclude that timing 
is an important factor in the CDA-market performance of agents relative to humans, with 
reduced reaction speed significantly hindering the performance of agents, and slower markets 
favouring humans. This raises the interesting possibility that the strong performance of agents 
vers ic 
inte  
bett et 
equ A is 
ess t, 
when trading against ZIP, exper

experienced students, gaining a greater proportion of surplus profit and lowering ; but this 
erformance advantage is not nearly so clear when the professionals trade against AA. Also, 

s far indicates that slowing agents down improves the 
we have not yet generated enough experiment data 

 
d 
 

erhaps though, the bigger message of this review is methodological: very significant amounts 

cene 
s of 

ollars change hands every day, and yet there is a staggeringly small number of academic 
nic 

 
 

idespread use of experiment designs that more accurately reflect current real-world 
r 

us humans in previous experiments is purely down to speed, rather than the algorithm
lligence of the agents. Overall, across all metrics measured, the performance of AA is
er than ZIP, resulting in higher efficiency, greater convergence to the theoretical mark
ilibrium (lower ) and lower profit dispersion. This is perhaps unsurprising, given that A
entially an improved version of the original ZIP algorithm. Our results also suggest tha

ienced finance professionals can perform better than 
in
p
the evidence that we have available thu
market dynamics in our experiments, but 
to firmly resolve this issue. Finally, our results offer a hint that market volatility increases with 
the proportion of agent-agent executions. This interesting conjecture encourages us to draw
the tentative comparison with high-frequency trading algorithms in real financial markets an
the impact they may have on volatility, a subject with clear industrial relevance given current
speculation surrounding the causes of the May 6th 2010 “Flash-Crash” (see e.g. Cliff & 
Northrop, 2011). 
 
P
of research effort have been expended in experimental and behavioural economics over the 
years, and similar amounts in agent-based AI. The present-day financial markets are the s
of interactions between human traders and algorithmic trading systems in which billion
d
peer-reviewed papers that explore interactions between human and robot traders in electro
markets. Moreover, for an entire decade there was been no peer-reviewed published attempt 
at replicating IBM’s results presented by Das et al. (2001), a paper that is widely and rightly 
seen as one of the key results in the literature. We hope that this Foresight driver review
document, and the coming open-source release of OpEx, provoke greater research activity,
with rapid replication of key results becoming the routine norm, and with moves towards 
w
scenarios, rather than the one design that a brilliant young economist happened to choose fo
his first CDA experiments, over 50 years ago.   
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Appendix A 

In this appendix we show the full data from all the experiments described in Section 5. 

 
Figure A.1a: Series of quotes from participants in experiment TT1-AA-Fast. 

 

 
Figure A.1b: Series of transaction prices from participants in experiment TT a

 
1-AA-F st. 
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Figure A.2a: Series of quotes from participants in experiment TT2-ZIP-Fast. 

 
Figure A.2b: Series of transaction prices from participants in experiment TT2-ZIP-Fast. 
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Figure A.3a: Series of quotes from participants in experiment TT3-AA-Fast. 

 

 
Figure A.3b: Series of transaction prices from participants in experiment TT3-AA-Fast. 
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Figure A.4a: Series of quotes from participants in experiment TT4-ZIP-Fast. 

 
Figure A.4b: Series of transaction prices from participants in experiment TT4-ZIP-Fast. 
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Figure A.5a: Series of quotes from participants in experiment UoB1-AA-Slow. 

 
Figure A.5b: Series of transaction prices from participants in experiment UoB1-AA-Slow. 
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Figure A.6a: Series of quotes from participants in experiment U0B2-AA-Fast. 

 
F

 

igure A.6b: Series of transaction prices from participants in experiment U0B2-AA-Fast. 
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Figure A.7a: Series of quotes from participants in experiment U0B3-AA-Fast. 

 
Figure A.7b: Series of transaction prices from participants in experiment U0B3-AA-Fast. 
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Figure A.8a: Series of quotes from participants in experiment U0B4-ZIP-Fast. 

 

 
Figure A.8b: Series of transaction prices from participants in experiment U0B4-ZIP-Fast. 
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Figure A.9a: Series of quotes from participants in experiment U0B5-ZIP-Fast. 

 

 
Figure A.9b: Series of transaction prices from participants in experiment U0B5-ZIP-Fast. 
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F

 
igure A.10a: Series of quotes from participants in experiment U0B7-AA-Slow. 

 
Figure A.10b: Series of transaction prices from participants in experiment U0B7-AA-

Slow. 
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