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Abstract
In this paper, the emphasis is placed on various packet sampling methods and their application

to network monitoring. We present the motivations for packet sampling on high-speed network
links. We give an overview of all known packet sampling techniques, point out their strengths
and weaknesses in terms of reliability and accuracy in the estimation in different network traffic
parameters. We also provide more details about the adaptive packet sampling, as a way to increase
this accuracy.

One of the key objectives of our study is to gain some insight about the feasibility of the packet
sampling in context of network anomaly detection. It was proven that packet sampling provides
reliable estimates in traffic monitoring applications. However there is not much research on whether
packet sampling provides sufficient amount of information for the anomaly detection.

1 Introduction

Packet monitoring is an integral part of network measurements. In packet monitoring one is interested
with the information contained within packets traversing a link. Initially packet monitoring was
performed by specially designed probes installed on the network [1, 2, 3, 4, 5]. These probes copied the
entire contents of every packet for further analysis. This approach allowed relatively easy monitoring
of whole network traffic on shared medium networks like a FDDI ring or the early Ethernet. However
processing the entire contents of every packet imposed high demands on packet probes and their
resources. For this reason probes usually captured only the initial part of the packet which contains
valuable information – the protocol headers and initial contents of the application data. Document [6]
explains why packet protocols headers are of central of interest in network measurements. Even so,
this became infeasible with the advent of high-speed switched networks when the bandwidth and the
volume of data increased [7, 8]. The next approach to packet monitoring was to embed the probe
functionality within the network equipment.

Switches and routers have limited computing power and resources. Their main purpose is definitely
not packet monitoring (as opposed to a monitoring probe). These arguments were a driving force for
another way of data reduction. Embedded packet monitors might reduce the volume of data by
filtering, aggregation and sampling [9]. Amer and Cassel in [7] give more reasons for choosing packet
sampling.

Quite recently yet another trend in network monitoring had appeared. Thanks to the progress in
massively parallel processing within specialized FPGA circuits, the Deep Packet Inspection attracted
the researchers and hardware manufacturers. It is further discussed in section 3.3.
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In this report we would like to address packets sampling methods and their application in network
measurements.

2 Typical features of the network traffic

Recent studies of traffic measurements have shown that network traffic possesses the property of long-
range dependence [10, 11, 12]. Such property manifests itself in the correlation structure where the
autocorrelation functions obey some power-law. Network traffic exhibits burstiness at a wide range of
time scales and could be described as self-similar. Self-similarity is a term from fractal theory which
states that the object appears the same regardless of the scale. Publication [10] was a breakthrough in
modeling of the network traffic, as previously used Poisson models assumed that burst length would
tend to be smoothed by averaging over a long time-scale. The fact that network traffic exhibits long-
range dependency have severe consequences both on network traffic modeling (prediction) [13, 14] and
sampling process. Uniform sampling from heavy-tailed distributions may yield poor estimates since a
relatively small amount of samples can have severe impact on the resulting estimates.

3 Packet selection techniques

3.1 Packet sampling

As it is pointed out in [6], the packet sampling techniques were categorized initially in [7]. They
are currently being standardized by the Packet Sampling (PSAMP) Working Group of the Internet
Engineering Task Forces. We give an overview of all known packet sampling techniques, point out their
strengths and weaknesses in terms of reliability and accuracy of the estimation of different network
traffic parameters. We also provide more details about the adaptive packet sampling, as a way to
increase the accuracy.

3.1.1 Systematic sampling

Systematic packet sampling involves the selection of packets according to a deterministic function.
There are two ways to trigger the selection: count-based with the periodic selection of every k-th packet
or time-based driven, where a packet is selected every constant time interval. It is pointed out in [15]
that the first approach gives more accurate results in terms of the estimation of traffic parameters.
Systematic sampling is straightforward to implement, i.e., the original Sampled NetFlow [16], Juniper
Packet Sampling [17]. However, it is vulnerable to bias if the metric being measured itself exhibits
a period which is rationally related to the sampling interval [18]. Systematic sampling can be easily
anticipated, hence open to susceptible to manipulation [19, 20]. In some cases systematic sampling
can perform better that random sampling, see [21, 22]. In case of sampling self-similar process, the
systematic sampling provides lower sampling method average variance than in case of simple random
sampling [23, 24] (if variance of sampling results is high, then one cannot rely on single sampling
instance to infer the entire process).

3.1.2 Random Sampling

In random packet sampling the selection of packets is triggered in accordance to a random process.
The unbiased estimation can be achieved, since each selection is an independent experiment.

Random additive sampling The potential problems of systematic sampling are avoided by using
independent, randomly generated triggers in order to select packets. These triggers have a common
statistical distribution. It avoids synchronization and predictability problem [25]. Duffield in [26]
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suggests choosing the triggers to be geometrically distributed (for count based sampling) or expo-
nentially distributed (for time-based sampling). See [20] for more details how to generate sampling
intervals using Poisson distribution. Zhang [27] shows that count-based Poisson sampling has better
performance than time-based Poisson Sampling [28].

Simple Random Sampling In this technique n samples are selected out of N packets, hence it
is sometimes called n-out-of-N sampling. For this sampling schema each packet has an equal chance
of being drawn. One way of achieving a simple random sample is to randomly generate n different
numbers in the range of 1 to N and then choose all packets with a packet position equal to one of these
n numbers. This procedure is repeated for every N packets. For this kind of sampling the sample size
is fixed. Examples of implementation include sFlow [29] and Random Sampled Netflow [30]. Both
examples use 1-out-of-N sampling

Probabilistic Sampling In probabilistic sampling samples are chosen in accordance to a pre-defined
selection probability. The sample size can be different for consecutive intervals. For uniform proba-
bilistic sampling each packet is selected independently with a fixed probability p. When a probability
p depends on the input (i.e. packet content) then this is non-uniform probabilistic sampling. This
non-uniform approach can be used to weight sampling probabilities in order to boost the chance of
sampling packets that are rare but are deemed important. More details about non-uniform sampling
can be found in [31] as well as in (4.2).

Adaptive sampling

Motivation The sampling rate translates (directly or indirectly) into the accuracy of estimation
procedure [32, 33, 21, 34]. Some network behavior may not be accurately detected with low sampling
rates. This particularly refers to anomaly detection. On the other hand, sampling with high sampling
rate produces vast amounts of data that needs to be sent to the collector and processed afterwards. In
the periods of high traffic the network equipment might not cope with the required sampling rate and
drop the excessive packets. The increased number of samples can have influence on the overall traffic.
As in most cases sampled packets are being sent via connectionless datagram protocol, it is important
to avoid congestion situations. Thus it is obvious that there is a trade-off between accuracy and the
broadly defined performance. What is not obvious is how to choose the right sampling rate. It might
be a challenging or an impossible task. The network traffic itself exhibits variability in a number of
packets traversing links for different time periods. What is distinctive about the network behavior
are the sudden bursts of the traffic (because the network traffic can be characterized by heavy-tailed
distributions).

Network traffic does not exhibit stationary behavior. It exhibits temporal cycles (daily, weekly)
and can be easily affected by network reconfigurations (e.g. manual reconfiguration, dynamic routing
change), link failures and deployment of new machines and applications. Although the packet sampling
is a lightweight process that does not consume much of the network device resources (memory and
CPU) there are certain limitations with respect to the maximum number of samples the device can
produce within a given time frame. As mentioned earlier, in periods of high traffic the device may
become saturated. This could cause a situation in which the device produces fewer samples in the busy
periods than in case of ‘normal’ traffic. This is unfortunate as sometimes the packets appearing during
the high load are the most important ones to capture. And even if there were no limits in hardware,
the excessive sampling traffic could be interpreted as an anomaly or make the already existing anomaly
worse.

The issues mentioned beforehand (estimation error and network device resources) are being ad-
dressed by a broad group of adaptive sampling techniques. These methods employ either a special
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heuristic for performing the sample process or certain prediction mechanisms for predicting future
traffic and adjusting the sampling rate.

Sampling rate adaptation has some potential drawbacks. There is some latency in the adaptation
process and in case of unanticipated traffic burst the saturation of the device will be possible. In order
to avoid it one would have to allow a certain safety margin by employing systematic undersampling.

Adaptive sampling mechanisms One group of solutions focuses on implementing the custom
sampling methods. [35] describes two methods of adaptive sampling for managing the processor usage
in the network device. One method uses the information about the current processor utilization in
order to adjust the packet selection rate. The other utilizes the packet interarrival times (which can be
used to anticipate incoming burst of traffic) in conjunction with the knowledge about the processing
time required for processing a sample. The study found that proposed adaptive methods yielded more
accurate estimates of network traffic parameters (Hurst Parameter used for describing self-similar
phenomena) under predefined resource constraint than simple static sampling. In [36] the application
fast control loop for adjusting the sampling interval had been tested. Linear prediction and fuzzy logic
approach are being discussed with application to different types of traffic (normal Internet traffic and
bursty video traffic). Authors had performed offline simulations and did not analyze the feasibility of
embedded implementation in the device. [37] proposes to use the weighted least squares predictor
and certain set of heuristic rules for determining the sampling rate. It does not provide the complexity
analysis of the algorithm which requires more numerical operations than simple linear prediction. [38]
describes an approach to flow sampling that allows to control the expected volume of samples and
to minimize the variance of usage estimates arising from the sampling. The proposed schema (smart
sampling) adapts the sampling process by associating the probability that flow is selected with the
size of the flow. This process shifts focus towards the larger ‘elephant’ flows which have a severe
influence on the traffic volume. These ideas are further extended in [39] to work under strict resource
constraints by sampling into a buffer of fixed size. Reservoir sampling [40] is an example of rate
constrained sampling (approach that can select specified number of objects in a specified time frame).
Reservoir is a special buffer holding a predefined number of current samples. As more samples are
being processed the contents of the reservoir may be replaced. The process is done in such way that
at each time instance the contents of the reservoir represent a true random sample.

However these methods require that the special sampling mechanism is present in the network
devices. Vendors do not want to implement sophisticated sampling schemes that give good results
under certain circumstances. They want to implement simple and robust solutions that are well
described by some form of a standard (i.e. sFlow, NetFlow). Thus special sampling mechanisms
remain currently in the area of academic research and are being tested either offline or with custom
made probes.

Adapting the sampling rate The network devices available on the market usually are capable
only of performing a certain type of sampling. There is no possibility of changing the algorithm and
the user can only adjust the sampling rate. Despite this limitation it is still possible to realize the
closed control loop for adapting the sampling rate to the current network traffic load. The dynamics of
these control mechanisms is much slower than for adaptation within the device – as there is additional
overhead (time to receive data from the device and time to send new settings to the device). It is
possible to perform the control in the tens of seconds scale. Due to slower intervention rate and
more computational power it is possible to employ more complex prediction algorithms than in case
of embedded solutions. Still, the performance is important, as the management machine will likely
manage many devices with multiple ports.

There are various approaches to traffic rate prediction and adaptation which differ vastly both in
accuracy and complexity.
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One of the simplest solutions is the ‘näıve’ prediction, in which one assumes that the predicted
number of packets for the next time interval would be equal to the number of packets for the current
time frame. It requires virtually no calculations, however the accuracy of estimations is lacking. Most
of the prediction methods that have been mentioned in (3.1.2) can also be used in this case. However
access to some internal network device data is not possible (like state of the queues, packet interarrival
rate, real-time resource utilization, etc). The main information that can be used for predicting future
traffic is the previous packet counts and previous packet volume.

The fact that network traffic exhibits self-similarity [2] had raised many disputes on how this in-
formation should be exploited in traffic prediction. [14] compares predictors based on short-term cor-
relations and examines whether including long-range dependence is beneficial. The conclusion is that
primarily the short-term correlations dominate the performance of the predictor. As a consequence
linear prediction with relatively short correlation structure is sufficient for prediction applications.

Another comparison of linear prediction method (based on linear minimum mean square error) with
methods exploiting the long-range dependent characteristics (Fractional Brownian Motion, Fractional
ARIMA1) is described in [13]. Linear predictor provides sufficient accuracy when compared to other
methods.

[41, 42] describe the specific structure of neural networks that is especially suited for handling
time series data. The memory of a recurrent neural network does not have a definitive temporal
limitation [41]. Past inputs are being processed and few characteristics are stored with the aid of
feedback loops. Recurrent neural networks have outperformed other prediction mechanisms in short-
term traffic prediction [41, 42]. However the complexity of such neural networks is very high and the
solution may not scale very well.

The application of adaptive random sampling had been extensively studied in [33, 21]. These
technical reports describe the means of obtaining constant level of error of flow volume estimation.
Linear prediction method based on AR2 model utilizes the information both about the packet count
and volume. Detailed mathematical analysis follows. In addition to that a method for load change
detection is being described.

Packet sampling and self-similarity None of previously mentioned methods take into account
the self-similar nature of the network traffic [23, 24]. For a stationary process with finite mean
and variance both the systematic sampling (3.1.1) and simple random sampling (3.1.2) provide an
unbiased estimate of the real mean. However in case of self-similar process the variance is infinite
and sampled mean approaches the real mean slowly. This is because a small fraction of self-similar
process accounts for the majority of traffic volume. Extremely high sampling rates are required to
capture this influence. [23, 24] proves that static systematic sampling, stratified random sampling and
simple random sampling provide accurate estimates of the Hurst parameter (second order statistics for
self-similar process), yet they all fail to provide estimate of real mean (first order statistics). Authors
modified the systematic sampling method by introducing a bias which allows to capture the extremely
large values more accurately. The new schema outperforms the other mentioned methods in accuracy
of mean estimation while maintaining comparable level of error when estimating the Hurst parameter.

3.2 Packet filtering

Filtering is the deterministic selection of packets based on their content. The packet is selected if its
content matches the specified mask. The selection decision is not biased by the packet position in the
packet stream. This approach requires the packet content inspection, since packets can have different
formats and a fixed length mask can not be applied. For encrypted packets the paper [31] proposes to

1Autoregressive Integrated Moving Average
2Autoregressive
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use the router state [31] to trigger the selection process instead of the packet content. Although filter
based selection decisions are deterministic, they can approximate random sampling. Guang in [43]
gives three factors which should be satisfied for assuring statistical randomicity of sampled packets.
The masking bits should be invariant to ensure the consistency of sample, the sampling ratio should
be independent of packet content and the masking bits should have high randomicity. He analyzed
entropy of IP header bits and found high randomicity of bits in identification field. He can control a
sampling rate by changing the mask length. He in [44] expands his algorithm by multi-mask sampling
model, the threshold sampling model and the modulus sampling model in order to facilitate a control
over sampling parameters in distributed environment. The packet identification field it can be also
used in trajectory sampling. Duffield in [45, 46, 47] provides more details how to reconstruct packet
trajectories.

Instead of a simple mask, hash function can be used to trigger the packet selection. In order to
assure statistical randomicity of sampled packets, the hash function must have good mixing properties.
More detailed discussion about a good choice of hash function as well as security vulnerabilities is
in [31, 19]

3.3 Deep Packet Inspection

Deep Packet Inspection (DPI) is an interesting technology that can become useful for detecting mali-
cious attacks. The most important parts of DPI are regular expression matching and signature based
scanning. In this technique the payload of all the packets is checked against the set of known malicious
signatures at the wire speed. Snort can be considered as a DPI software, but it is not able to cope
with the high-speed traffic. This is mainly due to the limitations of the Von Neumann sequential ar-
chitecture [48] and also due to poor optimization of the regular expressions used for matching [49, 50].

In case of deep packet inspection it is often necessary to match the patterns at every byte offset.
Most likely many signatures will have to be matched against packet payload. Thus the process requires
a substantial number of comparison operations. The sequential processing is not suited to this mode
operation and for this reason custom parallel approaches are being employed.

Publication [51] lists the functionality that a DPI implementation should provide. First, it should
be able to provide at least the pattern index number and the information about the location (some rule
checking software could then perform more detailed analysis). It should also support the grouping of
patterns and a group of patterns should only be tested if the packet belongs to that class. [49] suggests
that a more efficient and accurate DPI system can be built by using the header classifier running in
conjunction with the payload matcher. Header processing is much simpler, as header location within
the packet is predefined. Another important issue is related with worst-case performance which should
remain constant and invariant of the amount of known signatures within the analyzed traffic. The
final requirement is to allow fast, easy and non-interrupting update of the pattern database.

As the sequential architecture is not well suited for realization of the DPI task, the researchers
focused on developing parallel FPGA implementations. Usually one of three algorithms is used for
efficient multi-pattern matching: (1) Bloom Filter algorithm, (2) Aho-Corasick (AC) algorithm [52],
(3) Boyer-Moore Algorithm [53]. By far the most common one is the Bloom Filter [54, 55, 56] and its
extensions. It utilizes multiple hash functions and can yield false positives (but never a false negative).
Computation time involved in performing the query is independent of the number of patterns in the
database. Results obtained both with Bloom Filters and other algorithms [53, 51] are interesting, as it
was possible to obtain pattern matching against numerous rules at the speed of modern Ethernet: [51] –
10Gbps, [53] – 1Gbps, [55] – 2.4Gbps, [52] – 1.6Gbps. The solutions vary in price, but the cost and
power consumption of an FPGA chip is not prohibitively high.
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3.4 Hybrid techniques

Hybrid techniques are realized by combining a few packet selection approaches. For instance, Schöller
in [57] proposes to add packet sampling into the packet filter in NodeOS (an operating system for
Active Network nodes).

Another example is Stratified Random Sampling. In this approach packets are grouped into
subsets according to the given characteristic. Then number of samples are drawn randomly from
each group. Stratified random sampling gives smaller variance of single packet statistics than simple
random sampling if the variance within group is small compared to the variance between groups
[58, 21]. Zseby in [59] shows how stratified sampling beats systematic and random sampling when it is
applied for SLA3 validation. She in [58] also investigates criteria for packet grouping and shows that
with all cases the number of sampled packets can be reduced. Another stratification technique based
on packet count is proposed in [15].

4 Packet sampling applications

Packet sampling serves as a basis for a wide range of network monitoring, management and engineering
tasks. It gives a dynamic insight into network by providing packet headers. This detailed information
can be grouped and used to build different network traffic estimations, statistics, distributions, time
series and aggregates. Examples include distributions of packet counts, packet sizes, packet interarrival
times and protocols, traffic flows. Depending on the application as well as on algorithms used for
further analysis, these metrics can be group together on the basis of different criteria in order to form
some clusters with data significant to detect particular network problems. The accuracy of packet
sampling depends on sampling rate, application and periodicity of measured metric. Periodic events
are more likely to be detected by packet sampling.

There is a lot practical applications where packet sampling plays significant role and can provide
accurate results while reducing the monitoring costs. It can be used for troubleshooting network
problems, like controlling congestion, detection of broken links, misconfigured devices and rouge net-
work servers. Packet sampling helps to verify quality of service in network, this for instance includes
validation of SLA, point-to-point delay measurements, i.e. [60]. Sampling techniques can be used to
meter and bill for network usage and provide users with an itemized breakdown highlighting top users
and applications. Also packet sampling can be used to build trends and forecast bandwidth and other
resources requirements as well as to profile network routes.

All these mentioned applications can profit from packet sampling and still preserve a decent ac-
curacy. However there are domains where packet sampling might introduce some significant errors.
There are a lot of packet sampling applications in the domain of network security and anomaly detec-
tion. Examples include detections of protocol violations, user policy violations, unauthorized access
to an address from a blacklist. For this kind of anomaly sometimes only one packet is enough to raise
the true alarm. For other well know network anomalies, violations and attacks, like DoS attack, P2P
applications, portscans more sophisticated methods are needed in order to provide accurate results.
These advanced methods include for instance a flow analysis. This is a relatively new topic in the
area of anomaly detection and more studies have to be done in order to better understand how packet
sampling can meet the accuracy and not to raise false alarms. In next sections we focus with more
details on flow estimations as well as security applications.

4.1 Traffic flows

The idea of flow is one of the more important concepts in network management and monitoring. There
are numerous definitions of flow, however there is one common denominator for all of them. A flow of

3Service Level Agreement
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traffic is a set of packets sharing some common property (known as the flow key or flow specification)
and having some temporal locality as analyzed within at a given measurement point.

The detailed definition of flow and the selection of the key depends on the further usage of flow data.
Typical examples of flow keys are: source/destination MAC addresses, source/destination IP addresses,
port numbers, protocols type, or combinations of these elements. Many researchers [33, 21, 61, 62, 63]
use 5-tuple flow composed of source/destination IP address, port numbers and protocol type. Flow
record can be thought of as an abstraction describing a set of packets related with a certain activity
on the network. The set of packets included in the flow depends solely on the algorithm for assigning
packets to flows.

Using flow records instead of packet headers yield a considerable compression of information, as
flow is summarized by a fixed size record invariant on the number of underlying packet samples. The
obvious trade-off is loss of the details contained within the packets and interpacket relationships.

Many packet sampling methods do not preserve the characteristic features of traffic flows [6, 64].
It is easy to miss the short flow (many flows can be only few packets long). It might be difficult
to estimate the length of the flow (due to the fact, that only few packets belonging to the flow are
sampled). Flows may be mis-ranked (smaller flow may appear larger in the sampled statistics) and
large flows may be split into smaller ones. Näıve approach can thus yield considerable errors. Section
4.2 describes some methods for better flow estimates.

4.2 Identification of mice and elephant flows

Flow statistics, similarly as the network traffic itself, exhibit strong heavy-tailed behavior in various
networks [65]. Many observations show that small percentage of flows accounts for a large percentage
of the traffic. For many traffic measurements, detecting and measuring these large flows (‘elephants’)
is an important element. Examples include active queue management [66], billing schemes [67], QoS
mechanisms [68], decisions about network upgrades and peering [69]. If flows are built from traffic
sampled at the packet level, the detection accuracy is strongly dependent on the sampling rate. Bakarat
in [70] shows that for some scenarios (i.e., the top 10 flows) a sampling rate higher than 10% is required.
However if one is only interested in an unsorted list of the largest flows, sampling requirements decrease
by an order of magnitude.

Many researchers have addressed these problems and in this subsection we present a short summary
of various approaches.

Estan in [65] proposes sample-and-hold sampling and multistage filters. The idea is to sample each
packet with a certain probability. If a sampled packet and its flow has no entry in the flow memory,
a new entry is being created. However, after an entry is created for a flow, the flow entry is updated
for every subsequent packet belonging to the flow, as in the approach used in [71]. This sampling
method involves processing of each packet arrival. Manku in [72] uses a similar approach – sticky
sampling, however the packet sampling probability is being changed during the measurement period.
[64] analyzes several methods of sample-and-hold sampling and its influence on flow inversion.

Duffield in [67] proposes size-dependent sampling. He defines a size threshold. Flows of byte
size greater than the threshold are sampled with probability 1 and the others are sample with the
probability proportional to their size. He develops this sampling theory in [73, 38, 74, 39] using
NetFlow records.

Mori in [75] on the basis of Bayes theorem develops techniques and schemes to identify elephant
flows in periodically sampled packets. The key is to find the threshold of per-flow packets in sampled
packets which can reliably indicate whether or not a flow is actually an elephant flow in unsampled
packets. The prior knowledge of distribution of flow size is required in order to calculate this threshold.
He proposes three possible approaches to obtain the threshold. Using the power-law characteristic of
Internet traffic he concludes that the threshold obtained for one network can be used as an approxi-
mation for other networks as long as their flow statistics also exhibit heavy-tail characteristics.
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Kodialam in [76] proposes a novel approach based on sampling two-runs to estimate per-flow traffic.
A flow has a two-run when two back-to-back samples belong to the same flow. Two-run detecting
registers contains the flow id of the last sample and this id is compared against next incoming packets.
This scheme automatically biases the samples towards the larger flows, because they have a larger
chance of forming two-run. This makes the estimation of large flows more accurate.

In many traffic engineering applications researchers focus on minimizing the number of needed
samples for the estimates. This is can be achieved by smart sampling [38] or proper selection of
network devices that performs the sampling [77]. This approach might be well suited for traffic
monitoring, however it does not seem appropriate for intrusion and anomaly detection.

4.3 Packet sampling for security

Network anomalies such as failures, attacks, worms, port scans, etc are common in today’s computer
network. These threats cause perturbations of the normal network behavior. Tracking down the
sudden and unexpected (abrupt) changes [78] of network traffic is crucial to the network reliability.
Detection techniques rely on the analysis of network traffic and the characterization of the dynamic
statistical properties of traffic ‘normality’. So far, packet sampling techniques have been mainly used
for network traffic accounting and billing. Many researches addressed this problem and they proved
that the desired accuracy of various traffic estimations can be achieved using only partial traffic data.
These results could be useful for techniques which use only estimated thresholds to detect anomalies.

There is a wide range of common network anomalies that only require a single sample in order to
provide 100% accuracy of detection [79], for instance protocol violations, a connection to an IP address
from a blacklist, NAT devices [80]. If a single packet sample contains a signature that identifies one
of these anomalies, then it is likely that the packet was crafted with malicious intent. A single packet
can be also sufficient for host and operating system identification [80]. The passive OS fingerprinting
tool (p0f) is widely used both for such identification and masquerade detection [81].

There are network anomalies which cannot be detected by observing only a single sample. An
example is an anomaly which misuses protocol for purposes which were not meant for the protocol.
This requires more advance techniques than a simple signature check. For instance DNS protocol can
also transport user traffic which has nothing to do with a DNS service [82]. In order to detect these
anomalies, one has to perform statistical anomaly detection on the network. We need more samples
in order to estimate a threshold between normal and abnormal packets. In order to keep a reasonably
accuracy of these thresholds, we need a minimum number of these samples [32]. Packets which exceed
the threshold could be considered as an evidence of anomaly. For instance, a DNS tunnel could be
detected by observing that the total amount of data transferred over port 53 is much higher than
usual. More advanced detection method tries to detect a significant difference in the format entropy
of these tunnel lookups as compared to the regular ones. Another example where thresholds can be
used is detection of anomaly where one host communicates with an unusual number of destinations
in a specified time window. It is important to determine proper ‘normal’ profile for different types of
hosts (user machine, printer, file server, application server, etc).

Other network anomalies to be detected require more sophisticated analysis based on the observa-
tions of time series of network parameters, traffic patterns, trends and flows. When the network traffic
data is sampled the detection of anomalies becomes more complex. An impact of packet sampling
on more complex anomaly detection processes has not been studied that intensively as compared to
statistical estimation of traffic parameters. Those packet sampling techniques that were succeed in
the traffic accounting and billing might not be necessarily appropriate choices for the accurate and
effective anomaly detection. We present below our findings in this domain.

Androulidakis in [83] investigates the impact of various packet sampling techniques on two anomaly
detection techniques – a sequential non-parametric-change-point detection method(CPD) [84, 85] and
an algorithm based on Principal Component Analysis (PCA) [86]. He uses different metrics under
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different traffic and measurement sampling methodologies. A distributed Denial of Service attack
(TCP SYN attack) against a single host campus is studied in details. For CPD the difference between
SYN and FIN packets is observed as well as the ratio of new source IP addresses over the frequent
source IP addresses that are observed in a specific time bin. For PCA-based approach he used seven
metrics, as follows: number of flows, packets, TCP flows, TCP packets, short flows (with a small
number of packets), SYN packets, and FIN packets. The impact of systematic, random n-out-of-N
and uniform probabilistic sampling on the anomaly detection techniques is evaluated. Results revealed
that systematic sampling does not perform well under low sampling rates when the detection of the
attack depends on certain packet characteristics (e.g. TCP flags). The experimental results of the
PCA-based method show, that the efficiency of the method is independent of the sampling method
used and relies only on the sampling rate, for both packet-based and flow-based metrics.

Mai in [87] presents the impact of flow sampling techniques: random packet sampling (the sampled
traffic is classified into flows), random flow sampling, smart sampling, and sample-and-hold on the
volume anomaly detection and the port scan detection. He focuses on a discrete wavelet transform
(DWT) based detection procedure [88] used against DoS attacks. Threshold Random Walk [89] and
Time Access Pattern Scheme (TAPS) [90] is evaluated against portscan. Both packet and the flow-
based sampling schemes degrade volume anomaly and portscan detection. However random flow
sampling turns out to perform better for all detection methods. It is neither biased towards particular
flow sizes (like sample-and-hold and smart sampling), nor does it cause flow size degradation like packet
sampling. Smart sampling and sample-and-hold are designed for accurate estimation of heavy-hitters
with reduced complexity. They are not meant for anomaly detection and not suitable for the job either.
Both methods degrade volume anomaly and portscan detection dramatically since many attacks of
both classes usually comprise of small-sized flows, which are ignored by these biased sampling methods.
Random packet sampling used to build up flows causes significant deterioration in performance of both
the volume anomaly and portscan detection algorithms. On the other hand, techniques such as TAPS
that exploits access pattern of scanners, e.g., spread of destination IP addresses or ports are more
robust with respect to sampling [91]

Kawahara in [92] also shows that packet sampling degrades detection of network anomalies. For
example, portscan and SYN Flooding generates a number of small flows consisting of single packets.
Such flows are more unlikely to be sampled than normal flow. As a solution to this problem, he
shows that we can increase the detectability of such anomalies by spatially partitioning the monitored
traffic into groups and analyzing the traffic of individual groups. He partitions the traffic into groups
according to the source IP addresses of individual flows composing the traffic. This approach is
also presented in [93] where Ishibashi divides network traffic according to hashed IP addresses and
protocols.

Performance of the anomaly detection can be improved by using the appropriate metrics, such as
entropy-based summary [94, 95]. This works well for the worm detection [96], unfortunately not for
the portscan detection [91]. Worms expose periodic behavior and packets belonging to them are more
likely to be sampled than packets from a single portscan.

Zhao in [97] shows that packet sampling can improve the efficiency of data collection and strengthen
the processing performance of IDS for high-speed networks. Simple random sampling and stratified
sampling is compared. He uses content depend sampling and compares the certain bits of IP header
of every packet. The stratification scheme design is based on the packet type. Results show that
stratified sampling performs better and gives higher detection rate.

Lakhina in [98] and [99] builds traffic flows from random sampled packets and then aggregates
them at the Origin-Destination (OD) level. It applies the subspace method [99] to multivariate time
series of OD traffic defined as number of bytes, packets and IP-level flows. He shows that each of these
time series reveals a different class of anomalies. The anomalies span a remarkably wide spectrum
of event types, including denial of service attacks (single-source and distributed), flash crowds, port
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scanning, downstream traffic engineering, high-rate flows, worm propagation, and network outage.
Huang in [100] developed a packet sampling and filtering mechanism as a countermeasure against

flooding DoS attacks. It is integrated into the router congestion control mechanism. If the packet is
dropped, then the packet is sampled, its header is extracted and forwarded to the anomaly detection
system for further processing based on different thresholds. Also in [101] information about dropped
packets is used to trigger an action against suspicious flows. A rate limit is applied against high
bandwidth aggregates.

5 Conclusions

5.1 Adaptive sampling

Packet sampling has been available for many years. It has been successfully used in many applications,
like accounting, billing, SLA, etc. with acceptable accuracy.

However, in order to preserve the accuracy and provide accurate estimations, the sampling tech-
nique should adapt to network state and traffic. We consider adaptive sampling as an interesting
approach. It could help to build accurate time series of different parameters and improve the accuracy
of classification of traffic into flows, groups, etc.

There are other reasons for using adaptive sampling. Network devices have certain limits in terms of
resources available for sampling. Some network devices might even stop sampling during traffic bursts.
So, the sampling mechanism should be dynamic in order not to lose any important information during
these busy periods as well as to get enough information during idle states.

Unfortunately we do not have that many possibilities to change sampling techniques applied in
network equipment. However we can change sampling rate, which means that we can control the
accuracy by controlling the number of samples received in the defined time period. This decision has
to be taken in advance, before network traffic will change. Fortunately, various prediction techniques
could help to predict network traffic.

We would like to investigate some prediction techniques and their applications in adaptive sam-
pling. This study will also apply to our network data collector. On one hand we do not want to
increase control traffic between the collector and network devices, on the other hand we do not want
to delegate the sampling-rate adaptation to these devices and overload them. The two-level adap-
tation could be a good compromise. For a short interval, the adaptation could be performed by a
network device on the basis of the parameters provided and calculated by the collector over the longer
time period. This would not increase significantly control traffic, however this approach requires some
changes in devices.

5.2 Sampled statistics

As it was pointed out in previous sections, packet sampling may skew various estimates of network
traffic properties. This is particularly visible in case of flow building (4.1) and estimating the first
order statistics for the traffic (3.1.2).

We would like to conduct several offline experiments on dumps originating both from CERN
site, public repositories and ns2 generator. In these experiments we would like to compare how the
sampling method utilized in sFlow compares to other methods when it comes to estimating different
traffic parameters. Furthermore we want to see how the sampling influences direct anomaly detection
techniques by comparing the output from IDS (like Snort) when fed with full traffic dump and sampled
headers respectively.

The goal of these tests is to determine weak and strong points of sFlow sampling. It would also help
us to asses whether direct anomaly detection techniques are of any use when working with sampled
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packet headers. In addition to that we would like to identify the aggregates which could be useful
input for various data mining techniques.
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