
Cite as follows: Bertrand Meyer,Attached Types and
their Application to Three Open Problems of Object-
Oriented Programming, in ECOOP 2005, Springer
Attached types
and their application to three open problems

of object-oriented programming

Bertrand Meyer
ETH Zurich and Eiffel Software

se.inf.ethz.ch www.eiffel.com

Verlag, July 2005, pages 1-32, to appear.
to

ith the
, but

once,
f the
nd
rable
worth
tation
good

next
the
Abstract

The three problems of the title — the first two widely discussed in the literature, the third less well known
but just as important for further development of object technology — are:

• Eradicating the risk ofvoid calls: x.f with, at run time, the targetx not denoting any object,
leading to an exception and usually a crash.

• Eradicating the risk of “catcalls”: erroneous run-time situations, almost inevitably leading
crashes, resulting from the use of covariant argument typing.

• Providing a simple way, in concurrent object-oriented programming, tolock an object handled
by a remote processor or thread of control, or to access itwithout locking it, as needed by the
context and in a safe way.

A language mechanism provides a combined solution to all three issues.

This mechanism also allows new solutions to two known problems: how to check that a certain object has
a certain type, and then use it accordingly (“Run-Time Type Identification” or “downcasting”), for which
it may provide a small improvement over previously proposed techniques; and how to provide a “once per
object” facility, permitting just-in-time evaluation of certain object properties.

The solution relies on a small extension to the type system involving a single symbol, the question mark.
The idea is to declare certain types as “attached” (not permitting void values), enforce some new validity
rules that rule out void calls, and validate a number of common programming schemes as “Certified
Attachment Patterns” guaranteed to rule out void calls. (In addition, the design replaced an existing type-
querying construct by a simpler one.)

The mechanism is completely static: all checks can be performed by compilers as part of normal type
system enforcement. It places no undue burden on these compilers — in particular, does not require
dataflow analysis — and can be fairly quickly explained to programmers. Existing code, if reasonably
well-written, will usually continue to work without change; for exceptions to this rule, often reflecting real
risks of run-time crashes, backward-compatible options and a clear transition path are available.

The result is part of the draft ECMA (future ISO) standard for Eiffel.

There is one and only one kind of acceptable language extension: the one that dawns on you w
sudden self-evidence of morning mist. It must provide a complete solution to a real problem
usually that is not enough: almost all good extensions solve several potential problems at
through a simple addition. It must be simple, elegant, explainable to any competent user o
language in a minute or two. (If it takes three, forget it.) It must fit perfectly within the spirit a
letter of the rest of the language. It must not have any dark sides or raise any unanswe
questions. And because software engineering is engineering, and unimplemented ideas are
little more than the whiteboard marker with serves to sketch them, you must see the implemen
technique. The implementors' group in the corner of the room is grumbling, of course — how
would a nongrumbling implementor be? — but you and they see that they can do it.

When this happens, then there is only one thing to do: go home and forget about it all until the
morning. For in most cases it will be a false alarm. If it still looks good after a whole night, then
current month may not altogether have been lost.

From “Notes on Language Design and Evolution” in[6].

http://se.inf.ethz.ch
http://www.eiffel.com

f the
ts on a
g for

ted
it

ource
ol (the

ose. It
nique
ing;

teeing
ersion

a non-

AP is
that

will

g
nment
es only
t void.

that

We

pplies,
ruct
en to
1 Overview

The design of a programming language is largely, if the designer cares at all about reliability o
resulting programs, the design of a type system. Object-oriented programming as a whole res
certain view of typing, the theory of abstract data types; this makes it natural, when searchin
solutions to remaining open problems, to turn for help to typing mechanisms.

One such problem isvoid-safety: how to guarantee that in the fundamental object-orien
operation, a feature callx.f (args), the targetx will always, at execution time, denote an object. If
does not — becausex is “void” — an exception will occur, often leading to a crash.

This article shows that by fine-tuning the type system we may remove this last significant s
of run-time errors in object-oriented programs. The basic language extension is just one symb
question mark).

As language extensions should, the mechanism yields other benefits beyond its initial purp
provides a solution to the “catcall” issue arising from covariant argument redefinition; a better tech
of run-time object type identification; a flexible approach to object locking in concurrent programm
and a simple way to perform lazy computation of attributes (“once per object”).

1.1 Mechanism summary

Here is a capsule description of the mechanism:

• A call x.f (args) is only valid (as enforced statically) if its targetx is attached.

• The simplest way for a variable to be attached is to be declared of an “attached type”, guaran
that no value can be void. Types are indeed attached by default. To get the “detachable” v
of a typeT (permitting void values) use? T.

• For variables of a detachable type, some simple and common program schemes guarantee
void value. For example, immediately aftercreate x... or the testif x /= Void then ... , x is not
void. The mechanism uses a small catalog of such “Certified Attachment Patterns” or CAPs, easy
for programmers to understand and for compilers to implement. A variable used in such a C
attached (again, statically), even if its type is not. CAPs are particularly important in ensuring
reasonably-written existing software will run unmodified. Initial evaluation suggests that this
be the case with the vast majority of current code.

• Outside of these patterns, a call of targetx requiresx to be of an attached type. The remainin
problem is to guarantee that such a variable will never be void. The basic rule concerns assig
and argument passing: if the target is attached, the source must be attached too. This leav
the question of initialization: how to ensure that any attached variable is, on first access, no

• Some types guarantee non-void initialization by providing a default initialization procedure
will produce an object. We call them “self-initializing types”.

• A variable that is not of such a type may provide its own specific initialization mechanism.
call it a “self-initializing variable”.

• Generic classes can use a question mark to specify a self-initializing type parameter.

• This leaves only the case of a variable that could be accessed while void (because no CAP a
the type is not self-initializing, and neither is the variable itself). The “Object Test” const
makes it possible to find out if the variable is attached to an object of a specific type, and th
use it safely.

texts

outine

ys in
g static
nly

tly
ta

sh.
cles

tached

type
check,
est”
l

locally
t
r
of
t
est, the

names
of
e them
ch
the

ion
rges
1.2 The void safety issue

The basic idea of typed object-oriented languages is to ensure, thanks to validity rules on program
enforced statically (at compile-time), that the typical object-oriented operation,x.f (args), known as a
“qualified call”, will never findx attached to an object not equipped to execute the operationf. The
validity rules essentially require the programmer to declare every variable, routine argument, r
result and other entity with an explicit type (based on a class, which must include the appropriatef with
the appropriate arguments), and to restrict polymorphic assignmentsx := y, as well as actual-to-formal
argument associations, to those in which the type ofy conforms to the type ofx; conformance is
governed by inheritance between classes, so that iff is available for the type ofy it will also be available,
with a compatible signature, for the type ofx.

This technique, pioneered by Eiffel and Trellis-Owl and since implemented in various wa
typed O-O languages, eliminates many potential run-time errors, and has succeeded in establishin
typing firmly. But — notice the double negation in the above phrasing of the “basic idea” — it o
works if the target entity,x, is attached to an object at the time of execution. Rather than direc
denoting an object,x is often areferenceto a potential object; to support the description of flexible da
structures, programming languages generally permit a reference to bevoid, or “null”, that is to say
attached to no object. Ifx is void at the time of the call, an exception will result, often leading to a cra

The initial goal for the work reported here was once and for all to remove this sword of Damo
hanging over the execution of even a fully type-checked program.

1.3 General description

The basis of the solution is to extend the type system by defining every type as “attached” or
“detachable”, where an attached type guarantees that the corresponding values are never void. At
is the default. A qualified call,x.f (args), is now validonly if the type ofx is attached. Another new
validity rule now allows us to assign (or perform argument passing) from the attached version of a
to the detachable version, but not the other way around without a check of non-voidness. Such a
applied to an expressionexp of a detachable type, is a new kind of boolean expression: an “Object T
of the form{x: T} exp, whereT is the desired attached type andx is a fresh variable. In the Conditiona
instruction

if the Object Test evaluates to true, meaning thatexp is indeed attached to an object of typeT, x is bound
to that value ofexp over the “scope” of the Object Test, here the wholethen clause. Calls of targetx
are then guaranteed to apply to a non-void target over that scope. It is necessary to use such a
bound variable, rather than directly working onexp, because ifexp is a complex expression or even jus
an attribute of the class many kinds of operation occurring within thethen clause, such as calls to othe
routines of the class, could perform assignments that makeexp void a gain and hence hang the sword
Damocles back up again. The variablex is a “read-only”, like a formal routine argument in Eiffel: i
cannot figure as the target of an assignment, and hence will keep, over the scope of the Object T
original value ofexp, guaranteed to be non-void.

The Object Test resembles mechanisms found in typed object-oriented languages under
such as “Run-Time Type Identification”, “type narrowing”, “downcasting”, and the “with” instruction
Oberon; it addresses their common goal in a compact and general form and is intended to subsum
all. In particular, it replaces Eiffel’s original “Assignment Attempt” instruction, one of the first su
mechanisms, writtenx ?= exp with (in the absence of a specific provision for attached types)
semantics of assigningexp to x if exp happens to be attached to an object of the same type asx or
conforming, and makingx void otherwise. An assignment attempt is typically followed by an instruct
that testsx againstVoid. The Object Test, thanks to its bound variable and its notion of scope, me
the assignment and the test.

if {x: T} exp then /1/
... Instructions, in particular calls of the form x.f (args) ...

end

Call
indeed
othing
ly after

as
certainly
t

e, will
can be
easily

that the
t should

idely

ten
nger

ence
 text.

ise of

cular
(an

e that

lass
g
ries;

s, one
zation
rter to
matic
r
s that

uage.
must

ation
o not
ey get

. The

ch
design
tter, do
Relying on the Object Test instruction alone would yield a complete solution of the Void
Eradication problem, but would cause considerable changes to existing code. Sometimes it is
necessary to add an Object Test for safety, but in a huge number of practical cases it would do n
but obscure the program text, as the context guarantees a non-void value. For example, immediate
a creation instructioncreate Result. .., we know thatResult , even if declared of a detachable type, h
an attached value and hence can be used as the result of a function itself declared attached. We
do not want in such a case to be forced to protectResult through an Object Test, which would be jus
noise. An important part of the mechanism is the notion ofCertified Attachment Patterns: a catalog of
program schemes officially guaranteeing that a certain variable, even if declared of an attached typ
in certain contexts always have a certifiably attached value. The catalog is limited to cases that
safely and universally guaranteed correct, both easily explainable to programmers and
implementable by compilers; these cases cover a vast number of practical situations, ensuring
Object Test, however fundamental to the soundness of the approach as a whole, remains — as i
be — a specialized technique to be used only rarely.

An immediate consequence of these techniques will be to remove preconditions, occurring w
in libraries of reusable classes as well as in production applications, of the formrequire x / = Void for
a routine argumentx (sometimes for an attribute as well). Informal surveys shows that in well-writ
Eiffel code up to 80% of routines contain such a precondition. With the new type system, it is no lo
necessary if we declarex of an attached type. Going from preconditions to a static declaration, and h
a compile-time check, is a great boost to reliability and a significant simplification of the program

To go from these basic ideas to a full-fledged language mechanism that delivers on the prom
total, statically-enforced Void Call Eradication, the solution must address some delicate issues:

• In a language framework guaranteeing for reliability and security that all variables, in parti
object fields, local variables of routines and results of functions, are automatically initialized
idea also pioneered by Eiffel and widely adopted by recent languages), how to ensur
variables declared of an attached type are indeed initialized to attached values.

• How to handle attached type in the context of genericity. For example, the Eiffel library c
ARRAY [G] is generic, describing arrays of an arbitrary typeG. Sometimes the correspondin
actual parameter will be attached, requiring — or not! — automatic initialization of array ent
sometimes it will be detachable, requiring automatic initialization of all entries toVoid. It would
be really unpleasant, for this and all other container classes, to have to provide two version
for detachable types and one for attached types, or even three depending on initiali
requirements for attached types. The solution to this issue is remarkably simple (much sho
explain than the details of the issue itself): if a generic class needs to rely on auto
initialization of variables of the formal generic type (hereG), make this part of the declaration fo
the parameter, requiring clients to provide an initialization mechanism for actual parameter
are attached types.

• How to make the whole mechanism as invisible as possible to programmers using the lang
We must not force them to use any complicated scheme to attain ordinary results; and we
guarantee an “effect of least surprise”. In other words they should be able to write their applic
classes in a simple and intuitive way, the way they have always done, even if they d
understand all the subtleties of attachment, and it is then our responsibility to ensure that th
safely operating programs and the semantics corresponding to their intuition.

• How to ensure that the resulting type system achieves its goal of total Void Call Eradication
authors of Spec#, a previous design which influenced this work, write that they expect “fewer
unexpected non-null reference exceptions” [3]. We are more ambitious and expect to remove su
exceptions entirely and forever. Here it must be mentioned that although we believe that the
described here reaches this goal we have not provided a mathematical proof or, for that ma
not yet have a formal framework in which to present such a proof.

how
antage
eavy
kward
any

idely
gy:

ed in
orting
alls”,
to the
are
ject
iant
tual
case
e.

as led
nt
call

ent
fits of
that
he
f the
should
ine a
cide
mpiler
e may
pecific
ing a

ent, or
ce with
its

Object
onding
fect of
e and
• In the case of Eiffel, a well-established language with millions of lines of production code,
to provide a smooth transition to the new framework. The designers of Spec# have the adv
of working on a new research language; Eiffel has commercial implementations with h
customer investment in business-critical applications, and we must guarantee either bac
compatibility or a clear migration path. This alone is a make-or-break requirement for
proposed Eiffel solution.

Our solutions to these issues will be described below.

In finalizing the mechanism we realized that it helps with two other pending issues, one w
discussed and the other more esoteric at first sight but important for the future of object technolo

• A covariant type system (where both arguments and results of functions can be redefin
descendant classes to types conforming to their originals) raises, in a framework supp
polymorphism and dynamic binding, the specter of run-time type mismatches, or “catc
another source of crashes. We suggest the following solution to remove this other threat
reliability of our software: permit covariant redefinition of an argument (covariant result types
not a problem)only if the new type is detachable. Then the new version must perform an Ob
Test, and no catcall will result. This is a way of allowing the programmer to perform covar
redefinition but forcing him to recognize that polymorphism may yield at run time an ac
argument of the old type, and to deal with that situation explicitly. The rule also applies to the
of “anchored types”, which is a form of implicit covariance, and appears to resolve the issu

• An analysis of what it takes to bringconcurrent programmingto the level of quality and trust
achieved by sequential programming, and bring it up to a comparable level of abstraction, h
to the development of the SCOOP mechanism[11] based on the transposition to a concurre
context of the basic ideas of Design by Contract. One of the conclusions is to allow a
x.f (args) to use a targetx representing a “separate” object — an object handled by a differ
processor — and hence to support asynchronous handling, one of the principal bene
concurrency,only if x is one of the formal arguments of the enclosing routine. Then a call to
routine, using as actual argument forx a reference to such a separate object, will block until t
object becomes available, and then will place an exclusive hold on it for the duration o
routine’s execution. But it turns out that, conversely, a call using a separate actual argument
not always reserve the object; for example we might only want to pass to another rout
reference to that object, without performing any call on it. It would not be appropriate to de
on the basis of the routine’s code whether object reservation is needed or not, as a kind of co
optimization: clients should not have to know that code, and in any case the body of a routin
be redefined along the inheritance hierarchy, so that the language would not guarantee a s
semantics for a routine under polymorphism. Instead, the rules will now specify that pass
separate object as actual argument causes the call to place a reservation on the objectif and only
if the corresponding formal argument is declared of anattachedtype. If not, the routine can assign
the argument to another variable, or pass it on to another routine; the target of the assignm
the corresponding formal argument, must themselves be of an unattached type in accordan
the basic rule stated above. To perform acall using such an argument as target, one must check
attachment status, relying as usual on an Object Test; the final new semantic rule is that an
Test on a separate expression will (like its use as actual argument to a routine with a corresp
attached formal) cause reservation of the object. So a simple convention to define the ef
combining two type annotations, “separate” and “attached”, appears to provide the flexibl
general solution sought.

s were
cation:
h Eiffel
at will
eld in

several
base.
hen the

asure
neral
Spec#

as

mpt to
d-
and

iffel
rk
osed,
call
zault.
ndard

the
Piotr
avid

kind

ol: it

ent
hed to
In passing, we will see that the mechanism additionally addresses two problems for which solution
available before, but perhaps addresses them better. One of the problem is Run-Time Type Identifi
the Object Test construct provides a simple and general approach to this issue. The other, for whic
already provided a specific mechanism, is “once per object”: how to equip a class with a feature th
be computed only once for a given object, and only if needed at execution time. For example a fi
objects representing the stock of a company might denote the price history of the share over
years. If needed, this field, pointing to a large list of values, will have to be initialized from a data
If only because of the time and space cost, we want to retrieve these values only if needed, and t
first time it is needed.

The following sections detail the mechanism and these applications.

2 Previous work, context and acknowledgments

The “non-null types” of Spec# are the obvious inspiration for the design presented here. It is a ple
to acknowledge the influence of that work. Our goal has been to try for a simpler and more ge
mechanism. The reader who would like to compare the two designs should note that references to
in this article are based on 2003-2004 publications[3] [1] and check more recent work since Spec# h
been progressing rapidly.

Other work addressing some of the same issues has included the Self language’s atte
eliminate Void values altogether[2] and my own earlier (too complicated) attempt to provide voi
avoidance analysis[10]. I also benefited from early exposure to the type system work of Erik Meijer
Wolfram Schulte[5].

The design reported here resulted from the work of the ECMA standardization effort for E
(ECMA TC39-TG4), intended to yield an ISO standard[4]. The basic ideas are due to Éric Bezault, Ma
Howard, Emmanuel Stapf (TG4 convener and secretary) and Kim Waldén. Mark Howard first prop
I believe, the idea of replacing Eiffel’s Assignment Attempt by a construct also addressing void
eradication. The actual design of that construct, the Object Test, is due to Karine Arnout and Éric Be
This article largely reports on the ideas developed by this group of people. As the editor of the sta
I bear responsibility for any remaining mistakes in the mechanism and of course in this article.

Numerous discussions with Peter Müller from ETH have been particularly fruitful in shaping
ideas. The application of the mechanism to SCOOP (the last problem) is part of joint work with
Nienaltowski of ETH. Also helpful have been comments on the Eiffel draft standard from D
Hollenberg and Paul-Georges Crismer.

In addition I am grateful to Andrew Black and Richard van de Stadt for their tolerance and
assistance (extending beyond the normal duties of editors) in getting this article to press.

3 Syntax extension

In Eiffel’s spirit of simplicity the advances reported here essentially rely on one single-letter symb
is now permitted to prefix a type by a question mark, as in

instead of the usualx: T. (The other syntactical novelty, Object Test, is not an addition but a replacem
for the previous Assignment Attempt mechanism.) The question mark turns the type from attac
detachable. It is also possible to prefix a formal generic parameter with a question mark, as in

with semantics explained in section7.

x: ? T

class ARRAY [? G] ...

lues

authors

ask
lues
tem in

e about
.
text,
rsions
of that

y the
an
ntage

use

n the

ation
f
tics

rm of

well
e

chable
xcept a

d call:

ghtly
The standards committee decided that in the absence of a question marktypes are attached by
default and hence do not supportVoid as a possible value. This is based on the analysis that void va
are of interest to authors of fundamental data structure libraries such as EiffelBase[7], which include
classes representing linked data structures such as void-terminated linked lists, but much less to
of application programs; classesCOMPANY_STOCK in a financial application orLANDING_
ROUTE in an aeronautic application are unlikely to require support for void values. So we
professional library developers working on the basic “plumbing” to specify the possibility of void va
when they need it, by using detachable types for example in the declaration of the neighboring i
classLINKABLE [G] describing linked list items:

but leave application programmers in peace when, as should usually be the case, they don’t car
void values and, more importantly, don’t want to worry about the resulting possibility of void calls

This choice of default semantics raises a backward compatibility problem in the con
mentioned above, of preserving the huge commercial investment of Eiffel users; in the previous ve
of the language, reference types support void by default, and some programs take advantage
convention. To address this issue, we provide the symbol! as a transition facility.! T means the attached
version of typeT. In standard Eiffel this will mean the same asT, so the exclamation mark symbol is
redundant. But offering an explicit symbol enables compilers to provide a migration option whereb
default semantics is reversed (T means? T), compatible with the previous convention. Programmers c
then continue to use their existing classes with their original semantics, while starting to take adva
of void-call avoidance guarantees by declaring attached types with the explicit!. In the final state, the
need for! will go away. In the rest of this article we stick with the Standard option: we don’t need to
! at all, with the understanding thatT means! T.

The? and! symbols are inspired by the conventions of Spec#. There has been criticism o
part of some Eiffel users that these are cryptic symbols (“it looks like C++!”) not in the Eiffel style; the
symbol ! in particular has bad karma since it was part of a short-lived syntax variant for the cre
instruction now written in the normal Eiffel style ascreate x. Although the symbols have the benefit o
brevity, they might similarly go away in favor of keywords, not affecting the validity rules, seman
and discussion of the present article.

To understand the rest of that discussion, note that Eiffel has two kinds of type:referencetypes,
the default, whose values are reference to objects (or void in the case of detachable types); andexpanded
types, equipped with copy semantics. (The “value” types of C# are a slightly more restricted fo
expanded types.) A type is expanded if it is based on a class declared asexpanded class C ... rather
than justclass C ... Expanded types serve in particular to represent subobject fields of objects, as
as to model the basic types such asINTEGER andREAL, enabling Eiffel to have a consistent typ
system entirely based on the notion of class. Obviously expanded types do not supportVoid as one of
their possible values. In the rest of this discussion the term “attached type” covers both non-deta
reference types (the most common case) and expanded types; that is to say, every type e
(reference) detachable type declared explicitly as? T.

4 Constraints on calls and attachment

The fundamental new constraint ensuring avoidance of void calls restricts the target of a qualifie

An expressiona is said to be attached, in the usual case, if its type is attached. This notion will be sli
generalized below.

right: ? LINKABLE [G]

Target Validity rule
A qualified calla.f or a.f (args) is valid only if the target expressiona
is attached.

rightitem
(LINKABLE)

iffel
traints
other

just

n the
not a
style

guage
 rules.

p to
t this

term

as
based

add

lass,
ble. The

here
. There
his

e in

the
A general note on the style of language description: “validity rules” in the specification of E
[6] [4] [12] stand between syntax and semantics; they supplement the syntax by placing cons
(sometimes known as “static semantics”) on acceptable language elements. Unlike in many
language descriptions, Eiffel’s validity rules are always phrased in “if and only if” style: they don’t
list individual permitted and prohibited cases, but give an exhaustive list of the necessaryand sufficient
conditions for a construct specimen to be valid, thus reinforcing programmer’s confidence i
language. This property obviously does not apply to the rules as given in this article, since it is
complete language description. The Target Validity rule, for example, appears above in “only if”
since it supplements other clauses on valid calls (such asa being of a type that has a featuref with the
appropriate arguments, exported to the given client). The rules respect the spirit of the lan
definition, however, by essentially specifying all the supplementary clauses added to the existing

The Target Validity rule will clearly ensure eradication of void calls if attached types live u
their name by not permitting void values at run time; the discussion will now focus on how to mee
requirement.

The other principal new constraint on an existing construct governs attachment. The
“attachment”, for sourcey and targetx, covers two operations: the assignmentx := y, and argument
passingf (..., y, ...) ora.f (..., y, ...) where the corresponding formal argument inf isx. The basic existing
rule on attachment isconformanceor convertibility of the source to the target; conformance,
mentioned, is based on inheritance (with provision for generic parameters), and convertibility is
on the Eiffel mechanism, generalizing ordinary conversions between basic types such asINTEGER and
REAL, and allowing programmers to specify conversions as part of a class definition. Now we
a condition:

This rule is trivially satisfied for expanded types (the only type that conforms to an expanded typeET is
ET itself) but new for attached reference types.

A companion rule lets us, in the redefinition of a feature in a descendant of the original c
change a result type from detachable to attached, and an argument type from attached to detacha
rationale is the same, understood in the context of polymorphism and dynamic binding.

This rule narrows down the risk of void call by guaranteeing that if a void value arises somew
it will not be transmitted, through assignment or argument passing, to variables of attached types
remains to guarantee that the valuesinitially set for targets of attached type can never be void. T
sometimes delicate initialization issue will indeed occupy most of the remaining discussion.

5 Initialization

5.1 Variables and entities

Initialization affects not just variables but the more general notion of “entity”. An entity is any nam
the program that represents possible values at run time. This covers:

• Variables: local variables of routines, attributes of classes (each representing a field in
corresponding instances).

• “Read-only” entities: manifest constants, as in the declarationPi: REAL = 3.141592, formal
arguments of routines,Current representing the current objects (similar to this or self).

Attachment Consistency rule
An attachment of sourcey and targetx, where the type ofx is attached, is
permitted only if the type ofy is also attached.

ce

of the
at call.

class,

n
ction
this

kind
ariable
ould

risk.

well-

r

utine
tion

r the

,

-

A variablex can be the target of an assignment, as inx := y. Read-only entities can’t, as they are set on
and for all. More precisely: a constant has a fixed value for the duration of the program;Current is set
by the execution (for the duration of a callx.f, the new current object will be the object attached tox, as
evaluated relative to the previous current object); formal arguments are attached to the value
corresponding actuals at the time of each call, and cannot be changed during the execution of th

Local variablesinclude a special case, the predefined localResult denoting the result to be
returned by a function, as in the following scheme:

This example also illustrates the creation instruction, here using the creation proceduremake. Unlike
the constructors of C++, Java or C#, creation procedures in Eiffel are normal procedures of the
which happen to be marked as available for creation (the class lists them in a clause labeledcreate).

The example also shows a typical context in which the initialization issue arises:WINDOW being
an attached type, we must make sure thatResult is attached (non-void) on exit. Clearly a creatio
instruction (first branch) produces an attached result. The second branch will work too if the fun
displaying, returning aWINDOW and hence required to produce an attached result, satisfies
requirement.

5.2 Self-initializing types

In earlier versions of Eiffel, initialization has always been guaranteed for all variables, to avoid the
of run-time situation, possible in some other languages, where the program suddenly finds a v
with an unpredictable value as left in memory by the execution of a previous program if any. This w
be a reliability and security risk. Any solution to the initialization issue must continue to avoid that

Since read-only entities are taken care of, it remains to ensure that every variable has a
defined value before itsfirst use, meaning more precisely:

• For local variables of a routiner, includingResult for a function: the first use in any particula
call to r.

• For attributes: the first use for any particular object. This doesn’t just mean the first use in a ro
call x.r (...) where r is a routine of the class: it can also be during a creation opera
create x.make (...) at the time the object is being created, wheremake may try to access the
attribute; or, if contract monitoring is on, in the evaluation of the class invariant, before or afte
execution of a routine call.

Eiffel’s earlier initialization rules were simple:

1 •A variable of a reference type was initialized toVoid. This policy will be retained for detachable
types, but we need a different one for attached types; this is the crux of our problem.

2 •The basic typesBOOLEAN, CHARACTER, INTEGER, REAL, all of them expanded types
specify default initialization values, respectivelyFalse , null character,0, 0.0.

3 •Programmer-defined expanded types were required to includedefault_create among their crea-
tion procedures.default_create is a procedure defined in classANY (the top-level class of which
all other classes are descendants, similar toObject in other frameworks but in the context of mul

clicked_window (address: URL) : WINDOW /2/
-- Window showing URL for address: depending on user
-- request, either same as current display window or
-- newly created one.

do
if must_open_in_new_window then

create Result .make (address)
else -- Keep current window, but display address

Result := display_window.displaying (address)
end

end

itiali-

ables

ed
isting
es, and

hat all or
on
or new
ers.

blem
pes a

the
in

self-

oted an

n the
greedy
s
ve
e

ill

y.

ative
them,

tter of
tiple inheritance) where it does nothing; any class can redefine it to implement a specific in
zation scheme. Although implicitly present in every class,default_create is not necessarily avail-
able as a creation procedure; this happens only if the class lists it explicitly in itscreate clause.

Case2 is in fact an application of case3, assuming proper versions ofdefault_create in the basic types.
Note thatdefault_create only needs to create a new object in the case of reference types; for vari
of expanded types, it can simply apply its algorithm to an existing object.

It is tempting to keep thisdefault_create requirement for expanded types, extend it to attach
types, and declare victory. This was, however, found too restrictive. First, it would break most ex
code: as noted above, we would like to assume that most application classes do not need void valu
so can effortlessly be reinterpreted, under the new scheme, as attached; but we cannot assume t
even a majority already supportdefault_create as creation procedure. In fact this is not such a comm
case since most non-trivial class invariants require creation procedures with arguments. Even f
classes, thedefault_create requirement is not one we can easily impose on all application programm

Even if we can’t use impose it universally, this requirement does address the initialization pro
for variables of the corresponding types, so we may rely on it when applicable. We give such ty
name:

For variables of self-initializing types we adopt a policy oflazy initialization . The previous policy was
systematically to initialize object fields (corresponding to attributes) on object creation, prior to
execution of any creation procedure such asmake above, and local variables on routine entry, using
both cases the default value, language-set or provided bydefault_create. Instead, we can now afford a
more flexible policy: no sweeping general initialization, but, on first access to a variable of a
initializing type, check whether it has already been set; if not, calldefault_create. This actually implies
a slight change of semantics for expanded types:

• Under the previous rules, the semantics for expanded types was that a variable directly den
object of that type, rather than a reference. For an attribute, this means asubobjectof the current
object; for a local variable, the compiler-generated code may allocate the object directly o
stack rather than on the heap. One of the disadvantages of this approach, apart from its too
approach to initialization withdefault_create, is that it requires a special rule prohibiting cycle
in the client relation between expanded types: if bothA andB are expanded classes, you can’t ha
A declare an attribute of typeB and conversely, since this would mean that every object of typA
has a subobject of typeB and conversely.

• The new semantics is simply that expanded types simply represent objects withcopy semantics
rather than the defaultreference semantics. Using such an object as source of an assignment w
imply copying, rather than assign a reference.

• As a result, the clumsy prohibition of no client cycles between expanded classes goes awa

• We also removed the requirement that expanded types providedefault_create for creation; in
other words, they do not have to be self-initializing. When they are not, the same altern
initialization techniques as for attached reference types, discussed below, are available to
and the same lazy initialization semantics.

• Compilers can now implement expanded types through references; this is purely a ma
implementation, as the only requirement is copy semantics.

Definition: Self-initializing type
A type isself-initializing if it is one of:
• A detachable type.
• A type (including the basic types) based on a class that makesdefault_

create from ANY available for creation.

n then
In the
learn
ove

have

time
tialize

this
sting
p the

s well

care
sibly

ression
pecific

to a
ithout

el (as
• In the vast majority of cases, there are indeed no cycles in the client relation; compilers ca
optimize the representation by using subobjects and stack-based allocation as before.
general spirit of the language’s evolution, the idea is to make things simpler and more easy to
for programmers (just talk about copy semantics, don’t worry about implementation), rem
hard-to-justify restrictions, and expect a little more of the compiler writer.

• Previously, a creation instructioncreate x.make (...), wheremake can bedefault_create,
would not (as noted) create an object for expandedx, but simply applymake to an existing stack
object or subobject. Now it may have to create an object, in particular if the relation does
cycles. This is an implementation matter not affecting the semantics.

• Whether or not it actually creates an object, the creation instruction will be triggered the first
the execution needs a particular expanded variable. This change from a greedy policy (ini
everything on object creation or routine entry) to a lazy one can break some existing code ifmake
or default_create performs some significant operations on the current object and others:
initialization can occur later, or not at all. The new policy seems better, but maintainers of exi
software must be warned of the change and given a backward-compatibility option to kee
old semantics.

Except for copy semantics, the rest of this discussion applies to self-initializing reference types a
as to expanded types.

To summarize the results so far, we have narrowed down the initialization problem by taking
of one important case: self-initializing types, for which the policy will be to create the object (or pos
reinitialize an existing object in the expand case) if its first attempted use finds it uninitialized.

This leaves — apart from generic parameters — the case of non-self-initializing types.

5.3 Self-initializing attributes

If the type is not self-initializing, we can make an individualattribute(instance variable) self-initializing.
(The technique will not be available for local variables.)

Here, especially for readers steeped in C++ or its successors such as Java and C#, a little dig
is necessary about what I believe to be a misunderstanding of object-oriented principles in a s
aspect of the design of these languages. They consider an attribute (also calledinstance variable,
member variableor field) as fundamentally different from a function (ormethod); this is illustrated by
the difference in call syntax, as in

y := x.my_attribute /3/

versus

y := x.your_function () -- Note the parentheses /4/

which makes it impossible to change your mind — go from a storage-based implementation
computation-based one for a certain query returning information on objects of a certain type — w
affectingevery single clientusing the query in the above styles. The Principle of Uniform Access[8]
requires instead that such a choice of implementation should not be relevant to clients. In Eiff
already in Simula 67) the syntax in both cases is simply

x.her_query

which could call either an attribute or a function; the term “query” covers both cases.

rts the
ting,

g and

s —
better

orted
of the
urn
ibutes
”, as
ate with
n the
e

C#,
ass

little
ported

tools)
oes the

not
endant
cts —
f in the
in part
t don’t
t:

that
uses
vious
The problem goes further. Because a class in C++ etc., when it exports an attribute, expo
information that it is an attribute (rather than just a query), it exports it for both reading and wri
permitting remote assignments to object fields, such as

x.my_attribute = new_value /5/
This scheme is widely considered bad practice since it violates the principles of information hidin
data abstraction, which would require a procedure call

x.set_my_attribute (new_value) /6/
with a properset_my_attribute procedure. As a result, textbooks warn against exporting attribute
always a bad sign, since if a language design permits a construct officially considered bad the
solution would be to remove it from the language itself — and suggest writing instead an exp
function that will return the value of the attribute, itself declared secret (private), so that instead
plain attribute access/3/ one will call, in style/4/, a function whose sole purpose is to access and ret
the secret attribute’s value. But this leads to lots of noise in the program text, with secret attr
shadowed by little functions all of the same trivial form (one line to return the value). “Properties
introduced by Delphi and also present in C#, handle such cases by letting the programmer associ
such a secret attribute a “getter” function and a “setter” procedure, which will respectively retur
value and set it. The advantage is to permit the assignment syntax/5/ with the semantics of a procedur
call /6/ (as also now possible in Eiffel, with examples below). But the price is even more noise: in
altogether three keywords (value, set, get) in the language, and still two separate features in the cl
— the attribute and the property — for a single query.

The Eiffel policy is different. The Uniform Access Principle suggests that we should make as
difference as possible between attributes and functions. Each is just a query; if exported, it is ex
as a query, for access only. The interface of a class (as produced by automatic documentation
doesn’t show the difference between an attribute and a function; nor, as we have seen above, d
call syntax (no useless empty parentheses).

Standard Eiffel goes further in the application of the principle. In particular, it was previously
possible, largely for fear of performance overhead, to redefine an attribute into a function in a desc
class (while the reverse was permitted). Partly as a result, attributes could not have contra
preconditions and postconditions — as functions do; postcondition properties can be taken care o
class invariant, but there is no substitute for preconditions. These restrictions are now all gone,
because of the availability of better implementation techniques that avoid penalizing programs tha
need the extended facilities. With a new keywordattribute , one can equip an attribute with a contrac

With this convention the attribute can freely be redefined into a function and conversely. Note
Result , previously meaningful for functions only, is now available for attributes too; the example
it for its postcondition. This further enhances the symmetry between the two concepts. The pre
syntax for declaring an attribute,x: SOME_TYPE, remains available as an abbreviation for

bounding_rectangle: RECTANGLE /7/
-- Smallest rectangle including whole of current figure

require
bounded

attribute
ensure

Result.height = height
Result.width = width
Result.lower_left = lower_left
Result.contains (Current)

end

x: SOME_TYPE
attribute

anism
give

ibute

style.
ss

for a
tribute
h “lazy”
est to

ence

oes

ing
uch
End of digression. This new generality of the concept of attribute suggests another simple mech
taking care of explicit attribute initialization, and making attributes even more similar to functions:
them an optional algorithm by allowing instructions afterattribute , the same way a function has
instructions afterdo (see e.g./2/). So we can for example provideshadow with an explicit initialization:

The semantics is to call this code if — and only if — execution finds, for a particular object, the attr
uninitialized on first use of that object.

An interesting benefit of this technique is to provide a “once per object” mechanism, letting us
performing a certain operation at most one time on any object, and only when needed, in a lazy
That’s what the algorithm forbounding_rectangle does. Here is another example, from a cla
COMPANY_STOCK:

The stock history list might be huge, so we only want to retrieve it into memory from the database
particular company if, and when, we need it. This could be done manually by keeping a boolean at
that says whether the list has been retrieved, but the technique is tedious is there are many suc
queries. Self-initializing attributes solve the problem in a simpler way. Note the use of an Object T
check whether the object structure retrieved from the database is of the expected type.

The presence of self-initialization for a particular attribute will, in the semantics, take preced
over self-initialization at the class level if also present.

This concept of self-initializing attribute further narrows down the initialization issue. But it d
not yet solve it completely:

• It does not apply to local variables. In fact we could devise a similar notion of “self-initializ
local”, where the declaration includes an initialization algorithm. But this seems overkill for s
a narrowly-scoped notion.

bounding_rectangle: FIGURE /8/
-- Smallest rectangle including whole of current figure
-- (Computed only if needed)

require
bounded

attribute
create Result .set (lower_left, width, height)

ensure
-- As above

end

stock_history: LIST [VALUATION] /9/
-- Previous valuations over remembered period

attribute
if {l: LIST [VALUATION]}

database.retrieved (ticker_symbol) then
Result := l -- Yields list retrieved from database

else
create Result -- Produces empty list

end
ensure

-- ...
end

only
at run

value.
ng
e the
ten,

static
. The
ology;

as a

iler”.
ard is
y and

with
tion to

ork
ould be
l style

much
bstract
d.

for
good

ted)

is
be
• For both attributes and local variables the requirement of self-initialization cannot be the
possibility. In some cases a human reader sees immediately that for every use of a variable
time an assignment or creation will have happened before, giving it a well-defined attached
Then the lazy initialization-on-demand of either self-initializing types or self-initializi
attributes is not necessary, and would in fact be deceptive in the program text sinc
initialization code will be never be executed. We should simply let things go as originally writ
after checking that there is no risk of undefined or void value.

5.4 Certified Attachment Patterns

The last observation leads to the third and last initialization technique: rely on compilers (or other
checking tools) to verify that explicit assignment or creation will have occurred before every use
authors of Spec# have reached a similar conclusion, taking advantage of modern compiler techn
they write[1]:

Spec# stipulates the inference of non-nullity for local variables. This inference is performed
dataflow analysis by the Spec# compiler.

We differ from this assessment in only one respect: it is not possible in Eiffel to refer to “the comp
There are a number of Eiffel compilers, and one of the principal purposes of the ECMA stand
precisely to keep maintaining their specific personalities while guaranteeing full syntactical, validit
semantic interoperability for the benefit of users. Even if there were only one compiler as currently
Spec#, we do not wish to let programmers depend on the smartness of the particular implementa
find out — by trying a compilation and waiting for possible rejection — if a particular scheme will w
or not. There should be precise rules stating what is permissible and what is not. These rules sh
available in a descriptive style, like the rest of a good language specification, not in an operationa
dependent on the functioning of a compiler. They should be valid for any implementation; after all,
of the progress in modern programming language description has followed from the decision to a
from the properties of a particular compiler and provide high-level semantic specifications instea

Apart from this difference of view, the Eiffel rules result from the same decision of relying —
cases not covered by self-initializing types or attributes — on statically enforceable rules of
conduct. We call them Certified Attachment Patterns:

Here is a typical Certified Attachment Pattern, for an arbitrary attribute or local variablex. If the body
of the routine starts with a creation instruction or assignment of targetx, then the immediately following
instruction position is a CAP forx. This is a very important pattern; in fact (as the reader may have no
neither of the last two examples/8/ /9/ would be valid without it, because they rely on acreate Result
... instruction to ensure thatResult is non-void on return from the attribute evaluation. This property
trivial — since thecreate instruction is the last in the routine — but without the CAP there would
no way to rely on it.

The stock history example/9/ also relies on another CAP: ifcap1 andcap2 are two Certified
Assignment Patterns forx, then so isif c then cap1 else cap2 end for any conditionc.

Here is a third CAP, assuming thatx is a local variable or formal routine argument:

Definition: Certified Attachment Pattern (CAP)
A Certified Attachment Pattern for a non-self-initializing variablex is a
general program context in whichx is guaranteed to be non-void.

if x /= Void then /10/
... Any Instructions here, except for assignments of target x.

end

.

ing
les of
,

e
ay
et

type
at

t

ot be

ops
Thethen branch is a CAP forx. It wouldnot be a valid CAP ifx were an attribute, as the “Instructions”
could include procedure calls that perform an assignment (of a possible void value) tox. But for a local
variable we can ascertain just by looking locally at thethen branch that there is no such assignment

Certified Attachment Patterns, from the above definition, apply to “non-self-initializ
variables”. This includes variables of attached types that are not self-initializing, but also variab
detachabletypes, which we had not considered for a while. In fact, as the reader may have noted/10/
is meaningful only for a detachable type; if the type ofx is attached, and not self-initializing, then th
attempt to evaluate it in the testx /= Void of /10/ would not work; and the test is meaningless anyw
for x of an attached type. But for detachablex the CAP is useful, as it allows us to perform a call of targ
x as part of theInstructions.

Such calls are indeed valid. The Target Validity Rule, the basic constraint of the void-safe
system, stated that “A qualified calla.f is only valid if a is attached”. As noted, this usually means th
the type ofa is attached, but we can generalize the definition to take advantage of CAPs:

Without this CAP, we would have, for every use of a local variablex of a detachable types, to write an
Object Test (with the need to shadowx with an explicitly declared Object-Test-Localy, as in
if {y: TYPE_OF_X} x then ...) every time we want to usex as target of a call. Occasion ally this canno
be avoided, but often the routine’s algorithm naturally includesif x /= Void then ..., which the CAP
allows us to use as it stands, in the way we would normally do.

An associated CAP is forx in the else part ofif x = Void then ... else ... end. Another one forx,
particularly important for class invariants, is inother_condition in

whereand then is the nonstrict conjunction operator, guaranteeing that the second operand will n
evaluated if the first evaluates to false. This also works if we replaceand then by implies (implication,
nonstrict in Eiffel, i.e.a implies b is defined with value true ifa has value false, even ifb is not defined);
it works foror else if we change the test tox = Void.

Another Certified Attachment Pattern, similar to the first, is particularly important for lo
iterating on linked data structure. It is of the form

Definition: Attached expression
An expression a is attached if and only if either:
• Its type is an attached type.
• It occurs as part of a Certified Attachment Pattern fora.

x /= Void and then other_condition

from
...

until
x = Void

loop
... Any Instructions not assigning to x ...

end

e of

an
op
the
and
rst
n the

ct, that
see as

t
operties

s of

bles us

ase of

-based
If x is a local variable (again, not an attribute), it remains attached throughout theInstructions. This
makes possible, without further ado — in particular, without any Object Test — a whole rang
common traversal algorithms, such as this one for searching in a linked list:

(Result starts out false; the loop will set it to true if and only if the item in one of the list cells has
item field equal tosought_value. x is as before a local variable) The CAP enables us to write the lo
exactly as we would write it anyway, with the guarantee that it will not produce any void call. A look
previous version of the EiffelBase library suggests that many existing loops will similarly compile
run “as is”; occasionally, application of the Target Validity rule will require a slight rewrite, at wo
inclusion of some instructions in an Object Test. This is extremely encouraging (especially give
complexity of some of the intermediate suggestions, some involving changes to the loop constru
were experimented before we arrived at the general solution reported here). More generally, we
particularly attractive the prospect of replacing, in such a library, hundreds of occurrences of

by just

with the non-void test turned into a compile-time guarantee (SOME_TYPE being an attached type) tha
x indeed represents an object, so that we can concentrate on the more meaningful contractual pr
such asx.some_property.

A CAP, very useful in practice, applies to the instructions that immediately follow a serie
creation instructionscreate a ..., for one or morea: these instructions are a CAP for sucha. Beyond
local variables, this also applies to attributes, somewhat neglected by the previous CAPs, and ena
to handle many simple cases such as guaranteeing that a just createdResult of a function, as in/8/ and
/9/, is attached as expected.

Finally, as a concession to programmers who prefer to run the risk of an exception in the c
a variable that shouldn’t be void but is, we include as CAP the position immediately following

taking advantage of Eiffel’scheck instruction. This instruction will raise an exception ifx is void. This
CAP is an escape valve, as we do not feel like preventing programmers from using an exception
style if that’s their choice (which we may disapprove).

from
x := first_element

until
x = Void or else Result

loop
Result := (x.item = sought_value)
x := x.right

end

some_routine (x: SOME_TYPE)
require

x /= Void
x.some_property

some_routine (x: SOME_TYPE)
require

x.some_property

check
x /= Void

end

rightitem rightitem rightitem

Void
first_element

afety:
ept,

ct the

back
st that

are only a
Eiffel

e too
to

en be

’s the
to

e it is
a void

imple
diate
shing
.

Eiffel
cated

most

e vast
vering
more

vides a
itting

up of
h the
e
re:

e
e

ract
be
Using CAPs to guarantee attachment is a pessimistic policy, erring, if at all, on the side of s
if we cannot absolutely guarantee the impossibility of a void value, the Target Validity rule will (exc
as noted, under backward-compatibility compiler options, to avoid breaking existing code) reje
code. The design rule for CAPs is not that theysupport all correct cases, but that theyreject any incorrect
case. We can afford to miss some correct cases if they do not occur too frequently; the only draw
will be that programmers may have, in some extreme and (we hope) rare situations, an Object Te
appears unnecessary. (Remember that one of the reasons those cases are so rare is that CAPs
technique of next-to-last resort, and Object Tests of the last one: in many practical cases the
programmer can rely on self-initializing types or variables.) As a result we can afford not to car
much about cases that worry the Spec# designers[3] [1] , such as a creation procedure that needs
access an attribute that one is not sure has already been initialized. In Eiffel, the attribute will oft
of a self-initializing type, or itself be declaredattribute ... so that it is self-initializing; if not, there might
be a matching CAP; if not, the programmer can always get away with an Object Test or, if that
preferred style, force a CAP with acheck instruction as above. We don’t have to turn our compilers in
prodigies of dataflow analysis.

We do not, in fact, want CAPs to be too sophisticated. They should cover situations wher
immediately obvious to a human reader (and, besides, true!) that an expression cannot take on
value even though it is neither of an attached type nor self-initializing. The argument should be s
and understandable. If it is convoluted, it may be just as well to force a slight rewrite of the imme
context to make the safety argument compelling. In other works, when it comes to establi
guaranteed attachment status,we do not want Eiffel compilers to be too smartabout possible voidness
The argument should always remain clearly understandable to the reader of the program, in the
spirit of clarity and quality-focused software engineering. (There is still a great need for sophisti
dataflow analysis and more generally for very smart compiler writers: generate the fastest and
compact code possible.)

This approach rests under the assumption that a small number of simple CAPs capture th
majority of practical situations. This seems to be the case with the set of CAPs sketched above, co
most of what has been included in the Eiffel standard, where they are of course specified much
precisely. On the organizational side, the existence of an international standards committee pro
good framework: even if the CAP catalog remains separate from the Eiffel standard proper, perm
more frequent additions, it should remain subject to strict quality control and approval by a gro
experts after careful evaluation. Technically (beyond “proof by committee”), the goal should be, wit
development of a proper mathematical framework, toprove— through machine-validated proofs — th
validity of proposed CAPs. The three criteria that must remain in force throughout that process a

• A guarantee of correctness beyond any doubt.

• Simple enforceability by any reasonable compiler,without dataflow analysis.

• Understandability of all CAPs by any reasonably qualified programmer.

6 Object Tests and their scopes

The Object Test form of boolean expression,{x: T} exp, was presented in the Overview, which gave th
essentials.T is an attached type;exp is an expression;x is a fresh name not used for any entity in th
enclosing context, and is known as theObject-Test-Local of the expression. Evaluation of the
expression:

• Yields true if and only if the value ofexp is attached to an object of typeT (and so, as a particular
consequence, not void).

• Has the extra effect of bindingx to that value for the subsequent execution of the program ext
making up the scope of the Object Test.x is a Read-Only entity and hence its value can never
changed over that scope.

nt

with
n

style
ful and

tempt

arget
hould
y
orce

type
bsume

e turns
etailed
an be

d to

lly

s

pe. You

for
The scope depends on where the Object Test appears. We saw that inif ot then ... else ... end , with ot
an Object Test, the scope is thethen part. Also, if a condition is of the formot and then boolexp or
ot implies boolexp, the scope includesboolexp as well. With a negated Object Test,not {x: T} exp,
the scope, in a conditional instruction, is theelse part; such negated variants are particularly importa
for loops, since in

the whole loop clause — the loop body — is part of the scope.

The notion of scope has been criticized by some experienced Eiffel programmers who in line
the Eiffel method’s emphasis on command-query separation[8] do not like the idea of an expressio
evaluation causing initialization of an entity as a side effect. But apart from some unease with the
there seems to be nothing fundamentally wrong there, and the construct does provide a use
general scheme.

In particular, it is easier to use than Eiffel’s earlier Assignment Attempt mechanismx ?= y.
Although an effective and widely used method of run-time type ascertainment, the Assignment At
treats the non-matching case by reintroducing a void value (forx), which in light of this entire discussion
doesn’t seem the smartest idea. An Assignment Attempt almost always requires declaring the tx
specially as a local variable; with Object Test we integrate the declaration in the construct. It s
almost always be followed by a testx /= Void, yet it is possible for programmers to omit that test if the
think the object will always match; this is a source of potential unreliability. Here we essentially f
such a test through the notion of scope.

In general, the Object Test seems an attractive alternative to the various run-time
identification and ascertainment (including downcasting) in various languages; it seems to su
them all.

7 Generic classes

Perhaps the most delicate part of the attachment problem is the connection with genericity. Ther
out to be a remarkably simple solution. (This needs to be pointed out from the start, because the d
analysis leading to that solution is somewhat longish. But the end result is a four-line rule that c
taught in a couple of minutes.)

Consider a container class such asARRAY [G] (a Kernel Library class) orLIST [G]. G is the
“ formal generic parameter”, representing an arbitrary type. To turn the class into a type, we nee
provide an “actual generic parameter”, itself a type, as inARRAY [INTEGER], LIST [EMPLOYEE].
This process is called a “generic derivation”. The actual generic parameter may itself be generica
derived, as inARRAY [LIST [EMPLOYEE]].

Genericity can be constrained, as inHASH_TABLE [ELEMENT, KEY –> HASHABLE] which
will accept a generic derivationHASH_TABLE [T, STRING] only if STRING conforms to (inherits
from) the library classHASHABLE (in the Eiffel Kernel Library it does). Unconstrained genericity, a
in ARRAY [G], is formally an abbreviation forARRAY [G –> ANY].

None of these class declarations places any requirement on the attachment status of a ty
can use — subject to restrictions discussed now —ARRAY [T] as well asARRAY [? T]. The same holds
even for constrained genericity: attachment status does not affect conformance of types. (So ifU inherits
from T, ? U still conforms toT. It’s only for entities and expressions that the rules are stricter: Withx: T
andy: ? U, y does not conform tox, prohibiting the assignmentx := y.) Without such rules, we would
have to provide two versions ofARRAY and any other container class: once for attached types, one
detachable types. Not an attractive prospect.

from ... until not {x: T} exp loop ... end

don’t
t vivid

e same

ll

other
ay

ut, as
neric

d result

tions

e
roblem

t only
ch-
just as

es, part
traint,
Now consider a variable of typeG in a generic classC [G]. What about its initialization? G stands
for an arbitrary type: detachable or attached; if attached, self-initializing or not. Within the class we
know. But a client class using a particular generic derivation needs to know! Perhaps the mos
example is array access. Consider the declarations and instruction

This sets a certain entry to a certain value. Now the client may want to access an array entry, th
or another:

T is an attached type. Instruction/11/will indeed store an attached value into thei-th entry, assuming the
array implementation does its job properly. Since the classARRAY [G] will, as one may expect, give for
function item the signature

and the actual generic parameter forarr is T, instruction /12/ correspondingly expects the ca
arr.item (j) to return aT result, for assignment toy. This should be the case forj = i, but what about other
values ofj, for which the entry hasn’t been explicitly set by aput yet?

We expect default initialization for such items of container data structures, as for any
entities. But how is classARRAY [G], or any other container class, to perform this initialization in a w
that will work for all possible actual generic parameters: detachable, as inARRAY [? T], expanded, or
attached as withARRAY [T] but withT either self-initializing or not?

The tempting solution is to provide several versions of the class for these different cases, b
already noted, we’d like to avoid that if at all possible. We must find a way to support actual ge
parameters that are detachable, easy enough since we can always initialize aG variable to Void, or
attached, the harder case since then we must be faithful to our clients and always return an attache
for queries such asitem that yield aG.

The result of such a query will be set by normal instructions of the language, for example crea
or assignments. For example the final instruction of a query such asitem may beResult := x for some
x. ThenResult will be attached if an only ifx is attached. Althoughx could be a general expression, th
properties of expressions are deducible from those of their constituents, so in the end the p
reduces to guaranteeing that a certain entityx of the class, of typeG, is attached whenever the
corresponding actual parameterT is. Let’s consider the possible kinds of occurrence ofx:

1 •x may be a formal argument of a routine of C. From the conformance rules, which state tha
G itself conforms toG, x will be of typeT (the actual generic parameter of our example), deta
able or attached exactly as we want it to be. Perfect! Other cases of read-only entities are
straightforward. From then on we consider only variables.

2 •We may be usingx as a target of a creation instructioncreate x.make (...) or just create x.
That’s the easiest case: by construction,x will always be attached, regardless of the status ofT. (To
make such creation instructions possible the formal generic parameter must satisfy some rul
of the general Eiffel constraints: it must specify the creation procedures in the generic cons
as inC [G –> C create make end], wheremake is a procedure ofC, or similarlyC [G –> ANY
create default_create end]. Then the actual generic parameterT must provide the specified pro-
cedures available as creation procedures.)

x, y: T
i, j: INTEGER
arr: ARRAY [T]
...
arr.put (x, i) -- Sets entry of index i to x; Can also be /11/

-- written more conventionally as arr [i] := x

y := arr.item (j) -- Can also be written as y := arr [j] /12/

item (i: INTEGER): G

r-

sulting
ield an

nt

the
e self-

if too
ty rule:

apply.
ostly
larger
that

n
k
u

le as
3 •We may be usingx as the target of an assignmentx := y. Then the problem is just pushed recu
sively to an assessment of the attachment status ofy.

4 •The last two cases generalize to that of an occurrence in a Certified Assignment Pattern re
from the presence of such a creation instruction or assignment instruction guaranteed to y
attached target, for example at the beginning of a routine.

5 •So the only case that remains in doubt is the use ofx — for example in the source of an assignme
— without any clear guarantee that it has been initialized. Ifx’s type were not a formal generic, we
would then requirex to be self-initializing: either by itself, through anattribute clause, or by being
of a self-initializing type. But here — except if we get a self-initializing attributex of typeG, a
possible but rare case — we expect the guarantee thatG represents a self-initializing type.

We don’t have that guarantee in the general case;T, as noted, may be of any kind. And yet ifT is not
self-initializing we won’t be able to give the client what it expects. So what we need, to make
mechanism complete, is language support for specifying that a generic parameter must b
initializing (that is to say, as defined earlier, either detachable or providingdefault_create as a creation
procedure). The syntax to specify this is simply to declare the class, instead of justC [G], as

This syntax is subject to criticism as it reuses a convention, the? of detachable types, with a slightly
different meaning. But it seemed preferable to the invention of a new keyword; it might change
many people find it repulsive, but what matters here is the semantic aspect, captured by the validi

A formal generic parameter of the form is known as aself-initializing formal ; clearly we must add this
case to the list of possibilities in the definition of self-initializing types.

In the Standard these are two separate validity rules. There are both very easy to state and
The first is for the authors of generic classes — typically a relatively small group of programmers, m
those who build libraries — and the second for authors of clients of such classes; they’re a much
crowd, typically including all application programmers, since it’s hard to think of an application
doesn’t rely on generic classes for arrays, lists and the like.

ClassARRAY will fall under clause1, declared asARRAY [? G]; this makes it possible to have
arrays ofT elements for an attached typeT. The rule is very easy to explain to ordinary applicatio
programmers (the second group):ARRAY gives you a guarantee of initialization — you’ll never get bac
a void entry from anARRAY [T], througharr.item (i), or arr [i] which means the same thing —, so yo
must provide that default initialization yourself by equippingT with adefault_create. Now if you can’t,
for example ifT is really someone else’s type, then don’t worry, that’s OK too: instead of anARRAY [T]
use anARRAY [? T]; simply don’t expectarr [i] to give you back aT, it will give you a ? T, possibly
void, which you’ll have to run through an Object Test if you want to use it as attached, for examp
the target of a call. Fair enough, don’t you agree?

class C [? G] ...

Generic Initialization rule
Consider a formal generic parameterG of a class C.

1 •If any instruction or expression of C uses an entity of typeG in a state
in which it has not been provably initialized, the class declaration must
specify? G rather than justG.

2 •If the class declaration specifies? G, then any actual generic parame-
ter forG must be self-initializing.

plies
h all
mmer
us

ing

a
rtant

on (to
nt, but

— the

mple,
This? G declaration leading to a requirement of self-initializing actual generic parameters ap
to classARRAY because of the specific nature of arrays, where initialization has to sweep throug
entries at once. It doesn’t have to be carried through to data structures subject to finer progra
control. For example, in classLIST [G] and all its EiffelBase descendants representing vario
implementations of sequential lists, such asLINKED_LIST [G], TWO_WAY_LIST [G], ARRAYED_
LIST [G] etc., the basic operation for inserting an item isyour_list.extend (x), addingx at the end, with
implementations such as

Then, to get the items of a list, we access fields of list cells, of typeLINKABLE [G] for the sameG,
through queries that return aG. This is caseG1, the easiest one, in the above list, guaranteeing everyth
we need to serve our attached and detachable clients alike.

Most generic classes will be like this and will require no modification whatsoever, taking justG
rather than a? G. ARRAY and variants (two-dimensional arrays etc.) are an exception, very impo
in practice, and of course there will be a few other cases.

8 Getting rid of catcalls

Having completed Void Call Eradication, we come to the second major problem, whose discussi
reassure the reader) will be significantly shorter; not that the problem is easier or less importa
simply because the solution will almost trivially follow from the buildup so far.

Typed object-oriented programming languages are almost allnovariant: if you redefine a routine
in a descendant of the class containing its original declaration, you cannot change its signature
type of its arguments and results.

And yet... modeling the systems of the world seems to require such variance. As a typical exa
consider (see the figure on the opposing page) a classVEHICLE with a query and command

A vehicle has a driver, of typeDRIVER (a companion class) and a procedureregister that assigns a
driver. No we introduce descendant classesTRUCK andBICYCLE of VEHICLE, andTRUCKER and
BIKER of DRIVER. Shouldn’tdriver change type, correspondingly, inTRUCK and BICYCLE, to
TRUCKER andBIKER respectively? All signs are that it should. But novariance prevents this.

extend (x: G)
-- Add x at end.

local
new_cell: LINKABLE [G]

do
create new_cell.make (x)

end

driver: DRIVER
register (d: DRIVER) do driver := d end /13/

driver: TRUCKER
assign (d: TRUCKER)

TRUCKER

DRIVER

BIKER

Inherits from

BIKE

VEHICLE

TRUCK

Client of

driver: DRIVER
assign (d: DRIVER)

ogy

y they

head
itions

g.

truck a

of the
ll
ral rule:

calls.

ument
The policy that would allow such type redefinitions is called covariance (from terminol
introduced by Luca Cardelli); “co” because the redefinition follows the direction of inheritance.

In fact there is no type risk associated with redefiningquery results, such asdriver, covariantly. Still,
most languages don’t permit this, probably because then programmers wouldn’t understand wh
can also redefineroutine arguments covariantly. If you redefinedriver, you will also want to redefine
register so that its signature reads

and so on. Eiffel allows you to do this and in fact provides an important abbreviation; if you know a
of time (that is to say, in the ancestor class) that an entity will be covariant, you can avoid redefin
altogether by declaring the entity from the start as “anchored” to another through thelike keyword: here
in TRUCK you can replace/13/ by

where thelike type declaration anchorsd to driver, so that the redefinitions of/14/and/15/are no longer
needed explicitly (but the effect is the same).like , avoiding explicit “redefinition avalanche”, is the
covariant mechanism par excellence.

With covariant arguments we have a problem[9] because of polymorphism and dynamic bindin
The declarations and call

look reasonable enough; but what the call is preceded by the assignments

with the types of the assignment sources as implied by their names? We end up assigning to a
driver qualified only to ride a bike. Then when the execution attempts, on an object of typeTRUCKER,
to access a feature of the driver — legitimately assumed to be a truck driver, on the basis
redefinition —, for exampledriver.license_expiration_date, we get a crash, known as a catca
(assuming truck licenses expire, but bike licenses don’t). This is the reason novariance is the gene
even though catcalls happen rarely in well-written programs, they are just as much of a risk as void

The solution proposed here is simple: force the programmer who makes a covariant arg
redeclaration to recognize the risk through the following rule:

In our example an explicit redeclaration will have to be written, instead of/14/

register (d: TRUCKER) do driver := d end -- in TRUCK /14/
register (d: BIKER) do driver := d end -- in BIKE /15/

register (d: like driver) ... Rest as before ... -- in VEHICLE /16/

v: VEHICLE
d: DRIVER
...
v.register (d)

v := some_truck
d := some_biker

Covariant argument redeclaration rule
The type of a covariant argument redeclaration, or of an anchored (like)
argument declaration, must be detachable.

register (d: ? TRUCKER) ... -- in TRUCK /17/

iginal
ment,

form

ems to

C++,
e. So in
esired,
erous
similar
mer

round
gh
at risk

vation

aded,
uential
0-era
d a not so

bject
tation

t. If an
an

rm
l
ess to
se of
legant
rs in
and an anchored one, instead of/16/:

This requires the body of the routine (in the redefined version for the first case, already in the or
version for the second case) to perform an explicit Object Test if it wants to apply a call to the argu
ascertaining it to be of the covariantly redefined type. Catcalls clearly go away.

The semantics of? U in the covariant redefinition of an argumentx originally of typeT is slightly
different from the usual one involving possible void values. It really means “fromT down toU”. It also
requires a particular convention rule for the semantics of a new precondition clause of the
require elsex.some_U_property (we interpret it as{y: U} x and then y.some_U_property). So
there is a certain amount of kludginess on the theoretical side. But in practice the technique se
allow us to keep covariance for expressiveness, while removing the dangers.

This technique is not so far from what programmers instinctively do in languages such as
Java and C# which enforce novariance. The modeled system, as noted, often cries for covarianc
the descendant class the programmer will introduce a variable of the new type, the one really d
and “downcast” (the equivalent of an Object Test) the novariant argument to it. One finds num
examples of this pattern in practical code from the languages cited. The above rule leads us to a
solution, but it is more explicit and, one may argue, better for modeling realism: the program
specifies, in the redefinition, the “true” new type of the argument (likeTRUCKER); the type system
accepts his covariant behavior, but forces him to recognize the risk to of that behavior to others a
him, specifically to “polymorphic perverts” (callers of the original routine which, throu
polymorphism, actually use the new argument type disguised under the old one), and to handle th
by checking explicitly for the type of the actual objects received through the formal argument.

9 An application to concurrency

The third major problem to which the ideas discussed here provide a solution is lazy object reser
in concurrent object-oriented programming.

Concurrency is badly in need of techniques that will make concurrent programs (multithre
multi-processed, networked, web-serviced...) as clear and trustworthy as those we write for seq
applications. Common concurrent mechanisms, most notably thread libraries, still rely on 196
concepts, such as semaphores and locks. Deadlocks and data races are a constant concern an
infrequent practical occurrence.

An effort to bring concurrent programming to the same level of abstraction and quality that o
technology has brought to the sequential world led to the definition of the SCOOP model of compu
(Simple Concurrent Object-Oriented Programming[11], with a first implementation available from
ETH). This is not the place to go through the details of SCOOP, but one aspect is directly relevan
entity x denotes a “separate” object — one handled by a thread of control, or “processor”, other th
the processor handling calls to the current object — it appears essential to permit a call of the fox.f
only if x is an argument of the enclosing routiner. Then a call tor, with the corresponding actua
argumenta representing a separate object, will proceed only when it has obtained exclusive acc
that object, and then will retain that access for the duration of the call. Coupled with the u
preconditions as wait conditions, this is the principal synchronization mechanism, and leads to e
algorithms with very little explicit synchronization code (see for example the Dining Philosophe
[11]).

register (d: ? like driver) ... -- in VEHICLE /18/

For

which

ers.

ted to
types:
The rule then is:

A specific consequence of this policy is of direct interest for this discussion:

The corresponding formal argumentx in r must also be declared asseparate , so that it is immediately
clear, from the interface ofr, that it will perform an object reservation.

So far this has implied the converse rule: if a is separate,r (a) will wait until the object is available,
and then will reserve it.

But this second part is too restrictive. Ifr doesn’t actually include any callx.f wherex is the formal
argument corresponding toa, we don’t need to wait, and the policy could actually cause deadlock.
example in

we just usex as source of an assignment. The actual calls will be done later usingkeep_it, which we
will have to pass (according to the above validity rule) as actual argument to some other routine,
performs such calls. But in a call to thisr we don’t need to wait onx, and don’t want to.

This could be treated as acompiler optimization: the body ofr doesn’t perform any call onx, so
we can skip the object reservation. But this is not an acceptable solution, for two reasons:
• The semantics — including waiting or not — should be immediately clear to client programm

They will see only the interface (signature and contracts), not thedo clause.

• In a descendant class, we can redefiner so that itnow performs a call of targetx. Yet under
dynamic binding a client could unwittingly be calling the redefined version!

We need a way to specify, as part of the official routine interface, that a formal argument such asx above
is, although separate, non-blocking.

The solution proposed is:use a detachable type, here ? separate T. With the declaration

no reservation will occur.
With this policy, whether reservation occurs is part of the routine’s specification as documen

client programmers. The rule is consistent with the general property of detachable and attached
we needx to be attached only if we are going to perform a call on it.

Validity and semantics of separate calls
A call on a separate object is permitted only if the object is known through
a formal argument to the enclosing routine.
Passing the corresponding separate actual arguments to the routine will
cause a wait until they are all available, and will reserve them for the
duration of the call.

Object Reservation rule
Passing a separate actual argument a to a routiner reserves the associated
object.

keep_it: separate T -- An attribute

r (x: separate T)
-- Remember a for later use.

do
keep_it := x

end

r (x: ? separate T) -- The rest as above

s

e are

ut if
e

rtised

purpose
blem of

t the
utes.
e icy

sting
With a

much
it took
— the
oint for
hence
rature.
have

Type
lution

those

nisms
e that
In the example, we can only retain the assignment tokeep_it if this attribute is itself detachable.
If it is attached, declared asseparate T rather than ? separate T, we must rewrite the assignment a

with the obvious semantic rule thatan object test of separate type causes reservation of the object.
Unlike in the case of an argument, this rule is acceptable since no information hiding is involved: w
looking at implementation, not a routine’s interface.

The technique also fits well with inheritance. Ifr had an argument of type? separate T, we
cannot of course redefine it asseparate T in a descendant (the reverse is, as always, possible). B
the descendant version does need to perform a call onx, whereas the original didn’t, it can achieve th
result through an Object Test:

which will cause a wait — not on entry to the routine (which could contradict the semantics adve
to the client) but as part of that routine’s implementation.

It appears then that the distinction between attached and detachable types, and the general-
Object Test with its semantics adapted to the concurrent (separate) case, solve this particular pro
concurrent object-oriented programming too.

10 Conclusion

It was impossible to resist including the self-citation that opens this article, but hard to resis
temptation of removing the parts that don’t quite fit, especially the bit about the two or three min
The ideas presented here didn’t come with the self-evidence of morning mist; it was more like th
rain of an endless Baltic winter. Yet the mechanism is indeed a minuscule syntax extension, the? symbol
(even if used with two slightly different semantics), combined with the replacement of an exi
instruction, the assignment attempt, by a simpler and more general mechanism, the Object Test.
few validity rules that any reasonable program should meet without the programmer thinking
about them — even though the presentation in this article may have appeared long-winded since
into account many details, special cases, compatibility issues and the rationale for every decision
result does address several major problems in one sweep; one of these problems, the starting p
the whole effort, is the only remaining source of crashes in typed object-oriented programs, and
of critical practical importance. The second one has also been the subject of a considerable lite
The third one is less well known, but of importance for concurrent applications. And in passing we
seen that for two issues that had been addressed by previous mechanisms — Run-Time
Identification, possible in many languages, and “once per object”, for which Eiffel already had a so
— the mechanisms allows new techniques that may offer at least an incremental improvement on
already known.

So while it is for the reader to judge whether the citation is arrogant, I do hope that the mecha
presented above, as available in Standard Eiffel, will have a lasting effect on the quality of softwar
we can produce, using the best of object technology.

if {y: separate T} x then
keep_it := y

end

if {y: separate T} x then
y.some_operation

end

apers/

ed
12.

up 4
.

t

11 References

[1] Mike Barnett, Rustan Leino and Wolfram Schulte:The Spec# Programming System; CASSIS
proceedings, 2004.
[2] Craig Chambers et al., papers on the Self language at http://research.sun.com/self/p
papers.html.
[3] Manuel Fähndrich and Rustan Leino:Declaring and Checking Non-null Types in an Object-Orient
Language; in OOPSLA 2003, SIGPLAN Notices, vol. 38 no. 11, November 2003, ACM, pp. 302-3
[4] ECMA Technical Committee 39 (Programming and Scripting Languages) Technical Gro
(Eiffel): Eiffel Analysis, Design and Programming Language, Draft international standard, April 2005
[5] Erik Meijer and Wolfram Schulte:Unifying Tables, Objects, and Documents; in Proc. DP-COOL
2003, also at http://research.microsoft.com/~emeijer/Papers/XS.pdf.
[6] Bertrand Meyer:Eiffel: The Language, Prentice Hall 1990 (revised printing 1991). See also[12].
[7] Bertrand Meyer:Reusable Software: The Base Object-Oriented Component Libraries, Prentice Hall,
1994.
[8] Bertrand Meyer:Object-Oriented Software Construction, 2nd edition, Prentice Hall, 1997.
[9] Bertrand Meyer, reference[8], chapter 17: “Typing”.
[10] Bertrand Meyer,Prelude to a Theory of Void; in Journal of Object-Oriented Programming, vol. 11,
no. 7, November-December 1998, pages 36-48.
[11] Bertrand Meyer, reference[8], chapter 30:Concurrency, distribution, client-server and the Interne.
[12] Bertrand Meyer, Standard Eiffel, new edition of[6], in progress.

	Attached types and their application to three open problems of object-oriented programming Bertra...
	Abstract
	1 Overview
	1.1 Mechanism summary
	1.2 The void safety issue
	1.3 General description

	2 Previous work, context and acknowledgments
	3 Syntax extension
	4 Constraints on calls and attachment
	5 Initialization
	5.1 Variables and entities
	5.2 Self-initializing types
	5.3 Self-initializing attributes
	5.4 Certified Attachment Patterns

	6 Object Tests and their scopes
	7 Generic classes
	8 Getting rid of catcalls
	9 An application to concurrency
	10 Conclusion
	11 References

