Cite as follows: Bertrand MeyeAttached Types and
their Application to Three Open Problems of Object-
Oriented Programmingin ECOOP 2005, Springer
Verlag, July 2005, pages 1-32, to appear.

Attached types
and their application to three open problems
of object-oriented programming

Bertrand Meyer
ETH Zurich and Eiffel Software
se.infethz.h wwweiffel.com

Abstract

The three problems of the title — the first two widely discussed in the literature, the third less well known
but just as important for further development of object technology — are:

« Eradicating the risk ofroid calls: x.f with, at run time, the target not denoting any object,
leading to an exception and usually a crash.

« Eradicating the risk of ¢atcalls’. erroneous run-time situations, almost inevitably leading to
crashes, resulting from the use of covariant argument typing.

« Providing a simple way, in concurrent object-oriented programminipdio an object handled
by a remote processor or thread of control, or to accesghbutlocking it, as needed by the
context and in a safe way.

A language mechanism provides a combined solution to all three issues.

This mechanism also allows new solutions to two known problems: how to check that a certain object has
a certain type, and then use it accordingly (“Run-Time Type Identification” or “downcasting”), for which

it may provide a small improvement over previously proposed techniques; and how to provide a “once per
object” facility, permitting just-in-time evaluation of certain object properties.

The solution relies on a small extension to the type system involving a single symbol, the question mark.
The idea is to declare certain types as “attached” (not permitting void values), enforce some new validity
rules that rule out void calls, and validate a number of common programming schemes as “Certified
Attachment Patterns” guaranteed to rule out void calls. (In addition, the design replaced an existing type-
guerying construct by a simpler one.)

The mechanism is completely static: all checks can be performed by compilers as part of normal type
system enforcement. It places no undue burden on these compilers — in particular, does not require
dataflow analysis — and can be fairly quickly explained to programmers. Existing code, if reasonably
well-written, will usually continue to work without change; for exceptions to this rule, often reflecting real
risks of run-time crashes, backward-compatible options and a clear transition path are available.

The result is part of the draft ECMA (future 1ISO) standard for Eiffel.

There is one and only one kind of acceptable language extension: the one that dawns on you with the
sudden self-evidence of morning mist. It must provide a complete solution to a real problem, but
usually that is not enough: almost all good extensions solve several potential problems at once,
through a simple addition. It must be simple, elegant, explainable to any competent user of the
language in a minute or two. (If it takes three, forget it.) It must fit perfectly within the spirit and
letter of the rest of the language. It must not have any dark sides or raise any unanswerable
questions. And because software engineering is engineering, and unimplemented ideas are worth
little more than the whiteboard marker with serves to sketch them, you must see the implementation
technique. The implementors' group in the corner of the room is grumbling, of course — how good
would a nongrumbling implementor be? — but you and they see that they can do it.

When this happens, then there is only one thing to do: go home and forget about it all until the next
morning. For in most cases it will be a false alarm. If it still looks good after a whole night, then the
current month may not altogether have been lost.

From “Notes on Language Design and Evolution’[i5)].

http://se.inf.ethz.ch
http://www.eiffel.com

1 Overview

The design of a programming language is largely, if the designer cares at all about reliability of the
resulting programs, the design of a type system. Object-oriented programming as a whole rests on a
certain view of typing, the theory of abstract data types; this makes it natural, when searching for
solutions to remaining open problems, to turn for help to typing mechanisms.

One such problem isoid-safety. how to guarantee that in the fundamental object-oriented
operation, a feature cal.f (args), the targetx will always, at execution time, denote an object. If it
does not — becauseis “void” — an exception will occur, often leading to a crash.

This article shows that by fine-tuning the type system we may remove this last significant source
of run-time errors in object-oriented programs. The basic language extension is just one symbol (the
guestion mark).

As language extensions should, the mechanism yields other benefits beyond its initial purpose. It
provides a solution to the “catcall” issue arising from covariant argument redefinition; a better technique
of run-time object type identification; a flexible approach to object locking in concurrent programming;
and a simple way to perform lazy computation of attributes (“once per object”).

1.1 Mechanism summary

Here is a capsule description of the mechanism:
. A call x.f(args) is only valid (as enforced statically) if its targes attached

. The simplest way for a variable to be attached is to be declared of an “attached type”, guaranteeing
that no value can be void. Types are indeed attached by default. To get the “detachable” version
of a typeT (permitting void values) use T.

. For variables of a detachable type, some simple and common program schemes guarantee a non-
void value. For example, immediately afeate x... or the tesif x /= Void then ..., xis not
void. The mechanism uses a small catalog of suértified Attachment Patterier CAPSs, easy
for programmers to understand and for compilers to implement. A variable used in such a CAP is
attached (again, statically), even if its type is not. CAPs are particularly important in ensuring that
reasonably-written existing software will run unmodified. Initial evaluation suggests that this will
be the case with the vast majority of current code.

. Outside of these patterns, a call of targaequiresx to be of an attached type. The remaining
problem is to guarantee that such a variable will never be void. The basic rule concerns assignment
and argument passing: if the target is attached, the source must be attached too. This leaves only
the question of initialization: how to ensure that any attached variable is, on first access, not void.

. Some types guarantee non-void initialization by providing a default initialization procedure that
will produce an object. We call them “self-initializing types”.

. A variable that is not of such a type may provide its own specific initialization mechanism. We
call it a “self-initializing variable”.

. Generic classes can use a question mark to specify a self-initializing type parameter.

. This leaves only the case of a variable that could be accessed while void (because no CAP applies,
the type is not self-initializing, and neither is the variable itself). The “Object Test” construct
makes it possible to find out if the variable is attached to an object of a specific type, and then to
use it safely.

1.2 The void safety issue

The basic idea of typed object-oriented languages is to ensure, thanks to validity rules on program texts
enforced statically (at compile-time), that the typical object-oriented operatidiiargs), known as a
“qualified call”, will never find x attached to an object not equipped to execute the operatibime
validity rules essentially require the programmer to declare every variable, routine argument, routine
result and other entity with an explicit type (based on a class, which must include the apprbpitate
the appropriate arguments), and to restrict polymorphic assignmentg as well as actual-to-formal
argument associations, to those in which the type/ @bnforms to the type ofx; conformance is
governed by inheritance between classes, so tlia #vailable for the type aof it will also be available,
with a compatible signature, for the typexof

This technique, pioneered by Eiffel and Trellis-Owl and since implemented in various ways in
typed O-0 languages, eliminates many potential run-time errors, and has succeeded in establishing static
typing firmly. But — notice the double negation in the above phrasing of the “basic idea” — it only
works if the target entityx, is attached to an object at the time of execution. Rather than directly
denoting an objectix is often areferenceo a potential object; to support the description of flexible data
structures, programming languages generally permit a reference voidyeor “null”, that is to say
attached to no object. Kis void at the time of the call, an exception will result, often leading to a crash.

The initial goal for the work reported here was once and for all to remove this sword of Damocles
hanging over the execution of even a fully type-checked program.

1.3 General description

The basis of the solution is to extend the type system by defining every typat@asHhed or
“detachablg where an attached type guarantees that the corresponding values are never void. Attached
is the default. A qualified callx.f (args), is now validonly if the type ofx is attached. Another new
validity rule now allows us to assign (or perform argument passing) from the attached version of a type
to the detachable version, but not the other way around without a check of non-voidness. Such a check,
applied to an expressiaxp of a detachable type, is a new kind of boolean expression: an “Object Test”

of the form{x: T} exp, whereT is the desired attached type axt a fresh variable. In the Conditional
instruction

if {x: T} expthen 11/
... Instructions, in particular calls of the form x.f(args) ...
end

if the Object Test evaluates to true, meaning i is indeed attached to an object of typexis bound

to that value ofexp over the “scope” of the Object Test, here the whiblen clause. Calls of target

are then guaranteed to apply to a non-void target over that scope. It is necessary to use such a locally
bound variable, rather than directly working exp, because iexp is a complex expression or even just

an attribute of the class many kinds of operation occurring withirittee clause, such as calls to other
routines of the class, could perform assignments that raglgeoid a gain and hence hang the sword of
Damocles back up again. The variablés a “read-only”, like a formal routine argument in Eiffel: it
cannot figure as the target of an assignment, and hence will keep, over the scope of the Object Test, the
original value ofexp, guaranteed to be non-void.

The Object Test resembles mechanisms found in typed object-oriented languages under names
such as “Run-Time Type Identification”, “type narrowing”, “downcasting”, and the “with” instruction of
Oberon; it addresses their common goal in a compact and general form and is intended to subsume them
all. In particular, it replaces Eiffel's original “Assignment Attempt” instruction, one of the first such
mechanisms, writterxx ?= exp with (in the absence of a specific provision for attached types) the
semantics of assigningxp to x if exp happens to be attached to an object of the same typeoas
conforming, and making void otherwise. An assignment attempt is typically followed by an instruction
that testsx againstVoid. The Object Test, thanks to its bound variable and its notion of scope, merges

the assignment and the test.

Relying on the Object Test instruction alone would yield a complete solution of the Void Call
Eradication problem, but would cause considerable changes to existing code. Sometimes it is indeed
necessary to add an Object Test for safety, but in a huge number of practical cases it would do nothing
but obscure the program text, as the context guarantees a non-void value. For example, immediately after
a creation instructionreate Result. .., we know thaResult, even if declared of a detachable type, has
an attached value and hence can be used as the result of a function itself declared attached. We certainly
do not want in such a case to be forced to proResult through an Object Test, which would be just
noise. An important part of the mechanism is the notioeftified Attachment Patterna catalog of
program schemes officially guaranteeing that a certain variable, even if declared of an attached type, will
in certain contexts always have a certifiably attached value. The catalog is limited to cases that can be
safely and universally guaranteed correct, both easily explainable to programmers and easily
implementable by compilers; these cases cover a vast number of practical situations, ensuring that the
Object Test, however fundamental to the soundness of the approach as a whole, remains — as it should
be — a specialized technique to be used only rarely.

An immediate consequence of these techniques will be to remove preconditions, occurring widely
in libraries of reusable classes as well as in production applications, of thedguire x/ = Void for
a routine argument (sometimes for an attribute as well). Informal surveys shows that in well-written
Eiffel code up to 80% of routines contain such a precondition. With the new type system, it is no longer
necessary if we declareof an attached type. Going from preconditions to a static declaration, and hence
a compile-time check, is a great boost to reliability and a significant simplification of the program text.

To go from these basic ideas to a full-fledged language mechanism that delivers on the promise of
total, statically-enforced Void Call Eradication, the solution must address some delicate issues:

. In a language framework guaranteeing for reliability and security that all variables, in particular
object fields, local variables of routines and results of functions, are automatically initialized (an
idea also pioneered by Eiffel and widely adopted by recent languages), how to ensure that
variables declared of an attached type are indeed initialized to attached values.

. How to handle attached type in the context of genericity. For example, the Eiffel library class
ARRAY [G] is generic, describing arrays of an arbitrary tygeSometimes the corresponding
actual parameter will be attached, requiring — or not! — automatic initialization of array entries;
sometimes it will be detachable, requiring automatic initialization of all entrieid. It would
be really unpleasant, for this and all other container classes, to have to provide two versions, one
for detachable types and one for attached types, or even three depending on initialization
requirements for attached types. The solution to this issue is remarkably simple (much shorter to
explain than the details of the issue itself): if a generic class needs to rely on automatic
initialization of variables of the formal generic type (h&g make this part of the declaration for
the parameter, requiring clients to provide an initialization mechanism for actual parameters that
are attached types.

. How to make the whole mechanism as invisible as possible to programmers using the language.
We must not force them to use any complicated scheme to attain ordinary results; and we must
guarantee an “effect of least surprise”. In other words they should be able to write their application
classes in a simple and intuitive way, the way they have always done, even if they do not
understand all the subtleties of attachment, and it is then our responsibility to ensure that they get
safely operating programs and the semantics corresponding to their intuition.

. How to ensure that the resulting type system achieves its goal of total Void Call Eradication. The
authors of Spec#, a previous design which influenced this work, write that they expeet
unexpected non-null reference exceptiojd$. We are more ambitious and expect to remove such
exceptions entirely and forever. Here it must be mentioned that although we believe that the design
described here reaches this goal we have not provided a mathematical proof or, for that matter, do
not yet have a formal framework in which to present such a proof.

. In the case of Eiffel, a well-established language with millions of lines of production code, how
to provide a smooth transition to the new framework. The designers of Spec# have the advantage
of working on a new research language; Eiffel has commercial implementations with heavy
customer investment in business-critical applications, and we must guarantee either backward
compatibility or a clear migration path. This alone is a make-or-break requirement for any
proposed Eiffel solution.

Our solutions to these issues will be described below.

In finalizing the mechanism we realized that it helps with two other pending issues, one widely
discussed and the other more esoteric at first sight but important for the future of object technology:

. A covarianttype system (where both arguments and results of functions can be redefined in
descendant classes to types conforming to their originals) raises, in a framework supporting
polymorphism and dynamic binding, the specter of run-time type mismatches, or “catcalls”,
another source of crashes. We suggest the following solution to remove this other threat to the
reliability of our software: permit covariant redefinition of an argument (covariant result types are
not a problempnly if the new type is detachable. Then the new version must perform an Object
Test, and no catcall will result. This is a way of allowing the programmer to perform covariant
redefinition but forcing him to recognize that polymorphism may yield at run time an actual
argument of the old type, and to deal with that situation explicitly. The rule also applies to the case
of “anchored types”, which is a form of implicit covariance, and appears to resolve the issue.

. An analysis of what it takes to bringoncurrent programmingdo the level of quality and trust
achieved by sequential programming, and bring it up to a comparable level of abstraction, has led
to the development of the SCOOP mechan[4d] based on the transposition to a concurrent
context of the basic ideas of Design by Contract. One of the conclusions is to allow a call
X.f(args) to use a target representing a “separate” object — an object handled by a different
processor — and hence to support asynchronous handling, one of the principal benefits of
concurrencypnly if x is one of the formal arguments of the enclosing routine. Then a call to that
routine, using as actual argument foa reference to such a separate object, will block until the
object becomes available, and then will place an exclusive hold on it for the duration of the
routine’s execution. But it turns out that, conversely, a call using a separate actual argument should
not always reserve the object; for example we might only want to pass to another routine a
reference to that object, without performing any call on it. It would not be appropriate to decide
on the basis of the routine’s code whether object reservation is needed or not, as a kind of compiler
optimization: clients should not have to know that code, and in any case the body of a routine may
be redefined along the inheritance hierarchy, so that the language would not guarantee a specific
semantics for a routine under polymorphism. Instead, the rules will now specify that passing a
separate object as actual argument causes the call to place a reservation on thitastgemtly
if the corresponding formal argument is declared adtachedype. If not, the routine can assign
the argument to another variable, or pass it on to another routine; the target of the assignment, or
the corresponding formal argument, must themselves be of an unattached type in accordance with
the basic rule stated above. To perforad using such an argument as target, one must check its
attachment status, relying as usual on an Object Test; the final new semantic rule is that an Object
Test on a separate expression will (like its use as actual argument to a routine with a corresponding
attached formal) cause reservation of the object. So a simple convention to define the effect of
combining two type annotations, “separate” and “attached”, appears to provide the flexible and
general solution sought.

In passing, we will see that the mechanism additionally addresses two problems for which solutions were
available before, but perhaps addresses them better. One of the problem is Run-Time Type Identification:
the Object Test construct provides a simple and general approach to this issue. The other, for which Eiffel
already provided a specific mechanism, is “once per object”: how to equip a class with a feature that will
be computed only once for a given object, and only if needed at execution time. For example a field in
objects representing the stock of a company might denote the price history of the share over several
years. If needed, this field, pointing to a large list of values, will have to be initialized from a database.

If only because of the time and space cost, we want to retrieve these values only if needed, and then the
first time it is needed.

The following sections detail the mechanism and these applications.

2 Previous work, context and acknowledgments

The “non-null types” of Spec# are the obvious inspiration for the design presented here. It is a pleasure
to acknowledge the influence of that work. Our goal has been to try for a simpler and more general
mechanism. The reader who would like to compare the two designs should note that references to Spec#
in this article are based on 2003-2004 publicati#j$1] and check more recent work since Spec# has
been progressing rapidly.

Other work addressing some of the same issues has included the Self language’s attempt to
eliminate Void values altogeth¢?] and my own earlier (too complicated) attempt to provide void-
avoidance analysjd 0]. | also benefited from early exposure to the type system work of Erik Meijer and
Wolfram Schultg5].

The design reported here resulted from the work of the ECMA standardization effort for Eiffel
(ECMA TC39-TG4), intended to yield an ISO standgtfl The basic ideas are due to Eric Bezault, Mark
Howard, Emmanuel Stapf (TG4 convener and secretary) and Kim Waldén. Mark Howard first proposed,
| believe, the idea of replacing Eiffel's Assignment Attempt by a construct also addressing void call
eradication. The actual design of that construct, the Object Test, is due to Karine Arnout and Eric Bezault.
This article largely reports on the ideas developed by this group of people. As the editor of the standard
| bear responsibility for any remaining mistakes in the mechanism and of course in this article.

Numerous discussions with Peter Muller from ETH have been particularly fruitful in shaping the
ideas. The application of the mechanism to SCOOP (the last problem) is part of joint work with Piotr
Nienaltowski of ETH. Also helpful have been comments on the Eiffel draft standard from David
Hollenberg and Paul-Georges Crismer.

In addition | am grateful to Andrew Black and Richard van de Stadt for their tolerance and kind
assistance (extending beyond the normal duties of editors) in getting this article to press.

3 Syntax extension

In Eiffel’'s spirit of simplicity the advances reported here essentially rely on one single-letter symbol: it
is now permitted to prefix a type by a question mark, as in

x.?T

instead of the usuat T. (The other syntactical novelty, Object Test, is not an addition but a replacement
for the previous Assignment Attempt mechanism.) The question mark turns the type from attached to
detachable. It is also possible to prefix a formal generic parameter with a question mark, as in

class ARRAY [? G] ...

with semantics explained in sectign

The standards committee decided that in the absence of a questiotypeslare attached by
default and hence do not suppdroid as a possible value. This is based on the analysis that void values
are of interest to authors of fundamental data structure libraries such as Eiff¢iBaadich include
classes representing linked data structures such as void-terminated linked lists, but much less to authors
of application programs; classeSOMPANY _STOCK in a financial application oL ANDING _
ROUTE in an aeronautic application are unlikely to require support for void values. So we ask
professional library developers working on the basic “plumbing” to specify the possibility of void values
when they need it, by using detachable types for example in the declaration of the neighboring item in
classLINKABLE [G] describing linked list items:

right. ? LINKABLE [G] (LINKABLE) -:'l_>
item right

but leave application programmers in peace when, as should usually be the case, they don’t care about
void values and, more importantly, don’t want to worry about the resulting possibility of void calls.

This choice of default semantics raises a backward compatibility problem in the context,
mentioned above, of preserving the huge commercial investment of Eiffel users; in the previous versions
of the language, reference types support void by default, and some programs take advantage of that
convention. To address this issue, we provide the syié®eh transition facility. T means the attached
version of typeT. In standard Eiffel this will mean the same gsso the exclamation mark symbol is
redundant. But offering an explicit symbol enables compilers to provide a migration option whereby the
default semantics is reversefitheans? T), compatible with the previous convention. Programmers can
then continue to use their existing classes with their original semantics, while starting to take advantage
of void-call avoidance guarantees by declaring attached types with the ekplicihe final state, the
need forl will go away. In the rest of this article we stick with the Standard option: we don’t need to use
I at all, with the understanding thaimeand T.

The? and! symbols are inspired by the conventions of Spec#. There has been criticism on the
part of some Eiffel users that these are cryptic symbal$q6ks like C++!") not in the Eiffel style; the
symbol! in particular has bad karma since it was part of a short-lived syntax variant for the creation
instruction now written in the normal Eiffel style aseate x. Although the symbols have the benefit of
brevity, they might similarly go away in favor of keywords, not affecting the validity rules, semantics
and discussion of the present article.

To understand the rest of that discussion, note that Eiffel has two kinds ofrgfpeencetypes,
the default, whose values are reference to objects (or void in the case of detachable typeg)aaddd
types, equipped with copy semantics. (The “value” types of C# are a slightly more restricted form of
expanded types.) A type is expanded if it is based on a class declaggdasded class C ... rather
than justclass C ... Expanded types serve in particular to represent subobiject fields of objects, as well
as to model the basic types such/ASEGER and REAL, enabling Eiffel to have a consistent type
system entirely based on the notion of class. Obviously expanded types do not supgas one of
their possible values. In the rest of this discussion the term “attached type” covers both non-detachable
reference types (the most common case) and expanded types; that is to say, every type except a
(reference) detachable type declared explicitly &

4 Constraints on calls and attachment

The fundamental new constraint ensuring avoidance of void calls restricts the target of a qualified call:

Target Validity rule

A qualified calla.for a.f (args) is valid only if the target expressiam
is attached.

An expressiora is said to be attached, in the usual case, if its type is attached. This notion will be slightly
generalized below.

A general note on the style of language description: “validity rules” in the specification of Eiffel
[6] [4] [12] stand between syntax and semantics; they supplement the syntax by placing constraints
(sometimes known as “static semantics”) on acceptable language elements. Unlike in many other
language descriptions, Eiffel’s validity rules are always phrased in “if and only if” style: they don't just
list individual permitted and prohibited cases, but give an exhaustive list of the necasgayfficient
conditions for a construct specimen to be valid, thus reinforcing programmer’s confidence in the
language. This property obviously does not apply to the rules as given in this article, since it is not a
complete language description. The Target Validity rule, for example, appears above in “only if” style
since it supplements other clauses on valid calls (suchlssng of a type that has a featureith the
appropriate arguments, exported to the given client). The rules respect the spirit of the language
definition, however, by essentially specifying all the supplementary clauses added to the existing rules.

The Target Validity rule will clearly ensure eradication of void calls if attached types live up to
their name by not permitting void values at run time; the discussion will now focus on how to meet this
requirement.

The other principal new constraint on an existing construct governs attachment. The term
“attachment”, for sourcer and targetx, covers two operations: the assignment y, and argument
passing (..., y;, ...)ora.f(..., y, ...) where the corresponding formal argumentisx. The basic existing
rule on attachment igonformanceor convertibility of the source to the target; conformance, as
mentioned, is based on inheritance (with provision for generic parameters), and convertibility is based
on the Eiffel mechanism, generalizing ordinary conversions between basic types sNGiE&ER and
REAL and allowing programmers to specify conversions as part of a class definition. Now we add
a condition:

Attachment Consistency rule

An attachment of sourcg and targetx, where the type ok is attached, is
permitted only if the type of is also attached.

This rule is trivially satisfied for expanded types (the only type that conforms to an expanddditype
ET itself) but new for attached reference types.

A companion rule lets us, in the redefinition of a feature in a descendant of the original class,
change a result type from detachable to attached, and an argument type from attached to detachable. The
rationale is the same, understood in the context of polymorphism and dynamic binding.

This rule narrows down the risk of void call by guaranteeing that if a void value arises somewhere
it will not be transmitted, through assignment or argument passing, to variables of attached types. There
remains to guarantee that the valueiially set for targets of attached type can never be void. This
sometimes delicate initialization issue will indeed occupy most of the remaining discussion.

5 Initialization

5.1 Variables and entities

Initialization affects not just variables but the more general notion of “entity”. An entity is any hame in
the program that represents possible values at run time. This covers:

. Variables local variables of routines, attributes of classes (each representing a field in the
corresponding instances).

. “Read-only entities: manifest constants, as in the declara®nREAL = 3.141592, formal
arguments of routine§iurrent representing the current objects (similar to this or self).

A variablex can be the target of an assignment, as:i y. Read-only entities can't, as they are set once

and for all. More precisely: a constant has a fixed value for the duration of the proGrament is set

by the execution (for the duration of a callf, the new current object will be the object attachedt,tas
evaluated relative to the previous current object); formal arguments are attached to the value of the
corresponding actuals at the time of each call, and cannot be changed during the execution of that call.

Local variablesinclude a special case, the predefined Idgabult denoting the result to be
returned by a function, as in the following scheme:

clicked_window (address: URL) : WINDOW 12/
-- Window showing URL for address: depending on user

-- request, either same as current display window or
-- newly created one.

do
if must_open_in_new_window then
create Result . make (address)
else -- Keep current window, but display address
Result := display_window. displaying (address)
end
end

This example also illustrates the creation instruction, here using the creation prooegheeUnlike
the constructors of C++, Java or C#, creation procedures in Eiffel are normal procedures of the class,
which happen to be marked as available for creation (the class lists them in a clauselab&gd

The example also shows a typical context in which the initialization issue angd8O>OW being
an attached type, we must make sure tRasult is attached (non-void) on exit. Clearly a creation
instruction (first branch) produces an attached result. The second branch will work too if the function
displaying, returning aWINDOW and hence required to produce an attached result, satisfies this
requirement.

5.2 Self-initializing types

In earlier versions of Eiffel, initialization has always been guaranteed for all variables, to avoid the kind
of run-time situation, possible in some other languages, where the program suddenly finds a variable
with an unpredictable value as left in memory by the execution of a previous program if any. This would
be a reliability and security risk. Any solution to the initialization issue must continue to avoid that risk.

Since read-only entities are taken care of, it remains to ensure that every variable has a well-
defined value before ifgst use meaning more precisely:

. For local variables of a routine includingResult for a function: the first use in any particular
call tor.
. For attributes: the first use for any particular object. This doesn’t just mean the first use in a routine

call x.r (...) wherer is a routine of the class: it can also be during a creation operation
create x.make (...) at the time the object is being created, whaereke may try to access the
attribute; or, if contract monitoring is on, in the evaluation of the class invariant, before or after the
execution of a routine call.

Eiffel's earlier initialization rules were simple:
1 <A variable of a reference type was initializedWoid. This policy will be retained for detachable
types, but we need a different one for attached types; this is the crux of our problem.
2 *The basic type8BOOLEAN, CHARACTER, INTEGER, REAL, all of them expanded types,
specify default initialization values, respectivélgise, null character), 0.0.

3 sProgrammer-defined expanded types were required to inclafiilt_create among their crea-
tion proceduresdefault _create is a procedure defined in claggVY (the top-level class of which
all other classes are descendants, simil@lect in other frameworks but in the context of mul-

tiple inheritance) where it does nothing; any class can redefine it to implement a specific initiali-
zation scheme. Although implicitly present in every clafsfault _create is not necessarily avail-
able as a creation procedure; this happens only if the class lists it explicitlgrigaits clause.

Case2is in fact an application of cas® assuming proper versions @éfault_create in the basic types.
Note thatdefault _create only needs to create a new object in the case of reference types; for variables
of expanded types, it can simply apply its algorithm to an existing object.

It is tempting to keep thislefault_create requirement for expanded types, extend it to attached
types, and declare victory. This was, however, found too restrictive. First, it would break most existing
code: as noted above, we would like to assume that most application classes do not need void values, and
so can effortlessly be reinterpreted, under the new scheme, as attached; but we cannot assume that all or
even a majority already suppa@éfault_create as creation procedure. In fact this is not such a common
case since most non-trivial class invariants require creation procedures with arguments. Even for new
classes, thdefault_create requirement is not one we can easily impose on all application programmers.

Even if we can’t use impose it universally, this requirement does address the initialization problem
for variables of the corresponding types, so we may rely on it when applicable. We give such types a
name:

Definition: Self-initializing type
A type isself-initializing if it is one of:
» A detachable type.

» Atype (including the basic types) based on a class that madés/t
create from ANY available for creation.

For variables of self-initializing types we adopt a policjlafy initialization . The previous policy was
systematically to initialize object fields (corresponding to attributes) on object creation, prior to the
execution of any creation procedure suclnaske above, and local variables on routine entry, using in
both cases the default value, language-set or providetefgult create. Instead, we can now afford a
more flexible policy: no sweeping general initialization, but, on first access to a variable of a self-
initializing type, check whether it has already been set; if not,aathult create. This actually implies

a slight change of semantics for expanded types:

. Under the previous rules, the semantics for expanded types was that a variable directly denoted an
object of that type, rather than a reference. For an attribute, this meam®bjectof the current
object; for a local variable, the compiler-generated code may allocate the object directly on the
stackrather than on the heap. One of the disadvantages of this approach, apart from its too greedy
approach to initialization witlilefault_create, is that it requires a special rule prohibiting cycles
in the client relation between expanded types: if bddndB are expanded classes, you can't have
A declare an attribute of typ® and conversely, since this would mean that every object of &ype
has a subobject of tyg@and conversely.

. The new semantics is simply that expanded types simply represent objectopjtisemantics
rather than the defauleference semantictsing such an object as source of an assignment will
imply copying, rather than assign a reference.

. As a result, the clumsy prohibition of no client cycles between expanded classes goes away.

. We also removed the requirement that expanded types pratdfiri/t _create for creation; in
other words, they do not have to be self-initializing. When they are not, the same alternative
initialization techniques as for attached reference types, discussed below, are available to them,
and the same lazy initialization semantics.

. Compilers can now implement expanded types through references; this is purely a matter of
implementation, as the only requirement is copy semantics.

. In the vast majority of cases, there are indeed no cycles in the client relation; compilers can then
optimize the representation by using subobjects and stack-based allocation as before. In the
general spirit of the language’s evolution, the idea is to make things simpler and more easy to learn
for programmers (just talk about copy semantics, don't worry about implementation), remove
hard-to-justify restrictions, and expect a little more of the compiler writer.

. Previously, a creation instructiocreate x.make (...), where make can bedefault create,
would not (as noted) create an object for expanddalit simply applymake to an existing stack
object or subobject. Now it may have to create an object, in particular if the relation does have
cycles. This is an implementation matter not affecting the semantics.

. Whether or not it actually creates an object, the creation instruction will be triggered the first time
the execution needs a particular expanded variable. This change from a greedy policy (initialize
everything on object creation or routine entry) to a lazy one can break some existing cuteif
or default_create performs some significant operations on the current object and others: this
initialization can occur later, or not at all. The new policy seems better, but maintainers of existing
software must be warned of the change and given a backward-compatibility option to keep the
old semantics.

Except for copy semantics, the rest of this discussion applies to self-initializing reference types as well
as to expanded types.

To summarize the results so far, we have narrowed down the initialization problem by taking care
of one important case: self-initializing types, for which the policy will be to create the object (or possibly
reinitialize an existing object in the expand case) if its first attempted use finds it uninitialized.

This leaves — apart from generic parameters — the case of non-self-initializing types.

5.3 Self-initializing attributes

If the type is not self-initializing, we can make an individadtribute (instance variable) self-initializing.
(The technique will not be available for local variables.)

Here, especially for readers steeped in C++ or its successors such as Java and C#, a little digression
is necessary about what | believe to be a misunderstanding of object-oriented principles in a specific
aspect of the design of these languages. They consider an attribute (alsoinstiéente variable
member variabler field) as fundamentally different from a function (orethod; this is illustrated by
the difference in call syntax, as in

y 1= X.my_attribute 13/
versus
y := X.your_function () -- Note the parentheses 14/

which makes it impossible to change your mind — go from a storage-based implementation to a
computation-based one for a certain query returning information on objects of a certain type — without
affectingevery single clientising the query in the above styles. The Principle of Uniform Ac¢&lss
requires instead that such a choice of implementation should not be relevant to clients. In Eiffel (as
already in Simula 67) the syntax in both cases is simply

x.her_query

which could call either an attribute or a function; the term “query” covers both cases.

The problem goes further. Because a class in C++ etc., when it exports an attribute, exports the
information that it is an attribute (rather than just a query), it exports it for both reading and writing,
permitting remote assignments to object fields, such as

X.my_attribute = new_value /5/

This scheme is widely considered bad practice since it violates the principles of information hiding and
data abstraction, which would require a procedure call

X.set_my_attribute (new_value) 16/
with a properset_my_attribute procedure. As a result, textbooks warn against exporting attributes —
always a bad sign, since if a language design permits a construct officially considered bad the better
solution would be to remove it from the language itself — and suggest writing instead an exported
function that will return the value of the attribute, itself declared secret (private), so that instead of the
plain attribute acces8/ one will call, in style/4/, a function whose sole purpose is to access and return
the secret attribute’s value. But this leads to lots of noise in the program text, with secret attributes
shadowed by little functions all of the same trivial form (one line to return the value). “Properties”, as
introduced by Delphi and also present in C#, handle such cases by letting the programmer associate with
such a secret attribute a “getter” function and a “setter” procedure, which will respectively return the
value and set it. The advantage is to permit the assignment siaitaith the semantics of a procedure
call /6/ (as also now possible in Eiffel, with examples below). But the price is even more noise: in C#,
altogether three keywordsdlue, set, get) in the language, and still two separate features in the class
— the attribute and the property — for a single query.

The Eiffel policy is different. The Uniform Access Principle suggests that we should make as little
difference as possible between attributes and functions. Each is just a query; if exported, it is exported
as a query, for access only. The interface of a class (as produced by automatic documentation tools)
doesn’t show the difference between an attribute and a function; nor, as we have seen above, does the
call syntax (no useless empty parentheses).

Standard Eiffel goes further in the application of the principle. In particular, it was previously not
possible, largely for fear of performance overhead, to redefine an attribute into a function in a descendant
class (while the reverse was permitted). Partly as a result, attributes could not have contracts —
preconditions and postconditions — as functions do; postcondition properties can be taken care of in the
class invariant, but there is no substitute for preconditions. These restrictions are now all gone, in part
because of the availability of better implementation techniques that avoid penalizing programs that don’t
need the extended facilities. With a new keywaltdbute , one can equip an attribute with a contract:

bounding_rectangle: RECTANGLE 17/
-- Smallest rectangle including whole of current figure

require
bounded

attribute

ensure
Result. height = height
Result. width = width
Result.lower_left = lower_left
Result.contains (Current)

end

With this convention the attribute can freely be redefined into a function and conversely. Note that
Result, previously meaningful for functions only, is now available for attributes too; the example uses
it for its postcondition. This further enhances the symmetry between the two concepts. The previous
syntax for declaring an attribute, SOME_TYPE, remains available as an abbreviation for

X. SOME_TYPE
attribute

End of digression. This new generality of the concept of attribute suggests another simple mechanism
taking care of explicit attribute initialization, and making attributes even more similar to functions: give
them an optional algorithm by allowing instructions afttribute , the same way a function has
instructions aftedo (see e.g/2/). So we can for example provid@adow with an explicit initialization:

bounding_rectangle: FIGURE 18/
-- Smallest rectangle including whole of current figure

-- (Computed only if needed)
require

bounded
attribute

create Result .set (lower_left, width, height)
ensure

-- As above

end

The semantics is to call this code if — and only if — execution finds, for a particular object, the attribute
uninitialized on first use of that object.

An interesting benefit of this technique is to provideomte per object mechanism, letting us
performing a certain operation at most one time on any object, and only when needed, in a lazy style.
That's what the algorithm fobounding rectangle does. Here is another example, from a class
COMPANY_STOCK:

stock_history: LIST [VALUATION] 19/
-- Previous valuations over remembered period

attribute
if {I: LIST [VALUATION]}
database. retrieved (ticker_symbol) then
Result :=/ -- Yields list retrieved from database
else
create Result -- Produces empty list
end
ensure

end

The stock history list might be huge, so we only want to retrieve it into memory from the database for a
particular company if, and when, we need it. This could be done manually by keeping a boolean attribute
that says whether the list has been retrieved, but the technique is tedious is there are many such “lazy”
queries. Self-initializing attributes solve the problem in a simpler way. Note the use of an Object Test to
check whether the object structure retrieved from the database is of the expected type.

The presence of self-initialization for a particular attribute will, in the semantics, take precedence
over self-initialization at the class level if also present.

This concept of self-initializing attribute further narrows down the initialization issue. But it does
not yet solve it completely:

. It does not apply to local variables. In fact we could devise a similar notion of “self-initializing
local”, where the declaration includes an initialization algorithm. But this seems overkill for such
a narrowly-scoped notion.

. For both attributes and local variables the requirement of self-initialization cannot be the only
possibility. In some cases a human reader sees immediately that for every use of a variable at run
time an assignment or creation will have happened before, giving it a well-defined attached value.
Then the lazy initialization-on-demand of either self-initializing types or self-initializing
attributes is not necessary, and would in fact be deceptive in the program text since the
initialization code will be never be executed. We should simply let things go as originally written,
after checking that there is no risk of undefined or void value.

5.4 Certified Attachment Patterns

The last observation leads to the third and last initialization technique: rely on compilers (or other static
checking tools) to verify that explicit assignment or creation will have occurred before every use. The
authors of Spec# have reached a similar conclusion, taking advantage of modern compiler technology;
they write[1]:

Spec# stipulates the inference of non-nullity for local variables. This inference is performed as a
dataflow analysis by the Spec# compiler.

We differ from this assessment in only one respect: it is not possible in Eiffel to refer to “the compiler”.
There are a number of Eiffel compilers, and one of the principal purposes of the ECMA standard is
precisely to keep maintaining their specific personalities while guaranteeing full syntactical, validity and
semantic interoperability for the benefit of users. Even if there were only one compiler as currently with
Spec#, we do not wish to let programmers depend on the smartness of the particular implementation to
find out — by trying a compilation and waiting for possible rejection — if a particular scheme will work

or not. There should be precise rules stating what is permissible and what is not. These rules should be
available in a descriptive style, like the rest of a good language specification, not in an operational style
dependent on the functioning of a compiler. They should be valid for any implementation; after all, much
of the progress in modern programming language description has followed from the decision to abstract
from the properties of a particular compiler and provide high-level semantic specifications instead.

Apart from this difference of view, the Eiffel rules result from the same decision of relying — for
cases not covered by self-initializing types or attributes — on statically enforceable rules of good
conduct. We call them Certified Attachment Patterns:

Definition: Certified Attachment Pattern (CAP)

A Certified Attachment Pattern for a non-self-initializing variakylés a
general program context in whigtis guaranteed to be non-void.

Here is a typical Certified Attachment Pattern, for an arbitrary attribute or local varialiléhe body

of the routine starts with a creation instruction or assignment of tardgleén the immediately following
instruction position is a CAP fox. This is a very important pattern; in fact (as the reader may have noted)
neither of the last two examplé&/ /9/ would be valid without it, because they rely oor@ate Result

... instruction to ensure th&esult is non-void on return from the attribute evaluation. This property is
trivial — since thecreate instruction is the last in the routine — but without the CAP there would be
no way to rely on it.

The stock history examplé&/ also relies on another CAP: dapl and cap2 are two Certified
Assignment Patterns fog then so isf ¢ then capl else cap2 end for any conditiorc.

Here is a third CAP, assuming thais a local variable or formal routine argument:

if x /= Void then 110/
... Any Instructions here, except for assignments of target x.

end

Thethen branchis a CAP fok. It would not be a valid CAP ifx were an attribute, as théristructions”
could include procedure calls that perform an assignment (of a possible void valu@&ubfor a local
variable we can ascertain just by looking locally attties branch that there is no such assignment.

Certified Attachment Patterns, from the above definition, apply to “non-self-initializing
variables”. This includes variables of attached types that are not self-initializing, but also variables of
detachabletypes, which we had not considered for a while. In fact, as the reader may have/h6ted,
is meaningful only for a detachable type; if the typexaé attached, and not self-initializing, then the
attempt to evaluate it in the test'= Void of /10/ would not work; and the test is meaningless anyway
for x of an attached type. But for detachakline CAP is useful, as it allows us to perform a call of target
X as part of thénstructions.

Such calls are indeed valid. The Target Validity Rule, the basic constraint of the void-safe type
system, stated that “A qualified call fis only valid if a is attached”. As noted, this usually means that
the type ofa is attached, but we can generalize the definition to take advantage of CAPs:

Definition: Attached expression
An expressiora is attached if and only if either:
» lts type is an attached type.
e It occurs as part of a Certified Attachment Patterrafor

Without this CAP, we would have, for every use of a local variabt# a detachable types, to write an
Object Test (with the need to shadowwith an explicitly declared Object-Test-Locgl as in

if {y: TYPE_OF _ X} xthen ...) every time we want to useas target of a call. Occasion ally this cannot
be avoided, but often the routine’s algorithm naturally includles/= Void then ..., which the CAP
allows us to use as it stands, in the way we would normally do.

An associated CAP is forin the else part off x = Voidthen ...else ... end. Another one fox,
particularly important for class invariants, isdther_condition in

X /= Void and then other_condition

whereand then is the nonstrict conjunction operator, guaranteeing that the second operand will not be
evaluated if the first evaluates to false. This also works if we re@adahen byimplies (implication,
nonstrictin Eiffel, i.,eaimplies bis defined with value true i has value false, evenfifis not defined);

it works foror else if we change the test to= Void.

Another Certified Attachment Pattern, similar to the first, is particularly important for loops
iterating on linked data structure. It is of the form

from
until
x = Void
loop
... Any Instructions not assigning to x ...
end

If x is a local variable (again, not an attribute), it remains attached throughoturdinections. This
makes possible, without further ado — in particular, without any Object Test — a whole range of
common traversal algorithms, such as this one for searching in a linked list:

from . first_element
X = first_element .
until void
x = Void or else Result -3—> -3—\;"
|00p
Result = (x.item = sought_value) item right itemright item right
X = Xuright
end

(Result starts out false; the loop will set it to true if and only if the item in one of the list cells has an
item field equal tosought _value. x is as before a local variable) The CAP enables us to write the loop
exactly as we would write it anyway, with the guarantee that it will not produce any void call. A look the
previous version of the EiffelBase library suggests that many existing loops will similarly compile and
run “as is”; occasionally, application of the Target Validity rule will require a slight rewrite, at worst
inclusion of some instructions in an Object Test. This is extremely encouraging (especially given the
complexity of some of the intermediate suggestions, some involving changes to the loop construct, that
were experimented before we arrived at the general solution reported here). More generally, we see as
particularly attractive the prospect of replacing, in such a library, hundreds of occurrences of

some_routine (x: SOME_TYPE)
require
x I= Void
X.some_property

by just

some_routine (x: SOME_TYPE)
require
X.some_property

with the non-void test turned into a compile-time guaran®@VE_TYPE being an attached type) that
Xxindeed represents an object, so that we can concentrate on the more meaningful contractual properties
such as<. some_property.

A CAP, very useful in practice, applies to the instructions that immediately follow a series of
creation instructionsreate a ..., for one or morea: these instructions are a CAP for sughBeyond
local variables, this also applies to attributes, somewhat neglected by the previous CAPs, and enables us
to handle many simple cases such as guaranteeing that a just dReatdt of a function, as 8/ and
/9], is attached as expected.

Finally, as a concession to programmers who prefer to run the risk of an exception in the case of
a variable that shouldn’t be void but is, we include as CAP the position immediately following

check
x /= Void
end

taking advantage of Eiffel'sheck instruction. This instruction will raise an exceptiorxifs void. This
CAP is an escape valve, as we do not feel like preventing programmers from using an exception-based
style if that’s their choice (which we may disapprove).

Using CAPs to guarantee attachment is a pessimistic policy, erring, if at all, on the side of safety:
if we cannot absolutely guarantee the impossibility of a void value, the Target Validity rule will (except,
as noted, under backward-compatibility compiler options, to avoid breaking existing code) reject the
code. The design rule for CAPs is not that tisepport all correct casebut that theyeject any incorrect
case We can afford to miss some correct cases if they do not occur too frequently; the only drawback
will be that programmers may have, in some extreme and (we hope) rare situations, an Object Test that
appears unnecessary. (Remember that one of the reasons those cases are so rare is that CAPs are only a
technique of next-to-last resort, and Object Tests of the last one: in many practical cases the Eiffel
programmer can rely on self-initializing types or variables.) As a result we can afford not to care too
much about cases that worry the Spec# desigi®rElL], such as a creation procedure that needs to
access an attribute that one is not sure has already been initialized. In Eiffel, the attribute will often be
of a self-initializing type, or itself be declarediribute ... so thatitis self-initializing; if not, there might
be a matching CAP; if not, the programmer can always get away with an Object Test or, if that’s the
preferred style, force a CAP withcheck instruction as above. We don’t have to turn our compilers into
prodigies of dataflow analysis.

We do not, in fact, want CAPs to be too sophisticated. They should cover situations where it is
immediately obvious to a human reader (and, besides, true!) that an expression cannot take on a void
value even though it is neither of an attached type nor self-initializing. The argument should be simple
and understandabile. If it is convoluted, it may be just as well to force a slight rewrite of the immediate
context to make the safety argument compelling. In other works, when it comes to establishing
guaranteed attachment statwg do not want Eiffel compilers to be too smabiout possible voidness.

The argument should always remain clearly understandable to the reader of the program, in the Eiffel
spirit of clarity and quality-focused software engineering. (There is still a great need for sophisticated
dataflow analysis and more generally for very smart compiler writers: generate the fastest and most
compact code possible.)

This approach rests under the assumption that a small number of simple CAPs capture the vast
majority of practical situations. This seems to be the case with the set of CAPs sketched above, covering
most of what has been included in the Eiffel standard, where they are of course specified much more
precisely. On the organizational side, the existence of an international standards committee provides a
good framework: even if the CAP catalog remains separate from the Eiffel standard proper, permitting
more frequent additions, it should remain subject to strict quality control and approval by a group of
experts after careful evaluation. Technically (beyond “proof by committee”), the goal should be, with the
development of a proper mathematical frameworlgrtmve— through machine-validated proofs — the
validity of proposed CAPs. The three criteria that must remain in force throughout that process are:

. A guarantee of correctness beyond any doubt.
. Simple enforceability by any reasonable compilgthoutdataflow analysis.

. Understandability of all CAPs by any reasonably qualified programmer.

6 Object Tests and their scopes

The Object Test form of boolean expressipn, T} exp, was presented in the Overview, which gave the
essentialsT is an attached typesxp is an expressiory is a fresh name not used for any entity in the
enclosing context, and is known as tibject-Test-Local of the expression. Evaluation of the
expression:

. Yields true if and only if the value aéxp is attached to an object of tyge(and so, as a particular
consequence, not void).

. Has the extra effect of bindingto that value for the subsequent execution of the program extract
making up the scope of the Object Tests a Read-Only entity and hence its value can never be
changed over that scope.

The scope depends on where the Object Test appears. We sawithattiren ... else ... end, with ot

an Object Test, the scope is ttien part. Also, if a condition is of the forrot and then boolexp or
otimplies boolexp, the scope includeBoolexp as well. With a negated Object Testt {x: T} exp,

the scope, in a conditional instruction, is thilee part; such negated variants are particularly important
for loops, since in

from ... until not {x: T} exploop ... end

the whole loop clause — the loop body — is part of the scope.

The notion of scope has been criticized by some experienced Eiffel programmers who in line with
the Eiffel method’s emphasis on command-query separgéipdo not like the idea of an expression
evaluation causing initialization of an entity as a side effect. But apart from some unease with the style
there seems to be nothing fundamentally wrong there, and the construct does provide a useful and
general scheme.

In particular, it is easier to use than Eiffel's earlier Assignment Attempt mechaxi®m y.
Although an effective and widely used method of run-time type ascertainment, the Assignment Attempt
treats the non-matching case by reintroducing a void valuejffaevhich in light of this entire discussion
doesn’t seem the smartest idea. An Assignment Attempt almost always requires declaring the target
specially as a local variable; with Object Test we integrate the declaration in the construct. It should
almost always be followed by a tesf= \Void, yet it is possible for programmers to omit that test if they
think the object will always match; this is a source of potential unreliability. Here we essentially force
such a test through the notion of scope.

In general, the Object Test seems an attractive alternative to the various run-time type
identification and ascertainment (including downcasting) in various languages; it seems to subsume
them all.

7 Generic classes

Perhaps the most delicate part of the attachment problem is the connection with genericity. There turns
out to be a remarkably simple solution. (This needs to be pointed out from the start, because the detailed
analysis leading to that solution is somewhat longish. But the end result is a four-line rule that can be
taught in a couple of minutes.)

Consider a container class such4RRAY [G] (a Kernel Library class) oL/ST [G]. G is the
“formal generic parameter’, representing an arbitrary type. To turn the class into a type, we need to
provide an ‘actual generic parameter, itself a type, as ilARRAY [INTEGER], LIST [EMPLOYEE].

This process is called ay&neric derivation’. The actual generic parameter may itself be generically
derived, as iMRRAY [LIST [EMPLOYEE]].

Genericity can be constrained, asiSH_TABLE [ELEMENT, KEY —> HASHABLE] which
will accept a generic derivatioASH_TABLE [T, STRING] only if STRING conforms to (inherits
from) the library class1/ASHABLE (in the Eiffel Kernel Library it does). Unconstrained genericity, as
in ARRAY [(], is formally an abbreviation fodRRAY [G —> ANY].

None of these class declarations places any requirement on the attachment status of a type. You
can use — subject to restrictions discussed noRRAY [T] as well asARRAY [? T]. The same holds
even for constrained genericity: attachment status does not affect conformance of type&li(erfts
from T, ? U still conforms toT. It's only for entities and expressions that the rules are stricter: With
andy: ? U, y does not conform ta, prohibiting the assignment:= y.) Without such rules, we would
have to provide two versions gfRRAY and any other container class: once for attached types, one for
detachable types. Not an attractive prospect.

Now consider a variable of typ8in a generic clas€ [G]. What about its initializatio? G stands
for an arbitrary type: detachable or attached; if attached, self-initializing or not. Within the class we don’t
know. But a client class using a particular generic derivation needs to know! Perhaps the most vivid
example is array access. Consider the declarations and instruction

X,y T
I, , INTEGER
arr: ARRAY [T]

arr. put (x, i) -- Sets entry of index /to x; Can also be 11/
-- written more conventionally as arr [i] ;= x

This sets a certain entry to a certain value. Now the client may want to access an array entry, the same
or another:

y:=arr.item(j) -- Can also be written as y := arr [j] 112/

Tis an attached type. Instructighl/will indeed store an attached value into ttl entry, assuming the
array implementation does its job properly. Since the ABRAY [G] will, as one may expect, give for
functionitem the signature

item (i: INTEGER): G

and the actual generic parameter farr is T, instruction /12/ correspondingly expects the call
arr.item (j) to return a7 result, for assignment tp This should be the case fpr /, but what about other
values ofj, for which the entry hasn’t been explicitly set byia yet?

We expect default initialization for such items of container data structures, as for any other
entities. But how is clasdRRAY [G], or any other container class, to perform this initialization in a way
that will work for all possible actual generic parameters: detachable, ARRAY [? T], expanded, or
attached as witdRRAY [T] but with T either self-initializing or not?

The tempting solution is to provide several versions of the class for these different cases, but, as
already noted, we'd like to avoid that if at all possible. We must find a way to support actual generic
parameters that are detachable, easy enough since we can always initi@izar@able to Void, or
attached, the harder case since then we must be faithful to our clients and always return an attached result
for queries such agem that yield aG.

The result of such a query will be set by normal instructions of the language, for example creations
or assignments. For example the final instruction of a query sughrasnay beResult := x for some
X. ThenResult will be attached if an only ik is attached. Althouglk could be a general expression, the
properties of expressions are deducible from those of their constituents, so in the end the problem
reduces to guaranteeing that a certain entitpf the class, of typeG, is attached whenever the
corresponding actual paramefeis. Let’s consider the possible kinds of occurrence of

1 «x may be a formal argument of a routine of C. From the conformance rules, which state that only
G itself conforms toG, x will be of type T (the actual generic parameter of our example), detach-
able or attached exactly as we want it to be. Perfect! Other cases of read-only entities are just as
straightforward. From then on we consider only variables.

2 *We may be using as a target of a creation instructioreate x.make (...) or justcreate x.
That's the easiest case: by constructiowill always be attached, regardless of the statub.¢T o
make such creation instructions possible the formal generic parameter must satisfy some rules, part
of the general Eiffel constraints: it must specify the creation procedures in the generic constraint,
asinC[G—> Ccreate make end], wheremakeis a procedure of, or similarly C [G —> ANY
create default_create end]. Then the actual generic paramelanust provide the specified pro-
cedures available as creation procedures.)

3 *We may be using as the target of an assignment= y. Then the problem is just pushed recur-
sively to an assessment of the attachment statys of

4 «The last two cases generalize to that of an occurrence in a Certified Assignment Pattern resulting
from the presence of such a creation instruction or assignment instruction guaranteed to yield an
attached target, for example at the beginning of a routine.

5 «So the only case that remains in doubt is the use-effor example in the source of an assignment
— without any clear guarantee that it has been initializeg'sltype were not a formal generic, we
would then requirexto be self-initializing: either by itself, through antribute clause, or by being
of a self-initializing type. But here — except if we get a self-initializing attributef type G, a
possible but rare case — we expect the guarante&tregiresents a self-initializing type.

We don’t have that guarantee in the general cdsas noted, may be of any kind. And yetTfis not
self-initializing we won't be able to give the client what it expects. So what we need, to make the
mechanism complete, is language support for specifying that a generic parameter must be self-
initializing (that is to say, as defined earlier, either detachable or provilifeult create as a creation
procedure). The syntax to specify this is simply to declare the class, instead®f@isas

class C[? G] ...

This syntax is subject to criticism as it reuses a convention?tbédetachable types, with a slightly
different meaning. But it seemed preferable to the invention of a new keyword; it might change if too
many people find it repulsive, but what matters here is the semantic aspect, captured by the validity rule:

Generic Initialization rule

Consider a formal generic parameteof a class C.

1 «If any instruction or expression of C uses an entity of tfpia a state
in which it has not been provably initialized, the class declaration must
specify? G rather than jusG.

2 «If the class declaration specifi@sG, then any actual generic parame-
ter for G must be self-initializing.

A formal generic parameter of the form is known asedf-initializing formal ; clearly we must add this
case to the list of possibilities in the definition of self-initializing types.

In the Standard these are two separate validity rules. There are both very easy to state and apply.
The firstis for the authors of generic classes — typically a relatively small group of programmers, mostly
those who build libraries — and the second for authors of clients of such classes; they’'re a much larger
crowd, typically including all application programmers, since it’s hard to think of an application that
doesn't rely on generic classes for arrays, lists and the like.

ClassARRAY will fall under clausel, declared ag\RRAY [? GJ; this makes it possible to have
arrays of T elements for an attached tyge The rule is very easy to explain to ordinary application
programmers (the second grougRRRAY gives you a guarantee of initialization — you'll never get back
a void entry from amARRAY [T], througharr. item (i), or arr [/] which means the same thing —, so you
must provide that default initialization yourself by equippifigiith adefault_create. Now if you can't,
for example ifTis really someone else’s type, then don’t worry, that's OK too: instead afffRAY [T]
use anARRAY [? T]; simply don’t expecarr [/] to give you back d/, it will give you a? T, possibly
void, which you'll have to run through an Object Test if you want to use it as attached, for example as
the target of a call. Fair enough, don'’t you agree?

This? G declaration leading to a requirement of self-initializing actual generic parameters applies
to classARRAY because of the specific nature of arrays, where initialization has to sweep through all
entries at once. It doesn’'t have to be carried through to data structures subject to finer programmer
control. For example, in clas&/ST [G] and all its EiffelBase descendants representing various
implementations of sequential lists, suchld&KED _LIST [G], TWO_WAY _LIST [G], ARRAYED _
LIST[G] etc., the basic operation for inserting an iterwasir_list. extend (x), addingx at the end, with
implementations such as

extend (x: G)
-- Add x at end.
local
new_cell: LINKABLE [G]
do
create new_cell.make (x)

end

Then, to get the items of a list, we access fields of list cells, of tipéKABLE [G] for the sameG,
through queries that return@ This is casé& 1, the easiest one, in the above list, guaranteeing everything
we need to serve our attached and detachable clients alike.

Most generic classes will be like this and will require no modification whatsoever, takinggust a
rather than & G. ARRAY and variants (two-dimensional arrays etc.) are an exception, very important
in practice, and of course there will be a few other cases.

8 Getting rid of catcalls

Having completed Void Call Eradication, we come to the second major problem, whose discussion (to
reassure the reader) will be significantly shorter; not that the problem is easier or less important, but
simply because the solution will almost trivially follow from the buildup so far.

Typed object-oriented programming languages are almosbsadriant if you redefine a routine
in a descendant of the class containing its original declaration, you cannot change its signature — the
type of its arguments and results.

And yet... modeling the systems of the world seems to require such variance. As a typical example,
consider (see the figure on the opposing page) a ¢BR$CLE with a query and command

driver: DRIVER
register (d: DRIVER) do driver := dend 113/

A vehicle has a driver, of typ®RIVER (a companion class) and a proceduegister that assigns a
driver. No we introduce descendant clas§e¥/CK andBICYCLE of VEHICLE, and TRUCKER and
BIKER of DRIVER. Shouldn’tdriver change type, correspondingly, IRUCK and BICYCLE, to
TRUCKER andBIKER respectively? All signs are that it should. But novariance prevents this.

driver: DRIVER

assign (d: DRIVER
VEHICLE gn() P DRIVER
BIKE TRUCK TRUCKER BIKER

driver: TRUCKER
assign (d: TRUCKER)

Client of ? Inherits from

The policy that would allow such type redefinitions is called covariance (from terminology
introduced by Luca Cardelli); “co” because the redefinition follows the direction of inheritance.

In fact there is no type risk associated with redefinugry results, such agdriver, covariantly. Still,

most languages don't permit this, probably because then programmers wouldn’t understand why they
can also redefineoutine arguments covariantly. If you redefinelriver, you will also want to redefine
register so that its signature reads

register (d: TRUCKER) do driver .= dend --in TRUCK 114/
register (d: BIKER) do driver:= dend --in BIKE 115/

and so on. Eiffel allows you to do this and in fact provides an important abbreviation; if you know ahead
of time (that is to say, in the ancestor class) that an entity will be covariant, you can avoid redefinitions
altogether by declaring the entity from the start as “anchored” to another throulifketheyword: here

in TRUCK you can replacé3/ by

register (d: like driver) ... Rest as before ... --in VEHICLE 116/

where thdike type declaration anchotéto driver, so that the redefinitions 4f4/and/15/are no longer
needed explicitly (but the effect is the samiRe, avoiding explicit “redefinition avalanche”, is the
covariant mechanism par excellence.

With covariant arguments we have a problg@hbecause of polymorphism and dynamic binding.
The declarations and call

v: VEHICLE
d: DRIVER

v.register (d)

look reasonable enough; but what the call is preceded by the assignments

V.= some_truck
d := some_biker

with the types of the assignment sources as implied by their names? We end up assigning to a truck a
driver qualified only to ride a bike. Then when the execution attempts, on an object oFRIPEKER,

to access a feature of the driver — legitimately assumed to be a truck driver, on the basis of the
redefinition —, for exampledriver. license_expiration_date, we get a crash, known as a catcall
(assuming truck licenses expire, but bike licenses don't). This is the reason novariance is the general rule:
even though catcalls happen rarely in well-written programs, they are just as much of a risk as void calls.

The solution proposed here is simple: force the programmer who makes a covariant argument
redeclaration to recognize the risk through the following rule:

Covariant argument redeclaration rule

The type of a covariant argument redeclaration, or of an anchored (like)
argument declaration, must be detachable.

In our example an explicit redeclaration will have to be written, insteAdof

register (d: ? TRUCKER) ... --in TRUCK 1171

and an anchored one, instead1d/:

register (d: ? like driver) ... --in VEHICLE 118/

This requires the body of the routine (in the redefined version for the first case, already in the original
version for the second case) to perform an explicit Object Test if it wants to apply a call to the argument,
ascertaining it to be of the covariantly redefined type. Catcalls clearly go away.

The semantics d? U in the covariant redefinition of an argumeriginally of type T is slightly
different from the usual one involving possible void values. It really means “ffafown toU’. It also
requires a particular convention rule for the semantics of a new precondition clause of the form
require elsex.some_U_property (we interpret it ady. U} x and then y.some U _property). So
there is a certain amount of kludginess on the theoretical side. But in practice the technique seems to
allow us to keep covariance for expressiveness, while removing the dangers.

This technique is not so far from what programmers instinctively do in languages such as C++,
Java and C# which enforce novariance. The modeled system, as noted, often cries for covariance. So in
the descendant class the programmer will introduce a variable of the new type, the one really desired,
and “downcast” (the equivalent of an Object Test) the novariant argument to it. One finds numerous
examples of this pattern in practical code from the languages cited. The above rule leads us to a similar
solution, but it is more explicit and, one may argue, better for modeling realism: the programmer
specifies, in the redefinition, the “true” new type of the argument (lIRUJCKER); the type system
accepts his covariant behavior, but forces him to recognize the risk to of that behavior to others around
him, specifically to “polymorphic perverts” (callers of the original routine which, through
polymorphism, actually use the new argument type disguised under the old one), and to handle that risk
by checking explicitly for the type of the actual objects received through the formal argument.

9 An application to concurrency

The third major problem to which the ideas discussed here provide a solution is lazy object reservation
in concurrent object-oriented programming.

Concurrency is badly in need of techniques that will make concurrent programs (multithreaded,
multi-processed, networked, web-serviced...) as clear and trustworthy as those we write for sequential
applications. Common concurrent mechanisms, most notably thread libraries, still rely on 1960-era
concepts, such as semaphores and locks. Deadlocks and data races are a constant concern and a not so
infrequent practical occurrence.

An effort to bring concurrent programming to the same level of abstraction and quality that object
technology has brought to the sequential world led to the definition of the SCOOP model of computation
(Simple Concurrent Object-Oriented Programmiad], with a first implementation available from
ETH). This is not the place to go through the details of SCOOP, but one aspect is directly relevant. If an
entity x denotes aseparat€ object — one handled by a thread of control, or “processor”, other than
the processor handling calls to the current object — it appears essential to permit a call of thefform
only if x is an argument of the enclosing routineThen a call tor, with the corresponding actual
argumenta representing a separate object, will proceed only when it has obtained exclusive access to
that object, and then will retain that access for the duration of the call. Coupled with the use of
preconditions as wait conditions, this is the principal synchronization mechanism, and leads to elegant
algorithms with very little explicit synchronization code (see for example the Dining Philosophers in

[11]).

The rule then is:

Validity and semantics of separate calls

A call on a separate object is permitted only if the object is known throygh
a formal argument to the enclosing routine.
Passing the corresponding separate actual arguments to the routing will
cause a wait until they are all available, and will reserve them for the

duration of the call.

A specific consequence of this policy is of direct interest for this discussion:

Object Reservation rule

Passing a separate actual argument a to a rontieserves the associated
object.

The corresponding formal argumenin r must also be declared asparate , so that it is immediately
clear, from the interface af that it will perform an object reservation.

So far this has implied the converse rule: if a is separd#,will wait until the object is available,
and then will reserve it.

But this second part is too restrictive rifloesn’t actually include any cail fwherexis the formal

argument corresponding & we don’t need to wait, and the policy could actually cause deadlock. For
example in

keep_it: separate T -- An attribute

r(x. separate T)
-- Remember a for later use.
do
keep_it:= x
end

we just usex as source of an assignment. The actual calls will be done later ke#yy it, which we
will have to pass (according to the above validity rule) as actual argument to some other routine, which
performs such calls. But in a call to tii&e don't need to wait ok, and don’t want to.
This could be treated asc@mpiler optimizationthe body ofr doesn't perform any call or, so
we can skip the object reservation. But this is not an acceptable solution, for two reasons:
. The semantics — including waiting or not — should be immediately clear to client programmers.
They will see only the interface (signature and contracts), notctfeause.

. In a descendant class, we can redefirs® that itnow performs a call of targek. Yet under
dynamic binding a client could unwittingly be calling the redefined version!

We need a way to specify, as part of the official routine interface, that a formal argument scathos®
is, although separate, non-blocking.

The solution proposed iase a detachable typehere? separate T. With the declaration

r(x: ? separate T) -- The rest as above

no reservation will occur.

With this policy, whether reservation occurs is part of the routine’s specification as documented to
client programmers. The rule is consistent with the general property of detachable and attached types:
we needx to be attached only if we are going to perform a call on it.

In the example, we can only retain the assignmerkigep_it if this attribute is itself detachable.
If it is attached, declared asparate T rather thar? separate T, we must rewrite the assignment as

if {y. separate T} xthen
keep it:=y
end

with the obvious semantic rule thah object test of separate type causes reservation of the object
Unlike in the case of an argument, this rule is acceptable since no information hiding is involved: we are
looking at implementation, not a routine’s interface.

The technique also fits well with inheritance.rlhad an argument of typ@ separate T, we
cannot of course redefine it asparate T in a descendant (the reverse is, as always, possible). But if
the descendant version does need to perform a cal| amereas the original didn't, it can achieve the
result through an Object Test:

if {y: separate T} xthen
YaSOmMe_operation
end

which will cause a wait — not on entry to the routine (which could contradict the semantics advertised
to the client) but as part of that routine’s implementation.

It appears then that the distinction between attached and detachable types, and the general-purpose
Object Test with its semantics adapted to the concurrent (separate) case, solve this particular problem of
concurrent object-oriented programming too.

10 Conclusion

It was impossible to resist including the self-citation that opens this article, but hard to resist the
temptation of removing the parts that don’t quite fit, especially the bit about the two or three minutes.
The ideas presented here didn’'t come with the self-evidence of morning mist; it was more like the icy
rain of an endless Baltic winter. Yet the mechanism is indeed a minuscule syntax extensiosytiiaol

(even if used with two slightly different semantics), combined with the replacement of an existing
instruction, the assignment attempt, by a simpler and more general mechanism, the Object Test. With a
few validity rules that any reasonable program should meet without the programmer thinking much
about them — even though the presentation in this article may have appeared long-winded since it took
into account many details, special cases, compatibility issues and the rationale for every decision — the
result does address several major problems in one sweep; one of these problems, the starting point for
the whole effort, is the only remaining source of crashes in typed object-oriented programs, and hence
of critical practical importance. The second one has also been the subject of a considerable literature.
The third one is less well known, but of importance for concurrent applications. And in passing we have
seen that for two issues that had been addressed by previous mechanisms — Run-Time Type
Identification, possible in many languages, and “once per object”, for which Eiffel already had a solution
— the mechanisms allows new techniques that may offer at least an incremental improvement on those
already known.

So while itis for the reader to judge whether the citation is arrogant, | do hope that the mechanisms
presented above, as available in Standard Eiffel, will have a lasting effect on the quality of software that
we can produce, using the best of object technology.

11 References

[1] Mike Barnett, Rustan Leino and Wolfram Schulféhe Spec# Programming Syste@®ASSIS
proceedings, 2004.

[2] Craig Chambers et al., papers on the Self language at http://research.sun.com/self/papers/
papers.html.

[3] Manuel Fahndrich and Rustan Leirdeclaring and Checking Non-null Types in an Object-Oriented
Languagein OOPSLA 2003, SIGPLAN Notices, vol. 38 no. 11, November 2003, ACM, pp. 302-312.
[4] ECMA Technical Committee 39 (Programming and Scripting Languages) Technical Group 4
(Eiffel): Eiffel Analysis, Design and Programming Langudgeaft international standard, April 2005.

[5] Erik Meijer and Wolfram SchulteUnifying Tables, Objects, and Documernits Proc. DP-COOL
2003, also at http://research.microsoft.com/~emeijer/Papers/XS.pdf.

[6] Bertrand MeyerEiffel: The LanguagePrentice Hall 1990 (revised printing 1991). See HI&h

[7] Bertrand MeyerReusable Software: The Base Object-Oriented Component Libyr&mestice Hall,
1994.

[8] Bertrand MeyerObject-Oriented Software Construction, 2nd editiBrentice Hall, 1997.

[9] Bertrand Meyer, referend8], chapter 17: Typind'.

[10] Bertrand MeyerPrelude to a Theory of Vojdn Journal of Object-Oriented Programmingol. 11,

no. 7, November-December 1998, pages 36-48.

[11] Bertrand Meyer, refereng8], chapter 30Concurrency, distribution, client-server and the Internet
[12] Bertrand Meyer, Standard Eiffel, new editior{@®f, in progress.

	Attached types and their application to three open problems of object-oriented programming Bertra...
	Abstract
	1 Overview
	1.1 Mechanism summary
	1.2 The void safety issue
	1.3 General description

	2 Previous work, context and acknowledgments
	3 Syntax extension
	4 Constraints on calls and attachment
	5 Initialization
	5.1 Variables and entities
	5.2 Self-initializing types
	5.3 Self-initializing attributes
	5.4 Certified Attachment Patterns

	6 Object Tests and their scopes
	7 Generic classes
	8 Getting rid of catcalls
	9 An application to concurrency
	10 Conclusion
	11 References

