Skip to main content
Log in

A review on use of TRNSYS as simulation tool in performance prediction of desiccant cooling cycle

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Solid desiccant-assisted cooling and dehumidification systems are becoming very popular nowadays for maintaining the required thermal comfort in different residential and industrial cooling applications. Its performance can be evaluated by simulating it with TRNSYS simulation software which depends on many operational and geometrical parameters of the thermal system. TRNSYS is used as simulation software having transient in nature mainly for simulating the thermal systems with good agreement within acceptable error bands. An overview on modeling the thermal cooling system and simulation of the same that includes pioneer works and analysis of previous transient simulation results that mainly includes TRNSYS was presented here. Assumptions, a detailed modeling of various thermal cooling system components of the desiccant-powered thermal cooling system and its simulation performed using TRNSYS are also discussed. The main aim of the present survey is to review the applicability of TRNSYS simulation and to confirm the sustainability, feasibility and potential use of desiccant-powered thermal space cooling systems for ameliorating the energy and cost saving in air-conditioning of buildings. Review is useful for making opportunities for further research of TRNSYS simulation and its feasibility in thermal system design in the application of building space cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

CHP:

Combined heat and power

COP:

Coefficient of performance

DBT:

Dry bulb temperature, °C

DPT:

Dew point temperature, °C

DOR:

Door opening rate

E:

Cooling capacity, kW

Etotal :

Total electrical power consumption, kW

EC:

Evaporative coolers

F:

Potential function

HR:

Humidity ratio, g kg−1

HVAC:

Heating, ventilation and air-conditioning

h:

Enthalpy, kJ kg−1

IAQ:

Indoor air quality

MRR:

Moisture removal rate, kg h−1

m:

Mass flow rate of air stream, kg s−1

Qcc :

Cooling capacity, kW

Qth :

Regeneration heat supply, kW

RH:

Relative humidity, %

T:

Temperature, K

TESS:

Thermal energy system specialists

TMY:

Typical meteorological year

VCS:

Vapor compression cycle

ε :

Components effectiveness

ω :

Specific humidity, g kg−1

a:

Dry air

aux:

Auxiliary

dw:

Dehumidifier wheel

d:

Desiccant

dec:

Desiccant evaporative cooling

hrw:

Heat recovery wheel

i:

Inlet

m:

Matrix

lat:

Latent

o:

Outlet

p:

Process air

r:

Regeneration air

sens:

Sensible

1,2, etc.:

References state points

References

  1. TRNSYS. TRNSYS 16, a transient system simulation program. The Solar Energy Laboratory, University of Wisconsin-Madison, Madison, U.S.A., 2006.

  2. Goldsman, D, Nance RE, Wilson, JR. A brief history of simulation. In: Proceedings of the 2009 winter simulation conference; 2009. p. 310–13.

  3. Hamming RW. Numerical methods for scientists and engineers. 2nd ed. New York: Dover Publications, Inc; 1962.

    Google Scholar 

  4. Hall IJ, Prairie RR, Anderson HE, Boes EC. Generation of a typical meteorological year, conference: analysis for solar heating and cooling, San Diego, CA, USA, 1978

  5. Shrivastava RL, Kumar V, Untawale SP. Modeling and simulation of solar water heater: a TRNSYS perspective. Renew Sustain Energy Rev. 2017;67:126–43.

    Google Scholar 

  6. Purohit I, Kumar A. Thermal simulation of roof surface evaporative cooling system for India using TRNSYS. Int J Ambient Energy. 2006;27:193–202.

    Google Scholar 

  7. Jurinak JJ. Open cycle solid desiccant cooling-component models and system simulation. PhD Thesis, University of Wisconsin, Madison, 1982.

  8. TRNSYS. Version 16. Input: Output—Parameter Reference—a transient system simulation program user’s manual. Solar Energy Laboratory, University of Wisconsin, Madison, U.S.A., 2006.

  9. Khalid A, Mahmood M, Asif M, Muneer T. Solar assisted, pre-cooled hybrid desiccant cooling system for Pakistan. Renew Energy. 2009;34:151–7.

    CAS  Google Scholar 

  10. Bradley D, Kummert M. New evolutions in TRNSYS—a selection of version 16 features, Ninth International IBPSA Conference Montréal, Canada, 2005.

  11. Solaini G, Rossi G, Dall OG, Drago P. Energy and comfort: a new type for TRNSYS. World Renewable Energy Congress IV, Denver, June 15–21, 1996.

  12. Bakmeedeniya LU. Modelling polygeneration with desiccant cooling system for tropical (and sub-tropical) climates. MSc Thesis. RIT, Sweden, 2010.

  13. Almeida P, Carvalho MJ, Amorim R, Mendes JF, Lopes V. Dynamic testing of systems—Use of TRNSYS as an approach for parameter identification. Sol Energy. 2014;104:60–70.

    Google Scholar 

  14. Dezfouli MMS, Mat S, Sopian K. Comparison simulation between ventilation and recirculation of solar desiccant cooling system by TRNSYS in hot and humid area. Latest Trends Renew Energy Env Inf. 2009;1:89–93.

    Google Scholar 

  15. Bansal NK, Bhandari MS. Comparison of the periodic solution method with TRNSYS and SUNCODE for thermal building simulation. Sol Energy. 1996;57:9–18.

    Google Scholar 

  16. Datta G. Effect of fixed horizontal louver shading devices on thermal performance of building by TRNSYS simulation. Renew Energy. 2001;23:497–507.

    CAS  Google Scholar 

  17. Pernigotto G, Gasparella A. Extensive comparative analysis of building energy simulation codes: heating and cooling energy needs and peak loads calculation in TRNSYS and energy plus for southern Europe climates. HVAC Res. 2013;19:2013.

    Google Scholar 

  18. Casimiro S, Ioakimidis C, Mendes J, Giestas M. Modeling in TRNSYS of a single effect evaporation system powered by a Rankine cycle. Desalin Water Treat. 2013;51:1405–15.

    CAS  Google Scholar 

  19. Jones SA, Paal RP, Schwarzboezl P, Blair N, Cable R. TRNSYS modeling of the segs VI parabolic trough solar electric generating system. Proceedings of Solar Forum 2001, Solar Energy, Washington DC, April 21–25, 2001.

  20. Budihardjo I, Morrison GL, Behnia M. Development of TRNSYS models for predicting the performance of water-in-glass evacuated tube solar water heaters in Australia. Dest Renew. 2003;1:1–10.

    Google Scholar 

  21. Khalid A. Experimental Investigation and mathematical modeling of a low energy consuming hybrid desiccant cooling system for the hot and humid areas of Pakistan. PhD Thesis, NED University of Engineering & Technology, Karachi, Pakistan, 2007.

  22. Lisa C. Experimental evaluation and modeling of a solar liquid desiccant air conditioner. MSc Thesis. Queen’s University, Canada, 2012.

  23. Jani DB. Performance study of a solid-desiccant vapor compression hybrid air-conditioning system. PhD Thesis. Indian Institute of Technology, IIT—Roorkee, India, 2017.

  24. Jani DB, Mishra M, Sahoo PK. Performance studies of hybrid solid desiccant-vapor compression air-conditioning system for hot and humid climates. Energy Build. 2015;102:284–92.

    Google Scholar 

  25. Bourdoukan P, Wurtz E, Joubert P. Comparison between the conventional and recirculation modes in desiccant cooling cycles and deriving critical efficiencies of components. Energy. 2010;35:1057–67.

    CAS  Google Scholar 

  26. Ayoub M, Ghaddar N, Ghali K. Energy consumption of solar assisted desiccant dehumidification air-conditioning system in Beirut. Kuwait J Sci Eng. 2007;34:107–22.

    Google Scholar 

  27. Gagliano A, Patania F, Nocera F, Galesi A. Performance assessment of a solar assisted desiccant cooling system. Therm Sci. 2014;18:563–76.

    Google Scholar 

  28. Kumar A, Yadav A. Experimental investigation of solar driven desiccant air conditioning system based on silica. Int J Ref. 2016. https://doi.org/10.1016/j.ijrefrig.2016.05.008.

    Article  Google Scholar 

  29. Fong KF, Chow TT, Lin Z, Chan LS. Simulation optimization of solar-assisted desiccant cooling system for subtropical Hong Kong. Appl Therm Eng. 2010;30:220–8.

    Google Scholar 

  30. Davanagere BS, Sherif SA, Goswami DY. A feasibility study of solar desiccant air conditioning system- Part I: psychrometrics and analysis of the conditioned zone. Int J Energy Res. 1999;23:7–21.

    CAS  Google Scholar 

  31. Marco B, Pietro F, Bettina N. Energy performance evaluation of a demo solar desiccant cooling system with heat recovery for the regeneration of the adsorption material. Renew Energy. 2012;44:40–52.

    Google Scholar 

  32. La D, Dai YJ, Li Y, Ge TS, Wang RZ. Case study and theoretical analysis of a solar driven two-stage rotary desiccant cooling system assisted by vapor compression air-conditioning. Sol Energy. 2011;85:2997–3009.

    Google Scholar 

  33. Enteria N, Yoshino H, Satake A, Mochida A, Takaki R, Yoshie R, et al. Development and construction of the novel solar thermal desiccant cooling system incorporating hot water production. Appl Energy. 2010;87:478–86.

    Google Scholar 

  34. Hong H, Feng G, Wang H. Performance research of solar hybrid desiccant cooling systems. Procedia Env Sc. 2012;12:57–64.

    Google Scholar 

  35. Qin CK, Schmitz G. Engine driven desiccant assisted hybrid air conditioning system. In: 23rd World Gas Conference, Amsterdam, 2006.

  36. Azar AAJ, Slayzak S, Judkoff R, Schaffhauser T, DeBlasio R. Performance assessment of a desiccant cooling system in a CHP application incorporating an IC engine. Int J Dist Energy Res. 2005;1:163–84.

    Google Scholar 

  37. Li Y, Sumathy K, Dai YJ, Zhong JH, Wang RZ. Experimental study on hybrid desiccant dehumidification and air conditioning system. Appl Therm Eng. 2006;128:77–82.

    Google Scholar 

  38. Aly SE, Fathalah K, Gari HA. Analysis of integrated vapor compression and a waste heat dehumidifier system. Heat Recovery Sys CHP. 1988;8:503–28.

    CAS  Google Scholar 

  39. Xing H, Xu Z. Hybrid Desiccant Cooling system using condensing heat as the regeneration source part I: system model. Adv Mat Res. 2012;383:6422–6.

    Google Scholar 

  40. Jia CX, Dai YJ, Wu JY, Wang RZ. Analysis on hybrid desiccant air-conditioning system. Appl Therm Eng. 2006;26:2393–400.

    Google Scholar 

  41. El-Agouz SA, Kabeel AE. Thermal Analysis of a novel integrated air conditioning system with geothermal energy. J Energy Eng. 2014. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000205.

    Article  Google Scholar 

  42. Speerforck A, Schmitz G. Experimental investigation of a ground-coupled desiccant assisted air conditioning system. Appl Energy. 2016;181:575–85.

    Google Scholar 

  43. Kubota M, Hanada T, Yabe S, Matsuda H. Regeneration characteristics of desiccant rotor with microwave and hot-air heating. Appl Therm Eng. 2013;50:1576–81.

    Google Scholar 

  44. Kohlenbach P, Bongs C, White S, Ward J. Performance modeling of a desiccant-evaporative sorption air conditioning system driven by micro-turbine waste heat in tropical climates. In: AIRAH Sustainability for Tropical and Sub-tropical Climate Conference, 2006.

  45. Angrisani G, Capozzoli A, Minichiello F, Roselli C, Sasso M. Desiccant wheel regenerated by thermal energy from a micro-cogenerator: experimental assessment of the performances. Appl Eng. 2011;88:1354–65.

    CAS  Google Scholar 

  46. Angrisani G, Minichiello F, Roselli C, Sasso M. Desiccant HVAC system driven by a micro-CHP: experimental analysis. Energy Build. 2010;42:2028–35.

    Google Scholar 

  47. Jani DB, Manish Mishra, Sahoo PK. Solid desiccant air conditioning—a state of the art review. Renew Sustain Energy Rev. 2016;60:1451–69.

    CAS  Google Scholar 

  48. Angrisani G, Minichiello F, Roselli C, Sasso M. Experimental investigation to optimise a desiccant HVAC system coupled to a small size cogenerator. Appl Therm Eng. 2011;31:506–12.

    CAS  Google Scholar 

  49. Jani DB, Mishra M, Sahoo PK. Experimental investigation on solid desiccant–vapor compression hybrid air-conditioning system in hot and humid weather. Appl Therm Eng. 2016;104:556–64.

    Google Scholar 

  50. Yadav YK. Vapor-compression and liquid-desiccant hybrid solar space-conditioning system for energy conservation. Renew Energy. 1995;7:719–23.

    Google Scholar 

  51. Subramanyam N, Maiya MP, Murthy SS. Parametric studies on a desiccant assisted air-conditioner. Appl Therm Eng. 2004;24:2679–88.

    Google Scholar 

  52. Daou K, Wang RZ, Xia ZZ. Desiccant cooling air conditioning: a review. Renew Sustain Energy Rev. 2006;10:55–77.

    CAS  Google Scholar 

  53. Angrisani G, Roselli C, Sasso M. Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies. Appl Energy. 2015;138:533–45.

    Google Scholar 

  54. Ashrae, Ashrae Handbook-Fundamentals, American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc., Atlanta, GA, 2009.

  55. Fiksel A, Thornton JW, Klein SA, Beckman WA. Development to the TRNSYS simulation program. ASME J Solar Eng. 1995;117:123–7.

    Google Scholar 

  56. Kuethe S, Wilhelms C, Zass K, Heinzen R, Vajen K, Jordan U. Modelling complex systems within TRNSYS Simulation Studio. In: International congress on heating, cooling and buildings. Lisbon, Portugal, 2008.

  57. Witte KT. Absorption chiller modeling with TRNSYS—requirements and adaptation to the machine EAW Wegracal SE 15. In: Eurosun 2008, 1st international congress on heating, cooling and buildings, Lisbon, Portugal, 2008.

  58. Klein S, Beckman W, Mitchell J, Duffie J, Duffie N, Freeman T. TRNSYS 16—A Transient System Simulation Program Madison, Wisconsin, U. S. A., 2006.

  59. Crarley D, Hand J, Griffith MK. Contrasting the capabilities of building energy performance simulation programs. Washington: United States of America; 2005.

    Google Scholar 

  60. Visek E, Mazzrella L, Motta M. Performance analysis of a solar cooling system using self tuning fuzzy-PID control with TRNSYS. Energy Procedia. 2014;57:2609–18.

    Google Scholar 

  61. METEONORM 4.0, Global meteorological database for solar energy and applied climatology, Meteotest Bern-Switzerland, 2006.

  62. Klein SA, Beckman WA, Duffie JA. TRNSYS version 17 program manual, S.E. Laboratory, Editor. 2010: University of Wisconsin, Madison.

  63. Alibabaei N, Fung AS, Raahemifar K. Development of Matlab-TRNSYS co-simulator for applying predictive strategy planning models on residential house HVAC system. Energy Build. 2016;128:81–98.

    Google Scholar 

  64. Wills A, Cruickshank CA, Morrison IB. Application of the ESP-r/TRNSYS co-simulator to study solar heating with a single-house scale seasonal storage. Energy Procedia. 2012;30:715–22.

    Google Scholar 

  65. Asim M, Dewsbury J, Kanan S. TRNSYS simulation of a solar cooling system for the hot climate of Pakistan. Energy Procedia. 2016;91:702–6.

    Google Scholar 

  66. Zhang XJ, Dai YJ, Wang RZ. A simulation study of heat and mass transfer in a honeycombed rotary desiccant dehumidifier. Applied Therm Eng. 2003;23:989–1003.

    Google Scholar 

  67. Narayanan R, Saman WY, White SD, Goldsworthy M. Comparative study of different desiccant wheel designs. Appl Therm Eng. 2011;31:1613–20.

    CAS  Google Scholar 

  68. Narayanan R, Saman WY, White SD. A non-adiabatic desiccant wheel: modelling and experimental validation. Appl Therm Eng. 2013;61:178–85.

    Google Scholar 

  69. Sheridan JC, Mitchell JW. A hybrid solar desiccant cooling system. Sol Energy. 1985;34:187–93.

    Google Scholar 

  70. White SD, Kohlenbach P, Bongs C. Indoor temperature variations resulting from solar desiccant cooling in a building without thermal backup. Int J Refri. 2009;32:504–695.

    Google Scholar 

  71. Ouazia B, Barhoun H, Daddad K, Armstrong M, Szadkwski F. Desiccant evaporative cooling system for residential building. In: Proceedings of the 12th Canadian conference on building science and technology, Montreal, Quebec, May 6–9, 2009, pp. 1–12.

  72. La D, Dai Y, Li H, Li Y, Kiplagat JK, Wang R. Experimental investigation and theoretical analysis of solar heating and humidification system with desiccant rotor. Energy Build. 2011;43:1113–22.

    Google Scholar 

  73. La D, Dai Y, Li H, Li Y, Kiplagat JK, Wang R. Case study and theoretical analysis of a solar driven two-stage rotary desiccant cooling system assisted by vapour compression air-conditioning. Sol Energy. 2011;85:2997–3009.

    Google Scholar 

  74. Baniyounes A, Liu G, Rasul M, Khan M. Analysis of solar desiccant cooling system for an institutional building in subtropical Queensland, Australia. Renew Sustain Energy Rev. 2012;16:6423–31.

    Google Scholar 

  75. Jani DB, Mishra M, Sahoo PK. Simulation of solar assisted solid desiccant cooling systems using TRNSYS. In: Proceedings of the 22nd National and 11th International ISHMT-ASME heat and mass transfer conference, IIT, Kharagpur, Dec 28-31, 2013, pp. 1-7.

  76. Taweekun J, Akvanich V. The experiment and simulation of solid desiccant dehumidification for air-conditioning system in a tropical humid climate. Engineering. 2013;5:146–53.

    Google Scholar 

  77. Khoukhi M. The use of desiccant cooling system with IEC and DEC in hot-humid climates. Int J Energy Eng. 2013;3:107–11.

    Google Scholar 

  78. Dezfouli MMS, Mat S, Pirasteh G, Sahari KSM, Sopian K, Ruslan MH. Simulation analysis of the four configurations of solar desiccant system using evaporative cooling in tropical weather in Malaysia. Int J Photo Energy. 2014;14:1–14.

    Google Scholar 

  79. Heleyleh BB, Nejadian AK, Mohammadi A, Mashhodi A. Simulation of hybrid desiccant cooling system with utilization of solar energy. Trends App Sci Res. 2014;9:290–302.

    CAS  Google Scholar 

  80. Budania A, Ahmad S, Jain S. Transient simulation of a solar absorption cooling system. Int J Low-Carbon Tech. 2016;11:54–60.

    Google Scholar 

  81. Ssembatya M, Pokhrel M, Reddy R. Simulation studies on performance of solar cooling system in UAE conditions. Energy Procedia. 2014;48:1007–16.

    Google Scholar 

  82. Al-Rabghi OM, Akyurt MM. A survey of energy efficient strategies for effective air conditioning. Energy Convers Manage. 2004;45:1643–54.

    Google Scholar 

  83. Al-Alili A, Hwang Y, Rademacher R. Review of solar thermal air conditioning technologies. Int J Ref. 2014;39:4–22.

    CAS  Google Scholar 

  84. Dayao L, Jiang H, Lin L. A review of renewable energy applications in buildings in the hot-summer and warm-winter region of China. Renew Sustain Energy Rev. 2016;57:327–36.

    Google Scholar 

  85. Gao J, Lin S, Bilbao JI, White SD, Sproul AB. A review of photovoltaic thermal (PV/T) heat utilisation with low temperature desiccant cooling and dehumidification. Renew Sustain Energy Rev. 2017;67:1–14.

    Google Scholar 

  86. Shimooka S, Oshima K, Hidaka H, Takewaki T, Kakiuchi H, Kodama A. The evaluation of direct cooling and heat desiccant device coated with FAM. J Chem Eng Jpn. 2007;40:1330–4.

    Google Scholar 

  87. Dincer I. Energy and environmental impacts: present and future perspectives. Energy Sources. 1998;20:427–53.

    CAS  Google Scholar 

  88. Gao J, Liu J, Man X. A united WRF/TRNSYS method for estimating the heating/cooling load for the thousand-meter scale mega tall buildings. Appl Therm Eng. 2017;114:196–210.

    Google Scholar 

  89. Fong KF, Lee CK, Zhao TF. Effective design and operation strategy of renewable cooling and heating system for building application in hot-humid climate. Sol Energy. 2017;143:1–9.

    Google Scholar 

  90. Dai Y, Li X, Wang R. Theoretical analysis and case study on solar driven two-stage rotary desiccant cooling system combined with geothermal heat pump. Energy Procedia. 2015;70:418–26.

    Google Scholar 

  91. Muzaffar A, Vladimir V, Nadeem S, Hafiz MA. Performance investigation of solid desiccant evaporative cooling system configurations in different climatic zones. Energy Convers Manag. 2015;97:323–39.

    Google Scholar 

  92. Ma Y, Guan L. Performance Analysis of solar desiccant-evaporative cooling for a commercial building under different Australian Climates. Procedia Eng. 2015;121:528–35.

    Google Scholar 

  93. Bongs C, Morgenstern A, Lukito Y, Henning HM. Advanced performance of an open desiccant cycle with internal evaporative cooling. Sol Energy. 2014;104:103–14.

    Google Scholar 

  94. Ge TS, Dai YJ, Wang RZ, Li Y. Feasible study of a self-cooled solid desiccant cooling system based on desiccant coated heat exchanger. Appl Therm Eng. 2013;58:281–90.

    Google Scholar 

  95. Eicker U, Schneider D, Schumacher J, Ge T, Dai Y. Operational experiences with solar air collector driven desiccant cooling systems. Appl Energy. 2010;87:3735–47.

    CAS  Google Scholar 

  96. Li H, Dai YJ, Li Y, La D, Wang RZ. Case study of a two-stage rotary desiccant cooling/heating system driven by evacuated glass tube solar air collectors. Energy Build. 2012;47:107–12.

    Google Scholar 

  97. Finocchiaro P, Beccali M, Nocke B. Advanced solar assisted desiccant and evaporative cooling system equipped with wet heat exchangers. Sol Energy. 2012;86:608–18.

    CAS  Google Scholar 

  98. Li H, Dai YJ, Li Y, La D, Wang RZ. Experimental investigation on a one-rotor two-stage desiccant cooling/heating system driven by solar air collectors. Appl Therm Eng. 2011;31:3677–83.

    CAS  Google Scholar 

  99. Ge TS, Dai YJ, Wang RZ, Li Y. Experimental investigation on a one-rotor two stage rotary desiccant cooling system. Energy. 2008;33:1807–15.

    Google Scholar 

  100. Patanwar P, Shukla SK. Mathematical modelling and experimental investigation of the hybrid desiccant cooling system. Int J Sustain Energy. 2012;33:103–11.

    Google Scholar 

  101. Jeong J, Yamaguchi S, Saito K, Kawai S. Performance analysis of desiccant dehumidification systems driven by low-grade heat source. Int J Refri. 2011;34:928–45.

    CAS  Google Scholar 

  102. Brumana G, Franchini G. Solar powered air conditioning for buildings in hot climates desiccant evaporative cooling vs. absorption chiller-based systems. Energy Procedia. 2016;101:288–96.

    Google Scholar 

  103. Wrobel J, Ma X, Schmitz G, Grabe J. A desiccant assisted air conditioning system with use of geothermal energy. In: Proceedings World geothermal congress. Bali, Indonesia, April 2010, pp. 25–29.

  104. Patanwar P, Shukla SK. Parametric studies of a hybrid desiccant cooling system. Int J Energy Eng. 2012;2:253–8.

    Google Scholar 

  105. Mohammad AT, Mat SB, Sopian K, Al-abidi AA. Review: survey of the control strategy of liquid desiccant systems. Renew Sustain Energy Rev. 2016;58:250–8.

    Google Scholar 

  106. Lee SJ, Kim KJ, Dong HW, Jeong JW. Energy saving assessment of a desiccant-enhanced evaporative cooling system in variable air volume applications. Appl Therm Eng. 2017. https://doi.org/10.1016/j.applthermaleng.2017.02.007.

    Article  Google Scholar 

  107. Kozubal E, Woods J, Judkoff R. Development and analysis of desiccant enhanced evaporative air conditioner prototype. National Renewable Energy Laboratory, 2012.

  108. Fong KF, Chow TT, Lee TK, Lin Z, Chan LS. Solar hybrid cooling system for high-tech offices in subtropical climate—radiant cooling by absorption refrigeration and desiccant dehumidification. Energy Convers Manage. 2011;52:2883–94.

    CAS  Google Scholar 

  109. Shirazi A, Pintaldi S, White SD, Morrison GL, Rosentgarden G, Taylor RA. Solar-assisted absorption air-conditioning systems in building control strategies and operation modes. Appl Therm Eng. 2016;92:246–60.

    Google Scholar 

  110. Qu M, Yin H, Archer DH. A solar thermal cooling and heating system for a building: experimental and model based performance analysis and design. Sol Energy. 2010;84:166–82.

    CAS  Google Scholar 

  111. Sarbu I, Sebarchievici C. Review of solar refrigeration and cooling systems. Energy Build. 2013;67:286–97.

    Google Scholar 

  112. Zhai XQ, Qu M, Li Y, Wang RZ. A review for research and new design options of solar absorption cooling systems. Renew Sustain Energy Rev. 2011;15:4416–23.

    CAS  Google Scholar 

  113. Hands S, Sethuvenkatraman S, Peristy M, Rowe D, White S. Performance analysis & energy benefits of a desiccant based solar assisted trigeneration system in a building. Renew Energy. 2016;85:865–79.

    Google Scholar 

  114. Xiao-xia X, Zhi-qi W, Shun-sheng X. Exergy analysis of energy consumption for primary return air conditioning system. Phys Proc. 2012;24:2131–7.

    Google Scholar 

  115. Gholamian E, Hanafizadeh P, Ahmadi P. Advanced exergy analysis of a carbon dioxide ammonia cascade refrigeration system. Appl Therm Eng. 2018;137:689–99.

    CAS  Google Scholar 

  116. Mosaffa AH, Farshi LG, Ferreira CI, Rosen MA. Advanced exergy analysis of an air conditioning system incorporating thermal energy storage. Energy. 2014;77:945–52.

    Google Scholar 

  117. Al-Sulaiman FA. Assessment of next generation refrigerants for air conditioning systems integrated with air-membrane heat and mass exchangers. Energy Convers Manag. 2017;154:344–53.

    CAS  Google Scholar 

  118. Baccoli R, Mastino C, Rodriguez G. Energy and exergy analysis of a geothermal heat pump air conditioning system. Appl Therm Eng. 2015;86:333–47.

    Google Scholar 

  119. Zhu J, Chen W. Energy and exergy performance analysis of a marine rotary desiccant air-conditioning system based on orthogonal experiment. Energy. 2014;77:953–62.

    Google Scholar 

  120. Du Z, Jin X, Fan B. Evaluation of operation and control in HVAC (heating, ventilation and air conditioning) system using exergy analysis method. Energy. 2015;89:372–81.

    Google Scholar 

  121. Ghazikhani M, Khazaee I, Vahidifar S. Exergy analysis of two humidification process methods in air-conditioning systems. Energy Build. 2016;124:129–40.

    Google Scholar 

  122. Zhang T, Liu X, Tang H, Liu J, Jiang Y. Exergy and entransy analyses in air-conditioning system part 1—similarity and distinction. Energy Build. 2016;15(128):876–85.

    Google Scholar 

  123. Zhang T, Liu X, Liu J, Tang H, Jiang Y. Exergy and entransy analyses in air-conditioning system part 2—humid air handling process. Energy Build. 2017;15(139):10–21.

    Google Scholar 

  124. Martínez P, Ruiz J, Martínez PJ, Kaiser AS, Lucas M. Experimental study of the energy and exergy performance of a plastic mesh evaporative pad used in air conditioning applications. Appl Therm Eng. 2018;138:675–85.

    Google Scholar 

  125. Aman J, Ting DK, Henshaw P. Residential solar air conditioning: energy and exergy analyses of an ammonia–water absorption cooling system. Appl Therm Eng. 2014;62(2):424–32.

    CAS  Google Scholar 

  126. Sharifzadeh M, Ghazikhani M, Niazmand H. Temporal exergy analysis of adsorption cooling system by developing non-flow exergy function. Appl Therm Eng. 2018;139:409–18.

    Google Scholar 

  127. Ozgener O, Hepbasli A. A review on the energy and exergy analysis of solar assisted heat pump systems. Renew Sustain Energy Rev. 2007;11(3):482–96.

    CAS  Google Scholar 

  128. Jani DB, Mishra M, Sahoo PK. Performance analysis of a solid desiccant assisted hybrid space cooling system using TRNSYS. J Build Eng. 2018;19:26–35.

    Google Scholar 

  129. Jani DB, Mishra M, Sahoo PK. A critical review on application of solar energy as renewable regeneration heat source in solid desiccant—vapor compression hybrid cooling system. J Build Eng. 2018;18:107–24.

    Google Scholar 

  130. Jani DB, Mishra M, Sahoo PK. Investigations on effect of operational conditions on performance of solid desiccant based hybrid cooling system in hot and humid climate. Therm Sci Eng Progress. 2018;7:76–86.

    Google Scholar 

  131. Gowreesunker BL, Tassou SA, Kolokotroni M. Coupled TRNSYS-CFD simulations evaluating the performance of PCM plate heat exchangers in an airport terminal building displacement conditioning system. Build Environ. 2013;65:132–45.

    Google Scholar 

  132. Li Yang, Jing D. Investigation of the performance of photovoltaic/thermal system by a coupled TRNSYS and CFD simulation. Solar Energy. 2017;143:100–12.

    CAS  Google Scholar 

  133. Liu M, Saman W, Bruno F. Computer simulation with TRNSYS for a mobile refrigeration system incorporating a phase change thermal storage unit. Appl Energy. 2014;132:226–35.

    CAS  Google Scholar 

  134. Safa AA, Fung AS, Kumar R. Heating and cooling performance characterization of ground source heat pump system by testing and TRNSYS simulation. Renew Energy. 2015;83:565–75.

    Google Scholar 

  135. Eguia P, Granada E, Alonso JM, Arce E, Saavedra A. Weather datasets generated using kriging techniques to calibrate building thermal simulations with TRNSYS. J Build Eng. 2016;7:78–91.

    Google Scholar 

  136. Antoniadis CN, Martinopoulos. Optimization of a building integrated solar thermal system with seasonal storage using TNRSYS. Renewable Energy. 2018;15:17. https://doi.org/10.1016/j.renene.2018.03.074.

    Article  Google Scholar 

  137. Ouhammou B, Naciri M, Aggour M, Bakraoui M, Karouach F, Bari H. Design and analysis of integrating the solar thermal energy in anaerobic digester using TRNSYS application in kenitra-Morocco. Energy Procedia. 2017;141:13–7.

    Google Scholar 

  138. Feng G, Yu S, Huang K, Jiang B. Simulation study and comparative analysis of composite energy system based on TRNSYS. Energy Procedia. 2017;205:709–15.

    Google Scholar 

  139. Cascetta F, Lorenzo RD, Nardini S, Cirillo L. A TRNSYS simulation of a solar driven air refrigerating system for a low temperature room of an agro industry site in southern part of Italy. Energy Procedia. 2017;126:329–36.

    Google Scholar 

  140. Heidari A, Roshandel R, Vakiloroaya V. An innovative solar assisted desiccant-based evaporative cooling system for co-production of water and cooling in hot and humid climates. Energy Convers Manag. 2019;185:396–409.

    Google Scholar 

  141. Pavlovic S, Bellos E, Le Roux WG, Stefanovic V, Tzivanidis C. Experimental investigation and parametric analysis of a solar thermal dish collector with spiral absorber. Appl Therm Eng. 2017;121:126–35.

    Google Scholar 

  142. Tzivanidis BE. A review of concentrating solar thermal collectors with and without nano fluids. J Therm Anal Calorim. 2018;15:17. https://doi.org/10.1007/s10973-018-7183-1.

    Article  CAS  Google Scholar 

  143. Sheikhani H, Barzegarian R, Heydari A, Kianifar A, Kasaeian A, Grof G, Mahian O. A review of solar absorption cooling systems combined with various auxiliary energy devices. J Therm Anal Calorim. 2017;15:17. https://doi.org/10.1007/s10973-018-7423-4.

    Article  CAS  Google Scholar 

  144. Islam MR, Alan SWL, Chau KJ. Studying the heat and mass transfer process of liquid desiccant for dehumidification and cooling. Appl Energy. 2018;221:334–47.

    Google Scholar 

  145. Bhabhor K, Jani DB. Progressive development in solid desiccant cooling: a review. Int J Ambient Energy. 2019. https://doi.org/10.1080/01430750.2019.1681293.

    Article  Google Scholar 

  146. Georg E, Chakkaravarthy AS, Schweiger G. Co-simulation between TRNSYS and simulink based on type 155. Softw Eng Formal Methods. 2017. https://doi.org/10.1007/978-3-319-74781-1_22.

    Article  Google Scholar 

  147. Jani DB, Mishra M, Sahoo PK. Performance analysis of hybrid solid desiccant–vapor compression air conditioning system in hot and humid weather of India. Build Serv Eng Res Technol. 2016;37:523–38.

    Google Scholar 

  148. Bourhan T, Alshare A, Al-Rifai S. Hourly dynamic simulation of solar ejector cooling system using TRNSYS for Jordanian climate. Energy Convers Manag. 2015;100:288–99.

    Google Scholar 

  149. Jani DB, Mishra M, Sahoo PK. A critical review on solid desiccant-based hybrid cooling systems. Int J Air-Cond Refrig. 2017. https://doi.org/10.1142/S2010132517300026.

    Article  Google Scholar 

  150. Visek E, Mazzrella L, Motta M. Performance analysis of a solar cooling system using self-tuning fuzzy-PID control with TRNSYS. Energy Procedia. 2014;57:2609–18.

    Google Scholar 

  151. Jani DB, Mishra M, Sahoo PK. Solar assisted solid desiccant—vapor compression hybrid air-conditioning system. Singapore: Applications of Solar Energy Springer Nature; 2018. p. 233–50.

    Google Scholar 

  152. Herrera E, Bourdais R, Guéguen H. A hybrid predictive control approach for the management of an energy production–consumption system applied to a TRNSYS solar absorption cooling system for thermal comfort in buildings. Energy Build. 2015;104:47–56.

    Google Scholar 

  153. Jani DB. An overview on passive cooling systems in green building architectures. J Arch Eng. 2019;1(1):1–15.

    Google Scholar 

  154. Alibabaei N, Fung AS, Raahemifar K. Development of TRNSYS-MATLAB co-simulator for applying predictive strategy planning models on residential house HVAC system. Energy Build. 2016;128:81–98.

    Google Scholar 

  155. Jani DB. An overview on recent development in desiccant materials. Int J Adv Mater Res. 2019;5(2):31–7.

    Google Scholar 

  156. Bava F, Furbo S. Development and validation of a detailed TRNSYS-MATLAB model for large solar collector fields for district heating applications. Energy. 2017;135:698–708.

    Google Scholar 

  157. Dadi M, Jani DB. TRNSYS simulation of an evacuated tube solar collector and parabolic trough solar collector for hot climate of Ahmedabad. APGRES 2019-SSRN. 2019;1(1):1–8.

    Google Scholar 

  158. Reddy S, Priya SS, Carollo AJ, Kumar SH. TRNSYS simulation for solar-assisted liquid desiccant evaporative cooling. Int. J. Ambient Energy. 2017. https://doi.org/10.1080/01430750.2017.1410222.

    Article  Google Scholar 

  159. Jani DB. Use of renewable solar energy in desiccant assisted cooling techniques. Int J Adv Res Rev. 2019;4(6):6–14.

    Google Scholar 

  160. Fu HX, Liu XH. Review of the impact of liquid desiccant dehumidification on indoor air quality. Build Environ. 2017;116:158–72.

    Google Scholar 

  161. Lalkiya D, Bhabhor K, Jani DB. Performance investigation of rotary desiccant wheel by mathematical modeling using mathematica. J Emerg Technol Innov Res. 2019;6(5):400–9.

    Google Scholar 

  162. Fong KF, Lee CK. New perspectives in solid desiccant cooling for hot and humid regions. Energy Build. 2018;158:1152–60.

    Google Scholar 

  163. Dadi M, Jani DB. Solar energy as a regeneration heat source in hybrid solid desiccant: vapor compression cooling system—a review. J Emerg Technol Innov Res. 2019;6(5):421–5.

    Google Scholar 

  164. Abdullah K, Uyun AS, Nur SM, Bamahry A, Imanda R, Meurah T, Mahlia I. Experimental investigation of air conditioner using the desiccant cooling system in equatorial climates. In: MATEC Web Conference 164 (2018).

  165. Jani DB. Liquid desiccants applications in cooling and dehumidification–an overview. Arch Ind Eng. 2019;201:1–17.

    Google Scholar 

  166. Zouaoui A, Ghedira LZ, Nasrallah SB. Open solid desiccant cooling air systems: a review and comparative study. Renew Sustain Energy Rev. 2016;54:889–917.

    Google Scholar 

  167. Jani DB. Application of solid desiccant: VCR hybrid cooling HVAC. Germany: LAMBERT Academic Publishing; 2019. p. 1–73.

    Google Scholar 

  168. Huang S, Yang M, Hong Y, Ye W. Performance correlations of an adjacently internally-cooled membrane contactor applied for liquid desiccant air dehumidification. Appl Therm Eng. 2018;129:1660–9.

    CAS  Google Scholar 

  169. Jani DB. Advances in liquid desiccant integrated dehumidification and cooling systems. Am J Environ Sustain Dev. 2019;4:6–11.

    Google Scholar 

  170. Watanabe H. Design of ionic liquids as liquid desiccant for an air conditioning system. Green Energy Environ. 2019;4(2):139–45.

    Google Scholar 

  171. Elmer T. An experimental study of a novel integrated desiccant air conditioning system for building applications. Energy Build. 2016;111:434–45.

    Google Scholar 

  172. Lin J. Thermodynamic analysis of a hybrid membrane liquid desiccant dehumidification and dew point evaporative cooling system. Energy Convers Manag. 2018;156:440–58.

    Google Scholar 

  173. Sudhakar K, Jenkins MS, Mangal S, Priya SS. Modeling of solar desiccant cooling system using TRNSYS simulator: a review. J Build Eng. 2019;24:1007–49.

    Google Scholar 

  174. Chen X, Riffat S, Hongyu B, Zheng X, Reay D. Recent progress in liquid desiccant dehumidification and air conditioning: a review. Energy Built Environ. 2019. https://doi.org/10.1016/j.enbenv.2019.09.001.

    Article  Google Scholar 

  175. Storle D, Abdel-Salam MRH, Simonson CJ. Energy performance comparison of a 3-fluid and 2-fluid liquid desiccant membrane air-conditioning systems in an office building. Energy. 2019;176:437–56.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Jani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jani, D.B., Bhabhor, K., Dadi, M. et al. A review on use of TRNSYS as simulation tool in performance prediction of desiccant cooling cycle. J Therm Anal Calorim 140, 2011–2031 (2020). https://doi.org/10.1007/s10973-019-08968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08968-1

Keywords

Navigation