
Learning To Rank Resources
Zhuyun Dai

Carnegie Mellon University
zhuyund@cs.cmu.edu

Yubin Kim
Carnegie Mellon University

yubink@cs.cmu.edu

Jamie Callan
Carnegie Mellon University

callan@cs.cmu.edu

ABSTRACT
We present a learning-to-rank approach for resource selection. We
develop features for resource ranking and present a training ap-
proach that does not require human judgments. Our method is
well-suited to environments with a large number of resources such
as selective search, is an improvement over the state-of-the-art in
resource selection for selective search, and is statistically equiva-
lent to exhaustive search even for recall-oriented metrics such as
MAP@1000, an area in which selective search was lacking.

KEYWORDS
selective search, resource selection, federated search

ACM Reference format:
Zhuyun Dai, Yubin Kim, and Jamie Callan. 2017. Learning To Rank Re-
sources. In Proceedings of SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo,
Japan, , 4 pages.
DOI: 10.1145/3077136.3080657

1 INTRODUCTION
Selective search is a federated search architecture where a collection
is clustered into topical shards. At query time, a resource selection
algorithm is used to select a small subset of shards to search.

Recent work showed that while selective search is equivalent
to exhaustive search for shallow metrics (e.g. P@10), it performs
worse for recall-oriented metrics (e.g. MAP) [5]. �is is a problem
because modern retrieval systems apply re-ranking operations to a
base retrieval, which can require deep result lists [10].

In this paper, we present learning to rank resources, a resource se-
lection method based on learning-to-rank. While learning-to-rank
has been widely studied for ranking documents, its application to
ranking resources has not been studied in depth. We take advantage
of characteristics of the resource ranking problem that are distinct
from document ranking; we present new features; and we propose
a training approach that uses exhaustive search results as the gold
standard and show that human judgments are not necessary.

Our approach is suitable for e�ciently ranking the hundreds
of shards produced by selective search and is an improvement
over the state-of-the-art in resource selection for selective search.
In addition, our approach is statistically equivalent to exhaustive
search in MAP@1000, a deep recall-oriented metric.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan
© 2017 ACM. 978-1-4503-5022-8/17/08. . . $15.00
DOI: 10.1145/3077136.3080657

2 RELATEDWORK
�ere are three main classes of resource selection algorithms: term-
based, sample-based, and supervised approaches. Term-based algo-
rithms models the language distribution of each shard. At query
time, they determine the relevance of a shard by comparing the
query to the stored language model [1, 12]. Sample-based algo-
rithms estimate the relevance of a shard by querying a small sample
index of the collection, known as the centralized sample index (CSI)
[9, 11, 13, 14]. Supervised methods use training data to learn models
to evaluate shard relevance, with most methods training a classi�er
per shard [2, 4]. However, training a classi�er for every shard is
expensive in selective search, where shards number in hundreds.
�us, supervised methods have not been used for selective search.
Techniques that train a single classi�er would be more suitable for
selective search. Balog [3] trained a learning-to-rank algorithm
for a TREC task and Hong et al. [6] learned a joint probabilistic
classi�er. �e la�er is used as a baseline in this work.

3 MODEL
Let q denote a query and Φ(q, si) denote features extracted from
the ith shard for the query. �e goal of learning-to-rank is to
�nd a shard scoring function f (Φ(q, s)) that can minimize the loss
function de�ned as: L(f) =

∫
q∈Q l(q, f)dP(q). We use l(q, f) =∑

si>qsj 1{ f (Φ(q, si)) < f (Φ(q, sj))} , where si >q sj denotes shard
pairs for which si is ranked higher than sj in the gold standard
shard ranking w.r.t query q.

We used SVMrank [7], which optimizes pair-wise loss. List-wise
algorithms such as ListMLE [16] produced similar results, thus we
only report results with SVMrank .

�e training process requires a gold standard shard ranking for
each training query. We propose two de�nitions of the ground truth,
relevance-based and overlap-based. In the relevance-based approach,
the optimal shard ranking is determined by the number of relevant
documents a shard contains. �us, the training data require queries
with relevance judgments, which can be expensive to obtain. �e
overlap-based approach assumes that the goal of selective search
is to reproduce the document ranking of exhaustive search. �e
optimal shard ranking is determined by the number of documents
in a shard that were ranked highly by exhaustive search. �is does
not require manual relevance judgments.

4 FEATURES
4.1 �ery-Independent Information
Shard Popularity: Indicates how o�en the shard had relevant
(relevance-based) or top-ranked (overlap-based) documents for
training queries. It is query-independent and acts as a shard prior.

4.2 Term-Based Statistics
Term-based features can be easily precomputed, thus are e�cient.
Taily Features: One feature is the Taily [1] score calculated for
query q and shard s . However, Taily scores can vary greatly across
shards and queries. For robustness, we add two additional features.
If shard s is ranked rs for query q, the inverse rank is 1/rs , which
directly describes the importance of s relative to other shards. �e
binned rank is ceilinд(rs/b), where b is a bin-size. We use b = 10,
meaning that every 10 consecutive shards are considered equally
relevant. �is feature helps the model to ignore small di�erences
between shards with similar rankings.
Champion List Features: For each query term, the top-k best
documents were found. �e number of documents each shard
contributes to the top-k was stored for each shard-term pair. For
multi-term queries, the feature values of each query term were
summed. We use two values of k = {10, 100}, generating 2 features.
�ery Likelihood Features: �e log-likelihood of a query with
respect to the unigram language model of each shard is: L(q |s) =∑
t ∈q logp(t |s), where p(t |s) is the shard language model, the aver-

age of all document language models p(t |d) in the shard. Document
language model p(t |d) is estimated using MLE with Jelinek-Mercer
smoothing. �ery likelihood, inverse query likelihood, and binned
query likelihood features are created for body, title, and inlink rep-
resentations, yielding a total of 9 features.
�ery Term Statistics: �e maximum and minimum shard term
frequency across query terms, e.g. st fmax (q, s) = maxt ∈q st f (t , s),
where st f (t , s) is the frequency of term t in shard s . We include the
maximum and minimum of st f · id f where id f is the inverse doc-
ument frequency over the collection. �ese 4 features are created
for body, title, and inlink representations, yielding 12 features.
Bigram Log Frequency: �e frequency of each bigram of the
query in a shard is b fq (s) =

∑
b ∈q logb fb (s), where b fb (s) is the

frequency of bigram b in shard s . �is feature can estimate term
correlation. To save storage, we only store bigrams that appear
more than 50 times in the collection.

4.3 Sample-Document (CSI-Based) Features
�ese features are based on retrieval from the centralized sample
index (CSI), which may provide term co-occurrence information.
CSI retrieval is expensive, and thus is slower to calculate.
Rank-S and ReDDE Features: Similar to Taily features, the shard
scores given by Rank-S [9] and ReDDE [13], as well as the inverse
rank and binned rank features for a total of 6 features.
Average Distance to Shard Centroid: �e distance between the
top-k documents retrieved from the CSI to their respective shards’
centroids. Intuitively, if the retrieved documents are close to the
centroid, the shard is more likely to contain other similar, highly-
scoring documents. For multiple documents from the same shard,
the distances are averaged. We use two distance metrics: KL di-
vergence and cosine similarity Note that because KL divergence
measures distance rather than similarity, we use the inverse of the
averaged KL divergence as the metric. We generated features for
k = {10, 100} and also a feature measuring the distance between
the shard’s centroid to its single highest scoring document in the
top 100 of the CSI results, for a total of 6 features.

5 EXPERIMENTAL METHODOLOGY
Datasets: Experiments were conducted with ClueWeb09-B and
Gov2. ClueWeb09-B (CW09-B) consists of 50 million pages from
the ClueWeb09 dataset. Gov2 is 25 million web pages from the US
government web domains. For relevance-based models, 200 queries
from the TREC 09-12 Web Track topics were used for CW09-B, and
150 queries from the TREC 04-06 Terabyte Track topics were used
for Gov2. Models were trained by 10-fold cross-validation. For
overlap-based models, training queries were sampled from the AOL
and Million�ery Track query logs. Models were tested with the
TREC queries. Optimal shard ranking for the overlap method was
de�ned by the number of documents each shard contains that were
within the top N = 2K retrieved from exhaustive search. We found
N ∈ [1K , 3K] produced stable results.
Proposed methods and baselines: We used three sources of
training data: relevance-based training data (L2R-TREC), and overlap-
based training data (L2R-AOL and L2R-MQT).We used linear SVMrank ,
whereC was chosen by cross validation. Our method was compared
against state-of-the-art unsupervisedmodels (Taily [1], ReDDE [13],
and Rank-S [9]); and a supervised model Jnt [6]. Jnt was trained
and tested using TREC queries with 10-fold cross-validation.
Evaluation Metrics: Search accuracy was measured by P@10,
NDCG@30 and MAP@1000. To test the proposed methods’ superi-
ority to baselines, a query-level permutation test with p < 0.05 was
used. To test the equivalence to exhaustive search, a non-inferiority
test [15] was used to assert that results of the more e�cient se-
lective search were at least as accurate as exhaustive search. �e
equivalence is established by rejecting the null hypothesis that
selective search is at least 5% worse than exhaustive search with a
95% con�dence interval.
Selective Search Setup: We used 123 shards for CW09-B and 199
shards for Gov2 [5]. A 1% central sample index (CSI) was created for
ReDDE and Rank-S baselines and CSI based features. Jnt followed
the original implementation and used a 3% CSI.
Search Engine Setup: Retrieval was performed with Indri, using
default parameters. �eries were issued using the sequential de-
pendency model (SDM) with parameters (0.8, 0.1, 0.1). For CW09-B,
documents with a Waterloo spam score below 50 were removed 1.

6 EXPERIMENTS
6.1 Overall Comparison
Our method was compared to four baselines and exhaustive search.
We tested shard rank cuto�s from 1–8% of total shards; 10 for
CW09-B and 16 for Gov2. �e automatic cuto�s of Rank-S and
Taily performed similarly to �xed cuto�s and are not shown. Shard
rankings by L2R enabled more accurate search than all baselines
in both datasets (Figure 1). �e search accuracy of L2R models is
higher than the baselines at nearly every shard rank cuto�.

Table 1 compares L2R models and the baselines at two shard
rank cuto�s. �e �rst cuto� is the point where the shallow metrics
(P@10 and NDCG@30) stablize: 4 for CW09-B and 6 for Gov2. �e
second cuto� is where MAP@1000 become stable: 8 for CW09-B
and 12 for Gov2. L2R models improve over the baselines at both
shard cuto�s. For shallow metrics, L2R reaches exhaustive search

1h�ps://plg.uwaterloo.ca/ gvcormac/

at the �rst cuto�. Furthermore, searching the �rst 8 out of 12
shards ranked by L2R is statistically non-inferior to searching all
shards exhaustively, even for the recall-oriented MAP@1000. All
the baselines have a 10% gap from exhaustive search in MAP@1000.

6.2 E�ect of Training Data
One might expect the relevance-based model (L2R-TREC) to be bet-
ter than overlap-based models (L2R-AOL and AOL-MQT), because
it uses manual relevance judgments. A model trained with over-
lap data might favor shards that contain false-positive documents.
However, there is li�le di�erence between the two trainingmethods.
L2R-TREC was statistically be�er than TREC or AOL for MAP@1000
in Gov2, but the relative gain is only 2%; in all other cases, there is
no statistically signi�cant di�erences among the three models. Fur-
thermore, models trained with relevance and overlap data agreed on
which features are important (not shown due to space constraints).
�is analysis indicates that unlike learning to rank document mod-
els, we can train a learning to rank resource selector on a new
dataset before we have relevance judgments.

6.3 �ery Length
We compare L2R-MQT to the baselines using MAP@1000 for queries
with di�erent lengths on CW09-B, shown in Figure 1. Gov2 and
other training data produced similar results and are not shown.
For single-term queries, existing methods are already equivalent
to or be�er than exhaustive search, and L2R-MQT retains this good
performance. �e advantage of L2R-MQT comes from multi-term
queries, where the best baseline Jnt still has a 10% gap from ex-
haustive search. For these queries, the improvement of L2R-MQT
over the Taily is expected, because Taily does not model term
co-occurrence. However, L2R-MQT also out-performs ReDDE and
Rank-S, which account for term co-occurrence by retrieving docu-
ments from the CSI, but are limited by only having a sample view
of the collection. L2R draws evidence from both the sample and the
whole collection. Jnt also fuses sample- and term-based features,
but most of its features are derived from ReDDE or Taily-like meth-
ods and do not carry new information. L2R improved over Jnt by
using novel features that encode new evidence.

Figure 1: MAP@1000 for queries on CW09-B, grouped by query
length. Parentheses on the X axis present the number of queries in
each group. T is the shard rank cuto�.

6.4 Feature Analysis
�e L2R approach uses three classes of features: query-independent,
term-based, and sample-document (CSI). �ese three feature classes
have substantially di�erent computational costs and contributions.

Fast vs. Slow features: Sample-document (CSI-based) features
have a high computational cost, because they search a sample
(typically 1-2%) of the entire corpus. Term-based features have a
low computational cost, because they lookup just a few statistics
per query term per shard. Costs for query-independent features are
lower still. �e third experiment compares a slowmodel that uses all
features (ALL) to a fast version that does not use sample-document
features (FAST).

We estimate the resource selection cost by the amount of data
retrieved from storage. For CSI-based features, the cost is the size
of postings of every query term in the CSI. For term-based features,
the cost is the amount of su�cient statistics required to derive all
term-based features. �e query-independent feature only looks up
the shard popularity, so the cost is one statistic per shard.

Table 2 compares FAST with ALL and baselines by their accuracy
and average resource selection cost per query. ReDDE results were
similar to Rank-S and are not shown. Taily has been the state-of-
the-art term-based (‘faster’) resource selection algorithm. However,
FAST is substantially more accurate. FAST also outperformed Jnt
with over 100× speed up. Compared to ALL, FAST is 67 times faster
on CW09-B and 34 times faster on Gov2. Although FAST has slightly
lower search accuracy than ALL, the gap is not large and is not
statistically signi�cant, indicating that the information from the
CSI features can be covered by the more e�cient features.

We conclude that a resource ranker composed of only query-
independent and term-based features is as accurate as exhaustive
search and a ranker that includes CSI features. CSI features improve
accuracy slightly, but at a signi�cant additional computational cost.

Importance of Feature Types: We investigate the contribu-
tion of other types of features: query-independent features and
term-based features, where the term-based featureswere sub-divided
into unigram and bigram features. Table 3 presents the results for
the leave-one-out analysis conducted on FAST. On CW09-B, remov-
ing any feature set from FAST led to lower performance. �is indi-
cates that each set of features covers di�erent types of information,
and all are necessary for accurate shard ranking. Among these fea-
tures, unigram features were most important because CW09-B has
many single-term queries. On Gov2, the only substantial di�erence
is observed when bigram features are excluded.

7 CONCLUSION
�is paper investigates a learning-to-rank approach to resource
selection for selective search. Much a�ention has been devoted
to learning-to-rank documents, but there has been li�le study of
learning-to-rank resources such as index shards. Our research
shows that training data for this task can be generated automati-
cally using a slower system that searches all index shards for each
query. �is approach assumes that the goal of selective search is to
mimic the accuracy of an exhaustive search system, but with lower
computational cost. �is assumption is not entirely true—we would
like selective search to also be more accurate—but it is convenient
and e�ective.

Table 1: Search accuracy comparison between 3 L2R models and baselines at two rank cuto�s for two datasets. N: statistically signi�cant
improvement compared to Jnt, the best resource selection baseline. ∗: non-inferiority to exhaustive search .

Method
CW09-B Gov2

T=4 T=8 T=6 T=12
P

@10
NDCG
@30

MAP
@1000 P@10 NDCG

@30
MAP
@1000

P
@10

NDCG
@30

MAP
@1000

P
@10

NDCG
@30

MAP
@1000

Redde 0.355 0.262 0.176 0.363∗ 0.275∗ 0.187 0.580∗ 0.445 0.267 0.587∗ 0.4600∗ 0.289
Rank-S 0.350 0.259 0.175 0.360∗ 0.268 0.183 0.570 0.440 0.263 0.585∗ 0.461∗ 0.286
Taily 0.346 0.260 0.172 0.346 0.260 0.175 0.518 0.403 0.235 0.530 0.418 0.256
Jnt 0.370∗ 0.269 0.178 0.367∗ 0.277∗ 0.192 0.582∗ 0.459 0.278 0.588∗ 0.465∗ 0.292
L2R-TREC 0.374∗ 0.281∗ 0.192N 0.377∗ 0.286N∗ 0.202N∗ 0.593∗ 0.469∗ 0.299N 0.591∗ 0.475N∗ 0.313N∗
L2R-AOL 0.374∗ 0.281N∗ 0.191N 0.375∗ 0.287N∗ 0.202N∗ 0.593∗ 0.470N∗ 0.291N 0.587∗ 0.470∗ 0.307N∗
L2R-MQT 0.382∗ 0.285N∗ 0.193N 0.375∗ 0.286N∗ 0.202N∗ 0.586∗ 0.465∗ 0.292N 0.593∗ 0.474N∗ 0.309N∗
Exh 0.372 0.288 0.208 0.372 0.288 0.208 0.585 0.479 0.315 0.585 0.479 0.315

Table 2: E�ectiveness and e�ciency of FAST features. ALL uses all
features. FAST does not use sample-document features. T: shard
rank cuto�. ∗: non-inferiority to exhaustive.

Method P
@10

NDCG
@30

MAP
@1000

Average
Cost

Redde 0.363∗ 0.275∗ 0.187 156,180
Cw09 Taily 0.346 0.260 0.175 470
-B Jnt 0.367∗ 0.277∗ 0.192 468,710

ALL 0.375∗ 0.286∗ 0.202∗ 158,529
(T=8) FAST 0.373∗ 0.285∗ 0.201∗ 2,349

Redde 0.579∗ 0.445∗ 0.289 105,080
Gov2 Taily 0.518 0.403 0.256 758

Jnt 0.588∗ 0.465∗ 0.292 315,875
ALL 0.593∗ 0.474∗ 0.309∗ 108,306

(T=12) FAST 0.587∗ 0.471∗ 0.310∗ 3,226

Table 3: Performance of L2R-MQT using feature sets constructed
with leave-one-out. ‘- X’ means the feature was excluded from FAST.
Text in bold indicates the lowest value in the column.

Feature Set P@10 NDCG@30 MAP@1000
FAST 0.373 0.285 0.201

CW09 - Unigram 0.303 0.226 0.138
-B - Bigram 0.364 0.275 0.187

(T=8) - Independent 0.368 0.282 0.199

Gov2
FAST 0.592 0.471 0.310
- Unigram 0.592 0.468 0.301
- Bigram 0.582 0.462 0.296

(T=12) - Independent 0.591 0.471 0.303

We show that the learned resource selection algorithm produces
search accuracy comparable to exhaustive search down to rank
1,000. �is paper is the �rst that we know of to demonstrate results
that are statistically signi�cantly equivalent to exhaustive search
for MAP@1000 on an index that does not have badly skewed shard
sizes. Accuracy this deep in the rankings opens up the possibility
of using a learned reranker on results returned by a selective search
system, which was not practical in the past.

Most prior research found that sample-document algorithms
such as ReDDE and Rank-S are a li�lemore accurate than term-based
algorithms such as Taily for selective search resource selection;
however, sample-document resource selection algorithms have far

higher computational costs that increases query latency in some
con�gurations [8]. �is work suggests that sample-document fea-
tures provide only a small gain when combined with other types of
features. It may no longer be necessary to choose between accuracy
and query latency when using a learned resource ranker.

8 ACKNOWLEDGMENTS
�is research was supported by National Science Foundation (NSF)
grant IIS-1302206. Yubin Kim is the recipient of the Natural Sciences
and Engineering Research Council of Canada PGS-D3 (438411). Any
opinions, �ndings, and conclusions in this paper are the authors’
and do not necessarily re�ect those of the sponsors.

REFERENCES
[1] R. Aly, D. Hiemstra, and T. Demeester. Taily: shard selection using the tail of

score distributions. pages 673–682, 2013.
[2] J. Arguello, F. Diaz, J. Callan, and J. Crespo. Sources of evidence for vertical

selection. pages 315–322, 2009.
[3] K. Balog. Learning to combine collection-centric and document-centric models

for resource selection. In TREC, 2014.
[4] S. Cetintas, L. Si, and H. Yuan. Learning from past queries for resource selection.

pages 1867–1870, 2009.
[5] Z. Dai, X. Chenyan, and J. Callan. �ery-biased partitioning for selective search.

pages 1119–1128, 2016.
[6] D. Hong, L. Si, P. Bracke, M. Wi�, and T. Juchcinski. A joint probabilistic

classi�cation model for resource selection. pages 98–105. ACM, 2010.
[7] T. Joachims. Training linear SVMs in linear time. In Proc. SIGKDD, pages 217–226,

2006.
[8] Y. Kim, J. Callan, J. S. Culpepper, and A. Mo�at. Load-balancing in distributed

selective search. pages 905–908, 2016.
[9] A. Kulkarni, A. S. Tigelaar, D. Hiemstra, and J. Callan. Shard ranking and cuto�

estimation for topically partitioned collections. pages 555–564, 2012.
[10] C. Macdonald, R. L. T. Santos, and I. Ounis. �e whens and hows of learning to

rank for web search. Inf. Retr., 16(5):584–628, 2013.
[11] I. Markov and F. Crestani. �eoretical, qualitative, and quantitative analyses of

small-document approaches to resource selection. 32(2):9, 2014.
[12] H. No�elmann and N. Fuhr. Evaluating di�erent methods of estimating retrieval

quality for resource selection. pages 290–297, 2003.
[13] L. Si and J. P. Callan. Relevant document distribution estimation method for

resource selection. pages 298–305, 2003.
[14] P. �omas and M. Shokouhi. SUSHI: scoring scaled samples for server selection.

pages 419–426, 2009.
[15] E. Walker and A. S. Nowacki. Understanding equivalence and noninferiority

testing. Journal of General Internal Medicine, 26(2):192–196, 2011.
[16] F. Xia, T.-Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning to

rank: theory and algorithm. In Proc. ICML, pages 1192–1199, 2008.

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	4 Features
	4.1 Query-Independent Information
	4.2 Term-Based Statistics
	4.3 Sample-Document (CSI-Based) Features

	5 Experimental Methodology
	6 Experiments
	6.1 Overall Comparison
	6.2 Effect of Training Data
	6.3 Query Length
	6.4 Feature Analysis

	7 Conclusion
	8 Acknowledgments
	References

