Skip to main content

Advertisement

Log in

Identification of inhibitors synergizing gemcitabine sensitivity in the squamous subtype of pancreatic ductal adenocarcinoma (PDAC)

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Pancreatic adenocarcinoma (PDAC) is a highly aggressive cancer with a high chance of recurrence, limited treatment options, and poor prognosis. A recent study has classified pancreatic cancers into four molecular subtypes: (1) squamous, (2) immunogenic, (3) pancreatic progenitor and (4) aberrantly differentiated endocrine exocrine. Among all the subtypes, the squamous subtype has the worst prognosis. This study aims to utilize large scale genomic datasets and computational systems biology to identify potential drugs targeting the squamous subtype of PDAC through combination therapy. Using the transcriptomic data available from the International Cancer Genome Consortium, Cancer Cell Line Encyclopedia and Connectivity Map, we identified 26 small molecules that could target the squamous subtype of PDAC. Among them include inhibitors targeting the SRC proto-oncogene (SRC) and the mitogen-activated protein kinase kinase 1/2 (MEK1/2). Further analyses demonstrated that the SRC inhibitors (dasatinib and PP2) and MEK1/2 inhibitor (pimasertib) synergized gemcitabine sensitivity specifically in the squamous subtype of PDAC cells (SW1990 and BxPC3), but not in the PDAC progenitor cells (AsPC1). Further analysis revealed that the synergistic effects are dependent on SRC or MEK1/2 activities, as overexpression of SRC or MEK1/2 completely abrogated the synergistic effects SRC inhibitors (dasatinib and PP2) and MEK1/2 inhibitor (pimasertib). In contrast, no significant toxicity was observed in the MRC5 human lung fibroblast and ARPE-19 human retinal pigment epithelial cells. Together, our findings suggest that combinations of SRC or MEK inhibitors with gemcitabine possess synergistic effects on the squamous subtype of PDAC cells and warrant further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–386

    Article  CAS  Google Scholar 

  2. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30

    Article  PubMed  Google Scholar 

  3. Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362:1605–1617

    Article  PubMed  CAS  Google Scholar 

  4. Kleeff J, Korc M, Apte M et al (2016) Pancreatic cancer. Nat Rev Dis Primers 2:16022

    Article  PubMed  Google Scholar 

  5. Binenbaum Y, Na’ara S, Gil Z (2015) Gemcitabine resistance in pancreatic ductal adenocarcinoma. Drug Resist Update 23:55–68

    Article  Google Scholar 

  6. Burris HA 3rd, Moore MJ, Andersen J et al (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15:2403–2413

    Article  PubMed  CAS  Google Scholar 

  7. Moore MJ, Goldstein D, Hamm J et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1960–1966

    Article  PubMed  CAS  Google Scholar 

  8. Conroy T, Desseigne F, Ychou M et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–1825

    Article  PubMed  CAS  Google Scholar 

  9. Von Hoff DD, Ervin T, Arena FP et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703

    Article  CAS  Google Scholar 

  10. Vennin C, Murphy KJ, Morton JP, Cox TR, Pajic M, Timpson P. (2017) Reshaping the tumor stroma for treatment of pancreatic cancer. Gastroenterology 154:820–838

    Google Scholar 

  11. Bailey P, Chang DK, Nones K et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531:47–52

    Article  PubMed  CAS  Google Scholar 

  12. Subramanian A, Narayan R, Corsello SM et al (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171:1437–1452 e1417

    Article  PubMed  CAS  Google Scholar 

  13. Di Veroli GY, Fornari C, Wang D et al (2016) Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 32:2866–2868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  15. Tiong KH, Tan BS, Choo HL et al (2016) Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival. Oncotarget 7:57633–57650

    Article  PubMed  PubMed Central  Google Scholar 

  16. Voon YL, Ahmad M, Wong PF et al (2015) Nutlin-3 sensitizes nasopharyngeal carcinoma cells to cisplatin-induced cytotoxicity. Oncol Rep 34:1692–1700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Soo JS, Ng CH, Tan SH et al (2015) Metformin synergizes 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) combination therapy through impairing intracellular ATP production and DNA repair in breast cancer stem cells. Apoptosis 20:1373–1387

    Article  PubMed  CAS  Google Scholar 

  18. Low SY, Tan BS, Choo HL, Tiong KH, Khoo AS, Leong CO (2012) Suppression of BCL-2 synergizes cisplatin sensitivity in nasopharyngeal carcinoma cells. Cancer Lett 314:166–175

    Article  PubMed  CAS  Google Scholar 

  19. Wong SW, Tiong KH, Kong WY et al (2011) Rapamycin synergizes cisplatin sensitivity in basal-like breast cancer cells through up-regulation of p73. Breast Cancer Res Treat 128:301–313

    Article  PubMed  CAS  Google Scholar 

  20. Soo HC, Chung FF, Lim KH et al (2017) Cudraflavone C induces tumor-specific apoptosis in colorectal cancer cells through inhibition of the phosphoinositide 3-kinase (PI3K)-AKT pathway. PLoS ONE 12:e0170551

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chung FF, Tan PF, Raja VJ et al (2017) Jerantinine A induces tumor-specific cell death through modulation of splicing factor 3b subunit 1 (SF3B1). Sci Rep 7:42504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ong LC, Tan YF, Tan BS, Chung FF, Cheong SK, Leong CO (2017) Single-walled carbon nanotubes (SWCNTs) inhibit heat shock protein 90 (HSP90) signaling in human lung fibroblasts and keratinocytes. Toxicol Appl Pharmacol 329:347–357

    Article  PubMed  CAS  Google Scholar 

  23. Tan BS, Tiong KH, Choo HL et al (2015) Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis 6:e1826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Low SY, Choo HL, Tan BS, Tiong KH, Khoo ASB, Leong CO (2011) Suppression of BCL-2 synergizes cisplatin sensitivity in nasopharyngeal carcinoma cells. 5th International Symposium on Nasopharyngeal carcinoma, Penang, Malaysia

  25. Lamb J (2007) The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 7:54–60

    Article  PubMed  Google Scholar 

  26. Lamb J, Crawford ED, Peck D et al (2006) The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  PubMed  CAS  Google Scholar 

  27. Collisson EA, Sadanandam A, Olson P et al (2011) Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med 17:500–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Moffitt RA, Marayati R, Flate EL et al (2015) Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet 47:1168–1178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Waddell N, Pajic M, Patch AM et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518:495–501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Keating GM (2017) Dasatinib: a review in chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia. Drugs 77:85–96

    Article  PubMed  CAS  Google Scholar 

  31. Nam JS, Ino Y, Sakamoto M, Hirohashi S (2002) Src family kinase inhibitor PP2 restores the E-cadherin/catenin cell adhesion system in human cancer cells and reduces cancer metastasis. Clin Cancer Res 8:2430–2436

    PubMed  CAS  Google Scholar 

  32. Ma YC, Shi C, Zhang YN et al (2012) The tyrosine kinase c-Src directly mediates growth factor-induced Notch-1 and Furin interaction and Notch-1 activation in pancreatic cancer cells. PLoS ONE 7:e33414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ito H, Gardner-Thorpe J, Zinner MJ, Ashley SW, Whang EE (2003) Inhibition of tyrosine kinase Src suppresses pancreatic cancer invasiveness. Surgery 134:221–226

    Article  PubMed  Google Scholar 

  34. Kim LC, Song L, Haura EB (2009) Src kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6:587–595

    Article  PubMed  CAS  Google Scholar 

  35. Lutz MP, Esser IB, Flossmann-Kast BB et al (1998) Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem Biophys Res Commun 243:503–508

    Article  PubMed  CAS  Google Scholar 

  36. Trevino JG, Summy JM, Lesslie DP et al (2006) Inhibition of SRC expression and activity inhibits tumor progression and metastasis of human pancreatic adenocarcinoma cells in an orthotopic nude mouse model. Am J Pathol 168:962–972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Shields DJ, Murphy EA, Desgrosellier JS et al (2011) Oncogenic Ras/Src cooperativity in pancreatic neoplasia. Oncogene 30:2123–2134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Thomas RM, Toney K, Fenoglio-Preiser C et al (2007) The RON receptor tyrosine kinase mediates oncogenic phenotypes in pancreatic cancer cells and is increasingly expressed during pancreatic cancer progression. Cancer Res 67:6075–6082

    Article  PubMed  CAS  Google Scholar 

  39. Desgrosellier JS, Barnes LA, Shields DJ et al (2009) An integrin alpha(v)beta(3)-c-Src oncogenic unit promotes anchorage-independence and tumor progression. Nat Med 15:1163–1169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ricono JM, Huang M, Barnes LA et al (2009) Specific cross-talk between epidermal growth factor receptor and integrin alphavbeta5 promotes carcinoma cell invasion and metastasis. Cancer Res 69:1383–1391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jaganathan S, Yue P, Turkson J (2010) Enhanced sensitivity of pancreatic cancer cells to concurrent inhibition of aberrant signal transducer and activator of transcription 3 and epidermal growth factor receptor or Src. J Pharmacol Exp Ther 333:373–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Yezhelyev MV, Koehl G, Guba M et al (2004) Inhibition of SRC tyrosine kinase as treatment for human pancreatic cancer growing orthotopically in nude mice. Clin Cancer Res 10:8028–8036

    Article  PubMed  CAS  Google Scholar 

  43. Nagaraj NS, Smith JJ, Revetta F, Washington MK, Merchant NB (2010) Targeted inhibition of SRC kinase signaling attenuates pancreatic tumorigenesis. Mol Cancer Ther 9:2322–2332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Je DW, O YM, Ji YG, Cho Y, Lee DH (2014) The inhibition of SRC family kinase suppresses pancreatic cancer cell proliferation, migration, and invasion. Pancreas 43:768–776

    Article  PubMed  CAS  Google Scholar 

  45. Bartscht T, Rosien B, Rades D et al (2015) Dasatinib blocks transcriptional and promigratory responses to transforming growth factor-beta in pancreatic adenocarcinoma cells through inhibition of smad signalling: implications for in vivo mode of action. Mol Cancer 14:199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nobis M, McGhee EJ, Morton JP et al (2013) Intravital FLIM-FRET imaging reveals dasatinib-induced spatial control of src in pancreatic cancer. Cancer Res 73:4674–4686

    Article  PubMed  CAS  Google Scholar 

  47. Morton JP, Karim SA, Graham K et al (2010) Dasatinib inhibits the development of metastases in a mouse model of pancreatic ductal adenocarcinoma. Gastroenterology 139:292–303

    Article  PubMed  CAS  Google Scholar 

  48. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE (2004) Inhibition of SRC tyrosine kinase impairs inherent and acquired gemcitabine resistance in human pancreatic adenocarcinoma cells. Clin Cancer Res 10:2307–2318

    Article  PubMed  CAS  Google Scholar 

  49. Duong HQ, Yi YW, Kang HJ et al (2014) Combination of dasatinib and gemcitabine reduces the ALDH1A1 expression and the proliferation of gemcitabine-resistant pancreatic cancer MIA PaCa-2 cells. Int J Oncol 44:2132–2138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Chee CE, Krishnamurthi S, Nock CJ et al (2013) Phase II study of dasatinib (BMS-354825) in patients with metastatic adenocarcinoma of the pancreas. Oncologist 18:1091–1092

    Article  PubMed  PubMed Central  Google Scholar 

  51. Evans TRJ, Van Cutsem E, Moore MJ et al (2017) Phase 2 placebo-controlled, double-blind trial of dasatinib added to gemcitabine for patients with locally-advanced pancreatic cancer. Ann Oncol 28:354–361

    Article  PubMed  CAS  Google Scholar 

  52. Vena F, Li Causi E, Rodriguez-Justo M et al (2015) The MEK1/2 inhibitor pimasertib enhances gemcitabine efficacy in pancreatic cancer models by altering ribonucleotide reductase subunit-1 (RRM1). Clin Cancer Res 21:5563–5577

    Article  PubMed  CAS  Google Scholar 

  53. Akinleye A, Furqan M, Mukhi N, Ravella P, Liu D (2013) MEK and the inhibitors: from bench to bedside. J Hematol Oncol 6:27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yang S, Liu G (2017) Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol Lett 13:1041–1047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Martinelli E, Troiani T, D’Aiuto E et al (2013) Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells. Int J Cancer 133:2089–2101

    Article  PubMed  CAS  Google Scholar 

  56. Nagaraj NS, Washington MK, Merchant NB (2011) Combined blockade of Src kinase and epidermal growth factor receptor with gemcitabine overcomes STAT3-mediated resistance of inhibition of pancreatic tumor growth. Clin Cancer Res 17:483–493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Malaysia Ministry of Education Fundamental Research Grant Scheme (FRGS/1/2017/SKK08/IMU/03/1 to MCW, FFLC and COL; FRGS/1/2016/SKK08/IMU/01/1 to LWH) and the IMU Research Fund (BP I-01/14(05)2017; JLE, PNG, CYL and YJT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee-Onn Leong.

Ethics declarations

Conflict of interest

The authors report no conflicts of interest pertaining to this study.

Research involving human participants and/or animals

No human participants and/or animals was involved in this study.

Informed consent

No informed consent was required for this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Er, J.L., Goh, P.N., Lee, C.Y. et al. Identification of inhibitors synergizing gemcitabine sensitivity in the squamous subtype of pancreatic ductal adenocarcinoma (PDAC). Apoptosis 23, 343–355 (2018). https://doi.org/10.1007/s10495-018-1459-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-018-1459-6

Keywords

Navigation