skip to main content
article

QoS Routing for Multimedia Communication over Wireless Mobile Ad Hoc Networks: A Survey

Published:01 January 2017Publication History
Skip Abstract Section

Abstract

A lot of intensive research has been carried out in the direction of providing multimedia communication over wireless mobile ad hoc network MANET. In MANET, various QoS problems exist such as inefficient routing, handling node mobility, power conservation, limited processing capabilities of network devices, high error rates. Wireless routing introduces new challenges as applying basic routing algorithms directly on MANET could lead to large power consumption, interference, and load-balancing problems. Many routing algorithms have been proposed as extensions to the basic routing algorithms to enhance their performance in MANETs. This paper summarizes existing solutions on QoS routing and resource reservation mechanisms in order to provide multimedia communication over MANET. It also considers the limitations of existing QoS models with regard to satisfying QoS in serving multimedia over MANET. The newest QoS architectures give much better results in providing QoS support. However, more refinements must be proposed in order to enhance further their performance in MANETs.

References

  1. Abdrabou, A., & Zhuang, W. 2006. A position-based QoS routing scheme for UWB mobile ad hoc networks. IEEE Journal on Selected areas in Communications, 244, 850-856. Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Ahmad, S. J., Reddy, V., Damodaram, A., & Krishna, P. R. 2015. Delay optimization using Knapsack algorithm for multimedia traffic over MANETs. Expert Systems with Applications, 4220, 6819-6827. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Ahn, G.-S., Campbell, A. T., Veres, A., & Sun, L.-H. 2002. SWAN: Service differentiation in stateless wireless ad hoc networks. Proceedings ofIEEE INFOCOM Vol. 2, pp. 457-466.Google ScholarGoogle Scholar
  4. Alotaibi, E., & Mukherjee, B. 2012. A survey on routing algorithms for wireless ad-hoc and mesh networks. Computer Networks, 562, 940-965. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Alwan, H., & Agarwal, H. 2013, May. MQoSR: A Multiobjective QoS routing protocol for wireless sensor networks. Hindawi ISRN Sensor Networks.Google ScholarGoogle Scholar
  6. Badis, H., & Agha, K. A. 2005. QOLSR, QoS routing for ad hoc wireless networks using OLSR. European Trans. on Telecommunications, 165, 427-442.Google ScholarGoogle ScholarCross RefCross Ref
  7. Badis, H., & Agha, K. A. 2006. CEQMM: A complete and efficient quality of service model for MANETs pp. 2-32. ACM PE-WASUN. Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Barolli, L., Koyama, A., & Shiratori, N. 2003. A QoS routing method for ad-hoc networks based on genetic algorithm pp. 175-179. IEEE DEXA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Bellavista, P., Corradi, A., & Foschini, L. 2013. Self-organizing seamless multimedia streaming in dense MANETs. IEEE Pervasive Computing 121, 68-78. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Bheemarjuna Reddy, T., Karthigeyan, I., Manoj, B. S., & Murthy, C. S. R. 2006. Quality of service provisioning in ad hoc wireless networks: A survey of issues and solutions. Ad Hoc Networks, 41, 83-124. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Bin-Salem, A., & Wan, T. 2012. Survey of cross-layer designs for video transmission over wireless networks. IETE Technical Review, 293, 229-247.Google ScholarGoogle Scholar
  12. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., & Weiss, W. 1998, December. An architecture for differentiated services.Google ScholarGoogle Scholar
  13. Braden, R., Clark, D., & Shenker, S. 1994. Integrated services in the Internet architecture: An overview.Google ScholarGoogle Scholar
  14. Braden, R., Zhang, L., Berson, S., Herzog, S., & Jamin, S. 1997. Resource ReserVation Protocol-Version 1 functional specification.Google ScholarGoogle Scholar
  15. Brak, S. E., Brak, M. E., & Benhaddou, D. 2014. A new QoS management scheme for VoIP application over wireless ad hoc networks. Journal of Computer Networks and Communications.Google ScholarGoogle Scholar
  16. Cadger, F., Curran, K., Santos, J., & Moffett, S. 2015. Towards a location and mobility-aware routing protocol for improving multimedia streaming performance in MANETs. Peer-to-Peer Networking and Applications, 83, 543-554.Google ScholarGoogle ScholarCross RefCross Ref
  17. Castellanos, W., Guerri, J., & Arce, P. 2016. A QoS-aware routing protocol with adaptive feedback scheme for video streaming for mobile networks. Computer Communications, 77, 10-25. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Chakeres, I., & Perkins, C. 2008. Dynamic MANET on demand DYMO routing. Retrieved from http://www.ietf.org/internet-drafts/draft-ietfmanet-dymo-11.txtGoogle ScholarGoogle Scholar
  19. Chen, L., & Heinzelman, W. B. 2004. Network architecture to support QoS in mobile ad hoc networks pp. 1715-1718. IEEE ICME.Google ScholarGoogle Scholar
  20. Chen, L., & Heinzelman, W. B. 2005. QoS-aware routing based on bandwidth estimation for mobile ad hoc networks. IEEE Journal on Selected areas in Communications, 233, 561-572. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Chen, S., & Nahrstedt, K. 1999. Distributed quality-of-service routing in ad hoc networks. IEEE Journal on Selected areas in Communications, 178, 1488-1505. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Chen, T.-W., & Gerla, M. 1998. Global State Routing: A new routing scheme for ad-hoc wireless networks. Proceedings ofIEEE ICC Vol. 1, pp. 171-175.Google ScholarGoogle Scholar
  23. Chen, T.-W., Tsai, J., & Gerla, M. 1997. QoS routing performance in multihop, multimedia, wireless networks. Proceedings ofIEEE ICUPC Vol. 2, pp. 557-561.Google ScholarGoogle Scholar
  24. Chow, C.-O., & Ishii, H. 2007. Enhancing real-time video streaming over mobile ad hoc networks using multipoint-to-point communication. Computer Communications, 308, 1754-1764. Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Clausen, T., & Jacquet, P. 2003. Optimized Link State Routing Protocol OLSR.Google ScholarGoogle Scholar
  26. Cobo, L., Quintero, A., & Pierre, S. 2010. Ant-based routing for wireless multimedia sensor networks using multiple QoS metrics. Computer Networks, 5417, 2991-3010. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Coll-Perales, B., Gozalvez, J., & Sepulcre, M. 2015. Empirical models of the communications performance of multi-hop cellular networks using D2D. Journal of Network and Computer Applications, 58, 60-72. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Crawley, E., Nair, R., Rajagopalan, B., & Sandick, H. 1998. A framework for QoS based routing in the Internet.Google ScholarGoogle Scholar
  29. Crow, B. P., Widjaja, I., Kim, J. G., & Sakai, P. T. 1997. IEEE 802.11 wireless local area networks. IEEE Communications Magazine, 359, 116-126. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Dai, R., Wang, P., & Akyildiz, I. F. 2012. Correlation-aware QoS routing with differential coding for wireless video sensor networks. IEEE Transactions on Multimedia, 145, 1469-1479. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Dharmaraju, D., Roy-Chowdhury, A., Hovareshti, P., & Baras, J. S. 2002. INORA - A unified signaling and routing mechanism for QoS support in mobile ad hoc networks pp. 86-93. IEEE ICPPW. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Diaz, J. R., Lloret, J., Jimenez, J. M., & Sendra, S. 2014a, March. MWAHCA: A multimedia wireless ad hoc cluster architecture. TheScientificWorldJournal.Google ScholarGoogle Scholar
  33. Diaz, J. R., Lloret, J., Jimenez, J. M., Sendra, S., & Rodrigues, J. J. 2014b, Sept. Fault tolerant mechanism for multimedia flows in wireless ad hoc networks based on fast switching paths. Mathematical Problems in Engineering.Google ScholarGoogle Scholar
  34. Egilmez, H. E., Civanlar, S., & Tekalp, A. M. 2012. A distributed QoS routing architecture for scalable video streaming over multi-domain Openow networks. Proceedings of ICIP pp. 2237-2240. IEEE.Google ScholarGoogle Scholar
  35. Eiza, M. H., Owens, T., Ni, Q., & Shi, Q. 2015. Situation-aware QoS routing algorithm for vehicular ad hoc networks. IEEE Trans. on VT, 6412, 5520-5535.Google ScholarGoogle Scholar
  36. Fan, Z. 2004. QoS routing using lower layer information in ad hoc networks. Proceedings ofIEEE PIMRC Vol. 1, pp. 135-139..Google ScholarGoogle Scholar
  37. Feeney, L. M. 1999. A taxonomy for routing protocols in mobile ad hoc networks. SICS Research Report, Swedish Institute of Computer Science.Google ScholarGoogle Scholar
  38. Ghazani, S. H. H. N. 2015. Light weight distributed QoS algorithm for wide area ad hoc networks. Asian Journal of Information Technology, 146, 221-230.Google ScholarGoogle Scholar
  39. Goyal, V. K. 2001. Multiple Description Coding: Compression meets the network. IEEE Signal Processing Magazine, 185, 74-93.Google ScholarGoogle ScholarCross RefCross Ref
  40. Guimarães, R., Cerdí, L., Barceló, J. M., García, J., Voorhaen, M., & Blondia, C. 2009. Quality of service through bandwidth reservation on multirate ad hoc wireless networks. Ad Hoc Networks, 72, 388-400. Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Gupta, R., Jia, Z., Tung, T., & Walrand, J. 2005. Interference-aware QoS routing IQRouting for ad-hoc networks. Proceedings ofIEEE GLOBECOM Vol. 5, pp. 6-12.Google ScholarGoogle Scholar
  42. Haas, Z. J., & Pearlman, M. R. 2001. ZRP: A hybrid framework for routing in ad hoc networks. In Ad Hoc Networking pp. 221-253. Addison-Wesley Longman Publishing Co. Inc. Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. He, G. 2002. Destination-Sequenced Distance Vector DSDV Protocol pp. 1-9. Networking Laboratory, Helsinki University of Technology.Google ScholarGoogle Scholar
  44. Hu, Y.-C., & Johnson, D. B. 2002. Design and demonstration of live audio and video over multihop wireless ad hoc networks. In IEEE MILCOM Vol. 2, pp. 1211-1216.Google ScholarGoogle Scholar
  45. Huang, H. 2015. A QoS routing algorithm for video streaming in MANET. Open Automation and Control Systems Journal, 71, 693-697.Google ScholarGoogle ScholarCross RefCross Ref
  46. Igartua, M. A., & Frias, V. C. 2010. Self-configured multi-path routing using path lifetime for video streaming services over ad hoc networks. Computer Communications, 3315, 1879-1891. Google ScholarGoogle ScholarDigital LibraryDigital Library
  47. Ivascu, G. I., Pierre, S., & Quintero, A. 2009. QoS routing with traffic distribution in mobile ad hoc networks. Computer Communications, 322, 305-316. Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Iwata, A., Chiang, C.-C., Pei, G., Gerla, M., & Chen, T.-W. 1999. Scalable routing strategies for ad hoc wireless networks. IEEE Journal on Selected areas in Communications, 178, 1369-1379. Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Jia, Z., Gupta, R., Walrand, J., & Varaiya, P. 2005. Bandwidth guaranteed routing for ad-hoc networks with interference consideration pp. 3-9. IEEE ISCC. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Johnson, D. B. 1993. Mobile Host Internetworking Using IP Loose Source Routing. DTIC Document.Google ScholarGoogle Scholar
  51. Johnson, D. B., Maltz, D. A., & Broch, J. 2001. DSR: The dynamic source routing protocol for multi-hop wireless ad hoc networks. In Perkins, C. E. Ed., Ad Hoc Networking pp. 139-172. Addison-Wesley. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. Kanellopoulos, D. 2011. Quality of service in networks supporting cultural multimedia applications. Program, 451, 50-66.Google ScholarGoogle ScholarCross RefCross Ref
  53. Karp, B., & Kung, H.-T. 2000. GPSR: Greedy Perimeter Stateless Routing for wireless networks pp. 243-254. MOBICOM. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Kim, D., Min, C.-H., & Kim, S. 2004. On-demand SIR and bandwidth-guaranteed routing with transmit power assignment in ad hoc mobile networks. IEEE Trans. on VT, 534, 1215-1223.Google ScholarGoogle Scholar
  55. Kuo, J.-L., Shih, C.-H., Ho, C.-Y., & Chen, Y.-C. 2013. A cross-layer approach for real-time multimedia streaming on wireless peer-to-peer ad hoc network. Ad Hoc Networks, 111, 339-354. Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Lee, S.-B., Ahn, G.-S., Zhang, X., & Campbell, A. T. 2000. INSIGNIA: An IP-based quality of service framework for mobile ad hoc networks. Journal of Parallel and Distributed Computing, 604, 374-406. Google ScholarGoogle ScholarDigital LibraryDigital Library
  57. Lian, S., Kanellopoulos, D., & Ruffo, G. 2009. Recent advances in multimedia information system security. Informatica, 331, 3-24.Google ScholarGoogle Scholar
  58. Liao, W.-H., Tseng, Y.-C., & Shih, K.-P. 2002. A TDMA-based bandwidth reservation protocol for QoS routing in a wireless mobile ad hoc network. Proceedings ofIEEE ICC Vol. 5, pp. 3186-3190.Google ScholarGoogle Scholar
  59. Lin, C. R., & Liu, J.-S. 1999. QoS routing in ad hoc wireless networks. IEEE Journal on Selected areas in Communications, 178, 1426-1438. Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Liu, Q., Wang, X., & Giannakis, G. B. 2006. A cross-layer scheduling algorithm with QoS support in wireless networks. IEEE Trans. on VT, 553, 839-847.Google ScholarGoogle Scholar
  61. Loo, J., Lloret, J., & Ortiz, J. H. 2012. Mobile Ad Hoc Networks: Current Status and Future Trends. CRC Press. Google ScholarGoogle ScholarDigital LibraryDigital Library
  62. Mangold, S., Choi, S., May, P., Klein, O., Hiertz, G., & Stibor, L. 2002. IEEE 802.11e wireless LAN for quality of service. Proc. European Wireless, 2, 32-39.Google ScholarGoogle Scholar
  63. Manoj, B. S., & Murthy, C. 2002. Real-time traffic support for ad hoc wireless networks pp. 335-340. IEEE ICON.Google ScholarGoogle Scholar
  64. Mirhakkak, M., Schult, N., & Thomson, D. 2000. Dynamic quality-of-service for mobile ad hoc networks. Proceedings ofACM MobiHo pp. 137-138. Google ScholarGoogle ScholarDigital LibraryDigital Library
  65. Misra, A., & Banerjee, S. 2002. MRPC: Maximizing network lifetime for reliable routing in wireless environments. Proceedings ofIEEE WCNC Vol. 2, pp. 800-806.Google ScholarGoogle Scholar
  66. Moussaoui, A., Semchedine, F., & Boukerram, A. 2014. A link-state QoS routing protocol based on link stability for mobile ad hoc networks. Journal of Network and Computer Applications, 39, 117-125.Google ScholarGoogle ScholarCross RefCross Ref
  67. Mueller, S., Tsang, R. P., & Ghosal, D. 2004. Multipath routing in mobile ad hoc networks: Issues and challenges. In Performance tools and applications to networked systems,LNCS Vol. 2965, pp. 209-234.Google ScholarGoogle Scholar
  68. Muhammad, I., Tahir, M., & Fasee, U. 2011. QoS providence and management in mobile ad hoc networks. Proceedings of IPCSIT Vol. 2, pp. 244-249. Singapore: IACSIT Press.Google ScholarGoogle Scholar
  69. Munoz, J. L., Esparza, O., Aguilar, M., Carrascal, V., & Forne, J. 2010. RDSR-V. Reliable dynamic source routing for video-streaming over mobile ad hoc networks. Computer Networks, 541, 79-96. Google ScholarGoogle ScholarDigital LibraryDigital Library
  70. NikaeinN.BonnetC.NikaeinN. 2001. HARP- Hybrid Ad hoc Routing Protocol.Proc. Int'l Symp. on Telecommunications IST pp. 56-67.Google ScholarGoogle Scholar
  71. Nyambo, B., Janssens, G., & Lamotte, W. 2014. Quality of service in mobile ad hoc networks, carrying multimedia traffic. Int. J. on Information Technologies & Security, 62, 41-68.Google ScholarGoogle Scholar
  72. Obaidat, M., Ali, M., Shahwan, I., Obaidat, M. S., & Obeidat, S. 2013. QoS-aware multipath communications over MANETs. Journal of Networks, 81, 26-36.Google ScholarGoogle Scholar
  73. Park, V. D., & Corson, M. S. 1997. A highly adaptive distributed routing algorithm for mobile wireless networks. Proceedings ofIEEE INFOCOM Vol. 3, pp. 1405-1413. Google ScholarGoogle ScholarDigital LibraryDigital Library
  74. Pearlman, M. R., Haas, Z. J., Sholander, P., & Tabrizi, S. S. 2000. On the impact of alternate path routing for load balancing in mobile ad hoc networks. Proceedings of MobiHoc pp. 3-10. ACM . Google ScholarGoogle ScholarDigital LibraryDigital Library
  75. Perkins, C., Belding-Royer, E., &. Das, S. 2003. Ad Hoc On-Demand Distance Vector AODV Routing.Google ScholarGoogle Scholar
  76. Rajaraman, R. 2002. Topology control and routing in ad hoc networks: A survey. ACM SIGACT News, 332, 60-73. Google ScholarGoogle ScholarDigital LibraryDigital Library
  77. Rao, K. R., Bojkovic, Z. S., & Milovanovic, D. A. 2002. Multimedia communication systems: Techniques, standards, and networks 1st ed.. Prentice Hall. Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Rehman, O. M. H., Bourdoucen, H., & Ould-Khaoua, M. 2015. Forward link quality estimation in VANETs for sender-oriented alert messages broadcast. Journal of Network and Computer Applications, 58, 23-41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  79. Rodriguez-Perez, M., Herreria-Alonso, S., Fernandez-Veiga, M., & Lopez-Garcia, C. 2015. An ANT colonization routing algorithm to minimize network power consumption. Journal of Network and Computer Applications, 58, 217-226. Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Royer, E. M., & Toh, C.-K. 1999. A review of current routing protocols for ad hoc mobile wireless networks. IEEE Personal Communications, 62, 46-55.Google ScholarGoogle ScholarCross RefCross Ref
  81. Rubin, I., & Liu, Y.-C. 2003. Link stability models for QoS ad hoc routing algorithms. IEEE VTC, 5, 3084-3088.Google ScholarGoogle Scholar
  82. Sanchez-Iborra, R., Cano, M.-D., Rodrigues, J. J., & Garcia-Haro, J. 2015. An experimental QoE performance study for the efficient transmission of high demanding traffic over an ad hoc network using BATMAN. Mobile Information Systems.Google ScholarGoogle Scholar
  83. Shen, H., Shi, B., Zou, L., & Gong, H. 2003. A distributed entropy-based long-life QoS routing algorithm in ad hoc network. Proceedings ofIEEE CCECE Vol. 3, pp. 1535-1538.Google ScholarGoogle Scholar
  84. Sheng, M., Li, J., & Shi, Y. 2003. Routing protocol with QoS guarantees for ad-hoc network. IET Electronics Letters, 391, 143-145.Google ScholarGoogle ScholarCross RefCross Ref
  85. Sivakumar, R., Sinha, P., & Bharghavan, V. 1999. CEDAR: A core-extraction distributed ad hoc routing algorithm. IEEE Journal on Selected areas in Communications, 178, 1454-1465. Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Stine, J. A., & Veciana, G. D. 2004. A paradigm for quality-of-service in wireless ad hoc networks using synchronous signaling and node states. IEEE Journal on Selected areas in Communications, 227, 1301-1321. Google ScholarGoogle ScholarDigital LibraryDigital Library
  87. Sun, W., Yamaguchi, H., Yukimasa, K., & Kusumoto, S. 2006. Gvgrid: A QoS routing protocol for vehicular ad hoc networks. Proceedings of IEEE IWQoS pp. 130-139.Google ScholarGoogle ScholarCross RefCross Ref
  88. Talukdar, A. K., Badrinath, B. R., & Acharya, A. 2001. MRSVP: A resource reservation protocol for an integrated services network with mobile hosts. Wireless Networks, 71, 5-19. Google ScholarGoogle ScholarDigital LibraryDigital Library
  89. Tang, J., & Zhang, X. 2007. Cross-layer resource allocation over wireless relay networks for quality-of service provisioning. IEEE Journal on Selected areas in Communications, 254, 645-656. Google ScholarGoogle ScholarDigital LibraryDigital Library
  90. Vaidya, N., Dugar, A., Gupta, S., & Bahl, P. 2005. Distributed fair scheduling in a wireless LAN. IEEE Transactions on Mobile Computing, 46, 616-629. Google ScholarGoogle ScholarDigital LibraryDigital Library
  91. Vishnumurthy, V., Sandeep, T., Manoj, B.S., & Murthy, C. S. R. 2004. A novel out-of-band signaling mechanism for enhanced real time support in tactical ad hoc wireless networks. Proceedings of IEEE RTAS '04. Google ScholarGoogle ScholarDigital LibraryDigital Library
  92. Wang, B., Chen, X., & Chang, W. 2014. A light-weight trust-based QoS routing algorithm for ad hoc networks. Pervasive and Mobile Computing, 13, 164-180. Google ScholarGoogle ScholarDigital LibraryDigital Library
  93. Wang, M., & Kuo, G.-S. 2005, September. An application-aware QoS routing scheme with improved stability for multimedia applications in mobile ad hoc networks. Proceedings ofIEEE VTC Vol. 3, pp. 1901-1905.Google ScholarGoogle Scholar
  94. Wang, Y., Song, M., Wei, Y., Wang, Y., & Wang, X. 2014. Improved ANT colony-based multi-constrained QoS energy-saving routing and throughput optimization in wireless ad-hoc networks. Journal of China Universities of Posts and Telecommunications, 211, 43-59.Google ScholarGoogle ScholarCross RefCross Ref
  95. Wu, H., Cheng, S., Peng, Y., Long, K., & Ma, J. 2002. IEEE 802.11 Distributed Coordination Function DCF: Analysis and Enhancement. Proceedings ofIEEE ICC Vol. 1, pp. 605-609.Google ScholarGoogle Scholar
  96. Xiao, H., Seah, W. K. G., Lo, A., & Chua, K. C. 2000. A flexible quality of service model for mobile ad-hoc networks. Proceedings ofIEEE VTC Vol. 1, pp. 445-449.Google ScholarGoogle Scholar
  97. Yang, Y., & Kravets, R. 2004. Distributed QoS guarantees for real time traffic in ad hoc networks. Proceedings ofIEEE SECON pp. 118-127.Google ScholarGoogle Scholar
  98. Yang, Y., & Kravets, R. 2005. Contention-aware admission control for ad hoc networks. IEEE Trans. On Mobile Computing, 44, 363-377. Google ScholarGoogle ScholarDigital LibraryDigital Library
  99. Zhang, B., & Mouftah, H. T. 2005. QoS routing for wireless ad hoc networks: Problems, algorithms and protocols. IEEE Communications Magazine, 4310, 110-117. Google ScholarGoogle ScholarDigital LibraryDigital Library
  100. Zhu, C., & Corson, M. S. 2002. QoS routing for mobile ad hoc networks. Proceedings ofIEEE INFOCOM Vol. 2, pp. 958-967.Google ScholarGoogle Scholar

Index Terms

  1. QoS Routing for Multimedia Communication over Wireless Mobile Ad Hoc Networks: A Survey
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Login options

            Check if you have access through your login credentials or your institution to get full access on this article.

            Sign in

            Full Access