Skip to main content

Asymmetric Centrosome Behavior in Stem Cell Divisions

  • Chapter
  • First Online:
The Centrosome

Abstract

Stem cells are well known for their self-renewal ability and differentiation potential. It is critical to regulate stem cell self-renewal and differentiation, both during fast growth in development and tissue homeostasis in adulthood. One way to maintain tissue homeostasis is through asymmetric stem cell division, in which centrosomes play an important role in establishing mitotic spindles by acting as a microtubule organization center (MTOC). In this chapter, the asymmetric behavior of centrosomes during stem cell division will be discussed based on their structural, behavioral, and developmental asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson CT, Stearns T (2009) Centriole age underlies asynchronous primary cilium growth in mammalian cells. Curr Biol 19:1498–1502

    Article  PubMed  CAS  Google Scholar 

  • Basto R, Brunk K, Vinadogrova T, Peel N, Franz A, Khodjakov A, Raff JW (2008) Centrosome amplification can initiate tumorigenesis in flies. Cell 133:1032–1042

    Article  PubMed  CAS  Google Scholar 

  • Basto R, Lau J, Vinogradova T, Gardiol A, Woods CG, Khodjakov A, Raff JW (2006) Flies without centrioles. Cell 125:1375–1386

    Article  PubMed  CAS  Google Scholar 

  • Bettencourt-Dias M, Glover DM (2007) Centrosome biogenesis and function: centrosomics brings new understanding. Nat Rev Mol Cell Biol 8:451–463

    Article  PubMed  CAS  Google Scholar 

  • Bornens M (2002) Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 14:25–34

    Article  PubMed  CAS  Google Scholar 

  • Brunet A, Rando TA (2007) Ageing: from stem to stern. Nature 449:288–291

    Article  PubMed  CAS  Google Scholar 

  • Cabernard C, Doe CQ (2009) Apical/basal spindle orientation is required for neuroblast homeostasis and neuronal differentiation in Drosophila. Dev Cell 17:134–141

    Article  PubMed  CAS  Google Scholar 

  • Cabernard C, Prehoda KE, Doe CQ (2010) A spindle-independent cleavage furrow positioning pathway. Nature 467:91–94

    Article  PubMed  CAS  Google Scholar 

  • Castellanos E, Dominguez P, Gonzalez C (2008) Centrosome dysfunction in Drosophila neural stem cells causes tumors that are not due to genome instability. Curr Biol 18:1209–1214

    Article  PubMed  CAS  Google Scholar 

  • Chang P, Stearns T (2000) Delta-tubulin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Nat Cell Biol 2:30–35

    Article  PubMed  CAS  Google Scholar 

  • Chang P, Giddings TH Jr, Winey M, Stearns T (2003) Epsilon-tubulin is required for centriole duplication and microtubule organization. Nat Cell Biol 5:71–76

    Article  PubMed  CAS  Google Scholar 

  • Cheng J, Tiyaboonchai A, Yamashita YM, Hunt AJ (2011) Asymmetric division of cyst stem cells in Drosophila testis is ensured by anaphase spindle repositioning. Development 138:831–837

    Article  PubMed  CAS  Google Scholar 

  • Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124:1111–1115

    Article  PubMed  CAS  Google Scholar 

  • Clevers H (2005) Stem cells, asymmetric division and cancer. Nat Genet 37:1027–1028

    Article  PubMed  CAS  Google Scholar 

  • Conduit PT, Raff JW (2010) Cnn dynamics drive centrosome size asymmetry to ensure daughter centriole retention in Drosophila neuroblasts. Curr Biol 20:2187–2192

    Article  PubMed  CAS  Google Scholar 

  • Conduit PT, Brunk K, Dobbelaere J, Dix CI, Lucas EP, Raff JW (2010) Centrioles regulate centrosome size by controlling the rate of Cnn incorporation into the PCM. Curr Biol 20:2178–2186

    Article  PubMed  CAS  Google Scholar 

  • Dammermann A, Muller-Reichert T, Pelletier L, Habermann B, Desai A, Oegema K (2004) Centriole assembly requires both centriolar and pericentriolar material proteins. Dev Cell 7:815–829

    Article  PubMed  CAS  Google Scholar 

  • Dobbelaere J, Josue F, Suijkerbuijk S, Baum B, Tapon N, Raff J (2008) A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PLoS Biol 6:e224

    Article  PubMed  Google Scholar 

  • Gromley A, Yeaman C, Rosa J, Redick S, Chen CT, Mirabelle S, Guha M, Sillibourne J, Doxsey SJ (2005) Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 123:75–87

    Article  PubMed  CAS  Google Scholar 

  • Hardy RW, Tokuyasu KT, Lindsley DL, Garavito M (1979) The germinal proliferation center in the testis of Drosophila melanogaster. J Ultrastruct Res 69:180–190

    Article  PubMed  CAS  Google Scholar 

  • Januschke J, Llamazares S, Reina J, Gonzalez C (2011) Drosophila neuroblasts retain the daughter centrosome. Nat commun 2:243

    Article  PubMed  Google Scholar 

  • Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294:2542–2545

    Article  PubMed  CAS  Google Scholar 

  • Kirkham M, Muller-Reichert T, Oegema K, Grill S, Hyman AA (2003) SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112:575–587

    Article  PubMed  CAS  Google Scholar 

  • Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa D, Busso C, Fluckiger I, Gonczy P (2009) Phosphorylation of SAS-6 by ZYG-1 is critical for centriole formation in C. elegans embryos. Dev Cell 17:900–907

    Article  PubMed  CAS  Google Scholar 

  • Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132:583–597

    Article  PubMed  CAS  Google Scholar 

  • Kuo TC, Chen CT, Baron D, Onder TT, Loewer S, Almeida S, Weismann CM, Xu P, Houghton JM, Gao FB et al (2011) Midbody accumulation through evasion of autophagy contributes to cellular reprogramming and tumorigenicity. Nat Cell Biol 13:1214–1223

    Article  PubMed  CAS  Google Scholar 

  • Lambert JD, Nagy LM (2002) Asymmetric inheritance of centrosomally localized mRNAs during embryonic cleavages. Nature 420:682–686

    Article  PubMed  CAS  Google Scholar 

  • Leatherman JL, Dinardo S (2008) Zfh-1 controls somatic stem cell self-renewal in the Drosophila testis and nonautonomously influences germline stem cell self-renewal. Cell Stem Cell 3:44–54

    Article  PubMed  CAS  Google Scholar 

  • Leatherman JL, Dinardo S (2010) Germline self-renewal requires cyst stem cells and stat regulates niche adhesion in Drosophila testes. Nat Cell Biol 12:806–811

    Article  PubMed  CAS  Google Scholar 

  • Leidel S, Gonczy P (2005) Centrosome duplication centrosome duplication and nematodes: recent insights from an old relationship. Dev Cell 9:317–325

    Article  PubMed  CAS  Google Scholar 

  • Megraw TL, Kao LR, Kaufman TC (2001) Zygotic development without functional mitotic centrosomes. Curr Biol 11:116–120

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa Y, Yamane Y, Okanoue T, Tsukita S (2001) Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol Biol Cell 12:1687–1697

    PubMed  CAS  Google Scholar 

  • Neumuller RA, Knoblich JA (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23:2675–2699

    Article  PubMed  Google Scholar 

  • Piel M, Nordberg J, Euteneuer U, Bornens M (2001) Centrosome-dependent exit of cytokinesis in animal cells. Science 291:1550–1553

    Article  PubMed  CAS  Google Scholar 

  • Pohl C, Jentsch S (2009) Midbody ring disposal by autophagy is a post-abscission event of cytokinesis. Nat Cell Biol 11:65–70

    Article  PubMed  CAS  Google Scholar 

  • Prehoda KE (2009) Polarization of Drosophila neuroblasts during asymmetric division. Cold Spring Harb Perspect Biol 1:a001388

    Article  PubMed  Google Scholar 

  • Rando TA (2006) Stem cells, ageing and the quest for immortality. Nature 441:1080–1086

    Article  PubMed  CAS  Google Scholar 

  • Raymond K, Deugnier MA, Faraldo MM, Glukhova MA (2009) Adhesion within the stem cell niches. Curr Opin Cell Biol 21:623–629

    Article  PubMed  CAS  Google Scholar 

  • Rebollo E, Sampaio P, Januschke J, Llamazares S, Varmark H, Gonzalez C (2007) Functionally unequal centrosomes drive spindle orientation in asymmetrically dividing Drosophila neural stem cells. Dev Cell 12:467–474

    Article  PubMed  CAS  Google Scholar 

  • Rusan NM, Peifer M (2007) A role for a novel centrosome cycle in asymmetric cell division. J Cell Biol 177:13–20

    Article  PubMed  CAS  Google Scholar 

  • Sluder G (2005) Two-way traffic: centrosomes and the cell cycle. Nat Rev Mol Cell Biol 6:743–748

    Article  PubMed  CAS  Google Scholar 

  • Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294:2546–2549

    Article  PubMed  CAS  Google Scholar 

  • Vorobjev IA, Chentsov yu S (1982) Centrioles in the cell cycle I. Epithelial cells. J Cell Biol 93:938–949

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461:947–955

    Article  PubMed  CAS  Google Scholar 

  • Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Yamashita YM (2009a) The centrosome and asymmetric cell division. Prion 3:84–88

    Article  PubMed  Google Scholar 

  • Yamashita YM (2009b) Regulation of asymmetric stem cell division: spindle orientation and the centrosome. Front Biosci 14:3003–3011

    Article  PubMed  CAS  Google Scholar 

  • Yamashita YM, Jones DL, Fuller MT (2003) Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science 301:1547–1550

    Article  PubMed  CAS  Google Scholar 

  • Yamashita YM, Mahowald AP, Perlin JR, Fuller MT (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521

    Article  PubMed  CAS  Google Scholar 

  • Yamashita YM, Yuan HB, Cheng J, Hunt AJ (2010) Polarity in stem stem cell division: asymmetric stem cell division in tissue homeostasis. Cold Spring Harb Perspect Biol 2:a001313

    Article  PubMed  Google Scholar 

  • Zou C, Li J, Bai Y, Gunning WT, Wazer DE, Band V, Gao Q (2005) Centrobin: a novel daughter centriole-associated protein that is required for centriole duplication. J Cell Biol 171:437–445

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge financial support from Chicago Biomedical Consortium from The Searle Funds at The Chicago Community Trust to J.C., Postdoctoral Fellowship from the Training Program in Organogenesis (T-32-HD007505) to T.M.R., and MacArthur Foundation to Y.M.Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Roth, T.M., Yamashita, Y.M., Cheng, J. (2012). Asymmetric Centrosome Behavior in Stem Cell Divisions. In: Schatten, H. (eds) The Centrosome. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-035-9_6

Download citation

Publish with us

Policies and ethics