Skip to main content
Log in

Abstract

For materials scientists, the cell is evidently a biomaterial – rich with polymers, surface forces, solvent-solute interactions, liquid-crystalline structures, etc. Yet, the language of the materials scientist is as foreign to the biological world as French is to Chinese. Little of the materials scientists' perspective has been brought to bear on the question of biological function. This review aims to begin bridging the gap between the two disciplines–to show that a materials-oriented approach has power to bring fresh insights into an otherwise impenetrably complex maze. In this approach the cell is treated as a polymer gel. If the cell is a gel, then a logical approach to the understanding of cell function is through an understanding of gel function. Great strides have been made recently in understanding the principles of polymer-gel dynamics. It has become clear that a central mechanism is the phase-transition – a major structural change prompted by a subtle change of environment. Phase-transitions are capable of doing work and such work could be responsible for much of the work of the cell. Here, we pursue this approach. We set up a polymer-gel-based foundation for cell behavior, and explore the extent to which this foundation explains how the cell achieves its everyday tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Frey-Wyssling, Submicroscopic Morphology of Protoplasm (Elsevier, Amsterdam, 1953).

    Google Scholar 

  2. D. S. Jones, Int. J. Pharm. 179(2) (1984) 167-178.

    Google Scholar 

  3. H. Berry, J. Pelta, D. Lairez and V. Larreta-Garde, Biochim. Biophys. Acta. 1524(2–3) (2000) 110-117.

    PubMed  Google Scholar 

  4. P. A. Janmey, J. V. Shah, J. X. Tang and T. P. Stossel, Results Probl. Cell Differ. 32 (2001) 181-99.

    PubMed  Google Scholar 

  5. P. W. Hochachka, Proc. Natl. Acad. Sci. USA. 96(22) (1999) 12233-12239.

    PubMed  Google Scholar 

  6. B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Watson, “Molecular Biology of the Cell” (Third Edition. Garland, NY, 1994)

  7. S. R. Taylor, H. H. Shlevin and J. R. Lopez, Biochem. Soc. Transact. 7 (1975) 759-764.

    Google Scholar 

  8. L. Tung, and G. Vassort, Personal communication.

  9. Biophys. J. 58 13-19.

  10. V. A. Klenchin, S. I. Sukharev, S. M. Serov, L. V. Chernomordik and Y. A. Chizmadzhev, ibid. 60(4) (1991) 804-811.

    PubMed  Google Scholar 

  11. M. R. Prausnitz, C. D. Milano, J. A. Gimm, R. Langer, and J. C. Weaver, ibid. 66(5) (1994) 1522-1530.

    PubMed  Google Scholar 

  12. K. Schwister and B. Deuticke, Biophys. Acta. 816(2) (1985) 332-348.

    Google Scholar 

  13. E. H. Serpersu, K. Kinosita, Jr. and T. Y. Tsong, Biochim. Biophys Acta. 812(3) (1985) 779-85.

    PubMed  Google Scholar 

  14. I. Cameron, Physiol. Chem. Phys. Med. NMR 20 (1988) 221-225.

    PubMed  Google Scholar 

  15. T. L. Krause, H. M. Fishman, M. L. Ballinger, G. D. Ballinger and G. D. Bittner. J. Neurosci. 14 (1984) 6638-6651.

    Google Scholar 

  16. W. P. Jacobs, Sci. Amer. (1994) 100-105.

  17. A. Maniotis and M. Schliwa, Cell 67 (1991) 495-504.

    PubMed  Google Scholar 

  18. H. Yawo and M. Kuno, J. Neurosci. 5 (1985) 1626-1632.

    PubMed  Google Scholar 

  19. J. Casademont, S. Carpenter and G. Karpati, J. Neuropath. Exp. Neurol. 47 (1988) 618-628.

    PubMed  Google Scholar 

  20. P. L. Mcneil and S. Ito, J. Cell Sci. 67 (1990) 495-504.

    Google Scholar 

  21. P. L. Mcneil and R. A. Steinhardt, J. Cell Bio. 137(1) (1997) 1-4.

    Google Scholar 

  22. M. S. F. Clarke, R. W. Caldwell, K. Miyake and P. L. Mcneil, Circ. Res. 76 (1995) 927-934.

    PubMed  Google Scholar 

  23. R. P. Rand, V. A. Parsegian and D. C. Rau, Cell Mol. Life Sci. 57(7) (2000) 1018-1032.

    PubMed  Google Scholar 

  24. G. N. Ling and C. L. Walton, Science 191 (1976) 293-295.

    PubMed  Google Scholar 

  25. G. N. Ling, Ann. N.Y. Acad Sci. 125 (1965) 401.

    PubMed  Google Scholar 

  26. R. M. Pashley and J. A. Kitchener, J. Colloid Interface Sci. 71 (1979) 491-500.

    Google Scholar 

  27. R. G. Horn and J. N. Israelachvili, J. Chem. Phys. 75(3) (1981) 1400-1411.

    Google Scholar 

  28. J. N. Israelachvili and P. M. Mcguiggan, Science 241 (1988) 795-800.

    Google Scholar 

  29. J. N. Israelachvili and H. WennerstrÖm, Nature 379 (1996) 219-225.

    PubMed  Google Scholar 

  30. S. P. Jarvis, et al., J. Phys. Chem. B 104 (2000) 6091-6097.

    Google Scholar 

  31. G. N. Ling, “A Revolution in the Physiology of the Living Cell” (Krieger, Publ. Co., Malabar, FL, 1992)

    Google Scholar 

  32. G. H. Pollack, “Cells, Gels and the Engines of Life: A New, Unifying Approach to Cell Function” (Ebner and Sons, Seattle, 2001) www.ebnerandsons.com.

    Google Scholar 

  33. P. M. Wiggins, Microbiol. Rev. 54(4): (1990) 432-449.

    PubMed  Google Scholar 

  34. E. W. Collins, Jr. and C. Edwards, Am. J. Physiol. 22(4): (1971) 1130-1133.

    Google Scholar 

  35. A. S. Hoffman, Polymer Gels 268(5): (1991) 82-87.

    Google Scholar 

  36. T. Tanaka, M. Anaka, et al., “Phase Transitions in Gels: Mechanics of Swelling.” NATO ASI Series Vol. H64 (Springer Verlag, Berlin, 1992).

    Google Scholar 

  37. Y. Osada and J. Gong, Prog. Polym. Sci. 18 (1993) 187-226.

    Google Scholar 

  38. P. Verdugo, I. Deyrup-Olsen, A. W. Martin and D. L. Luchtel, “Polymer Gel-phase Transition: The Molecular Mechanism of Product Release in Mucin Secretion?” NATO ASI Series Vol. H64 Mechanics of Swelling T. K. Karalis (Springer, Berlin, 1992).

    Google Scholar 

  39. T. Holstein and P. Tardent, Science 223 (1984) 830-833.

    PubMed  Google Scholar 

  40. J. M. Fernandez, M. Villalon and P. Vedugo, Biophys. J. 59 (1991) 1022-1027.

    PubMed  Google Scholar 

  41. E. Vogler, Adv. Colloid and Interface Sci. 74 (1998) 69-117.

    Google Scholar 

  42. A. F. Huxley and R. Niedergerke, Nature 173 (1954) 971-973.

    PubMed  Google Scholar 

  43. H. E. Huxley and J. Hanson, ibid. 173 (1954) 973-976.

    PubMed  Google Scholar 

  44. G. H. Pollack, Physiol. Rev. 63 (1983) 1049-1113.

    PubMed  Google Scholar 

  45. G. H. Pollack, “Muscle & Molecules: Uncovering the Principles of Biological Motion” (Ebner and Sons, Seattle, WA, 1990).

    Google Scholar 

  46. A. F. Huxley, Prog. Biophys Biophys. Chem. 7 (1957) 255-318.

    PubMed  Google Scholar 

  47. J. A. Spudich, Nature 372 (1994) 515-518.

    PubMed  Google Scholar 

  48. H. E. Huxley, Ann. Rev. Physiol. 58 (1996) 1-19.

    Google Scholar 

  49. S. M. Block, Cell 87 (1996) 151-157.

    PubMed  Google Scholar 

  50. J. Howard, Nature 389 (1997) 561-567.

    PubMed  Google Scholar 

  51. R. Cooke, Physiol. Rev. 77(3): (1997) 671-679.

    PubMed  Google Scholar 

  52. D. D. Thomas, Ann. Rev. Physiol. 49 (1987) 641-709.

    Google Scholar 

  53. E. Katayama, J. Mol. Biol. 278 (1998) 349-367.

    PubMed  Google Scholar 

  54. M. Irving, T. St.-C. Allen, C. Sabido-David, J. S. Craik, B. Brandmeler, J. Kendrick-Jones, J. E. T. Corrie, D. R. Trentham and Y. E. Goldman, Nature 375 (1995) 688-691.

    PubMed  Google Scholar 

  55. Iwazumi, “A New Field Theory of Muscle Contraction” (Ph.D. Thesis, University of Pennsylvania, 1970).

  56. C. E. Schutt and U. Lindberg, FEBS. 325 (1993) 59-62.

    Google Scholar 

  57. C. E. Schutt and U. Lindberg, Acta. Physiol. Scan. 163 (1998) 307-324.

    Google Scholar 

  58. A. Oplatka, Chemtracts Bioch. Mol. Biol. 6 (1996) 18-60.

    Google Scholar 

  59. A. Oplatka, Crit. Rev. Biochem. Mol. Biol. 32(4) (1997) 307-360.

    PubMed  Google Scholar 

  60. M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez and H. E. Gaub, Science 276 (1997) 1109-1112.

    PubMed  Google Scholar 

  61. L. Tskhovrebova, J. Trinick, J. A. Sleep and R. M. Simmons, Nature 387 (1997) 308-312.

    PubMed  Google Scholar 

  62. F. Blyakhman, T. Shklyar and G. H. Pollack, J. Mus. Res. Cell Motil. 20 (1999) 529-538.

    Google Scholar 

  63. H. Sosa, D. Popp, G. Ouyang and H. E, Huxley, Biophys. J., 67 (1994) 283-292.

    PubMed  Google Scholar 

  64. C. G. Dos Remedios and P. D. Moens, Biochim. Biophys. Acta. 1228(2–3): (1995) 99-124.

    PubMed  Google Scholar 

  65. G. H. Pollack, Biophys. Chem. 59 (1996) 315-328.

    PubMed  Google Scholar 

  66. T. Yanagida. M. Nakase, K. Nishiyama and F. Oosawa, Nature 307 (1984) 58-60.

    PubMed  Google Scholar 

  67. J. KÄs, H. Strey and E. Sackmann, ibid. 368 (1994) 226-229.

    PubMed  Google Scholar 

  68. M. S. Z. Kellermayer and G. H. Pollack, Biochim. Biophys. Acta. 1277 (1996) 107-114.

    PubMed  Google Scholar 

  69. K. Hatori, H. Honda and K. Matsuno, Biophys. Chem. 60 (1996) 149-152.

    PubMed  Google Scholar 

  70. A. Asakura, M. Taniguchi and F. Oosawa, J. Mol. Biol. 7 (1963) 55-63.

    Google Scholar 

  71. S. Hatano, T. Totsuka and F. Oosawa, Biochem. Biophys. Acta. 140 (1967) 109-122.

    Google Scholar 

  72. F. Oosawa, S. Fujime, S. Ishiwata and K. Mihashi, CSH Symposia on Quant. Biol. XXXVII: (1972) 277-285.

    Google Scholar 

  73. Yanagida and Oosawa, J. Mol Biol. 126 (1978) 507-524.

    PubMed  Google Scholar 

  74. M. Miki and T. Koyama, Biochem. 33 (1994) 10171-10177.

    Google Scholar 

  75. E. Prochniewicz, Q. Zhang, P. A. Janmey and D. D. Thomas, J. Mol. Biol. 260(5): (1996) 756-766.

    PubMed  Google Scholar 

  76. E. L. Debeer, A. Sontrop, M. S. Z. Kellermayer and G. H. Pollack, Cell Motil. and Cytoskel. 38 (1998) 341-350.

    Google Scholar 

  77. K. Hatori, H. Honda, K. Shimada and K. Matsuno, Biophys. Chem. 75 (1998) 81-85.

    PubMed  Google Scholar 

  78. K. Kitamura, M. Tokunaga, A. Iwane and T. Yanagida, Nature 397(6715): (1999) 129-134.

    PubMed  Google Scholar 

  79. O. Yakovenko, F. Blyakhman and G. H. Pollack, Am. J. Physiol: Cell. In press.

  80. R. C. Jacobson, R. Tirosh, M. J. Delay and G. H. Pollack, J. Mus. Res. Cell Motility 4 (1983) 529-542.

    Google Scholar 

  81. H. L. M. Granzier, J. A. Myers and G. H. Pollack, ibid. 8 (1987) 242-251.

    Google Scholar 

  82. J. R. Mcintosh, J. Cell. Bio. 56 (1973) 324-339.

    Google Scholar 

  83. T. Yanagida, S. Esaki, H. Iwane, Y. Inoue, A. Ishijima, K. Kitamura, H. Tanaka and M. Tokunaga, Proc. Roy. Soc. 355 (2000) 441-447.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollack, G.H. The cell as a biomaterial. Journal of Materials Science: Materials in Medicine 13, 811–821 (2002). https://doi.org/10.1023/A:1016547409660

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016547409660

Keywords

Navigation