

Construction Manager/
Subcontractor/Tradesperson Training Session 4:
Field Training & Mockups

Since 1972, Steven Winter Associates, Inc. has been providing research, consulting, and advisory services to improve the built environment for private and public sector clients.

Our services include:

- Energy Conservation and Management
- Sustainability Consulting
- Green Building Certification
- Accessibility Consulting

We have over 125 staff across three office locations: New York, NY | Washington, DC | Norwalk, CT

For more information, visit www.swinter.com

By providing a whole-building approach to design and construction

Steven Winter Associates is a Registered Provider with The American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA or any material of construction or any method or manner of handling, using, distributing or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation

This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited © Steven Winter Associates, Inc. 2019

Upon Completion of Module

You will receive the following items via email:

- AIA Certificate of completion-can also be used for:
 - NYS PE CEUs
- PDF of final presentation
- Link to the webinar recording

Steven Winter Associates, Inc.

THIS CERTIFICATE IS TO CERTIFY THAT

Katie Zoppo

PARTICIPATED IN

Module 1: Overview of PH/Net Zero Building Concepts, Techniques and Benefits

M100PHNZBCTAB

ON February 11th, 2020

> LOCATION New Paltz, NY

EARNING 4 AIA CES Learning Unit/HSW

This & Spine

Director, Passive House Services Steven Winter Associates, Inc. teven Winter Associates, In 61 Washington Str Norwalk, CT 068 203.857.02

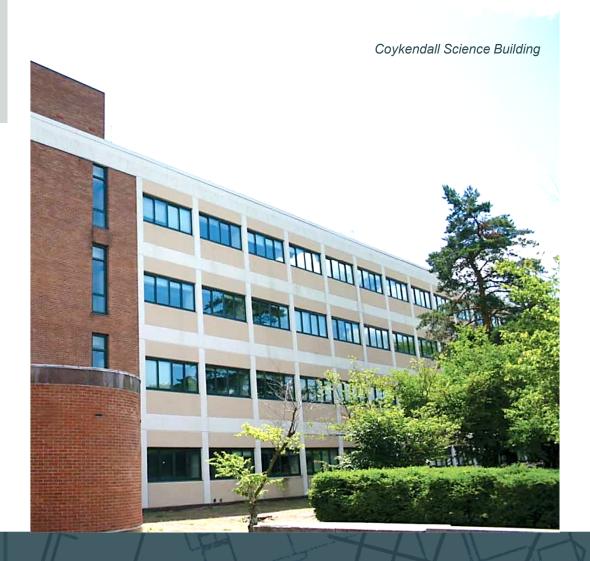
Learning Objectives

Understand net zero carbon goals for SUNY Review wall mockups for building envelope and windows

Examine duct testing mockups and sealing

Look at air leakage testing and finding air leaks

Overview of Presentation


What is your profession?

26%

What is the one thing you were hoping to learn about today?

how best to train contractors of expectations inspections actual examples mockup review best practices fixes the chip how-to use use in the large in order of operations methods mock-ups define expectations operations mockups troubleshooting

Why we are here: Directive 1B-2

- 2018 Chancellor calls for all new buildings to be zero-net-carbon & deep energy retrofits for existing buildings
- 2018 SUCF issued Directive 1B-2
 - Purpose: define and identify goals for Net Zero Carbon (NZC) new buildings and Deep Energy Retrofits (DER) of existing buildings.
 - Function: outlines the project target goals and provides direction for project designs.
 - Metrics: Site Energy as the measure of performance and energy consumption.

Why we are here: Directive 1B-2

- Design and construct highly energy efficient buildings which significantly reduce energy consumed below an energy code standard for new buildings or energy usage for an existing building.
- In the case of insufficient project funding, the design goal will be to design the building as NZC "capable" where: the design achieves the energy use intensity (EUI) limit using HVAC equipment and systems that can be electrically powered from renewable energy sources.

New Building Performance goals: Site Energy Use Intensity (EUI) limits

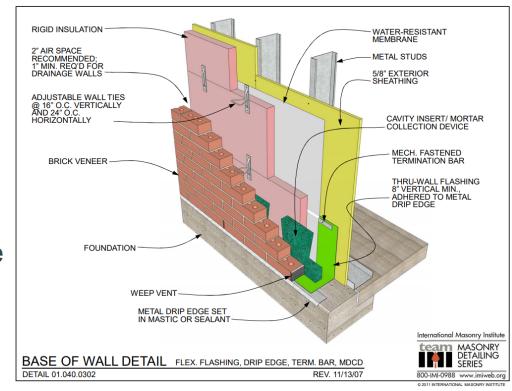
Classroom building	50 kBTU/ft2/year
Office building	50 kBTU/ft2/year
Laboratory building	150 kBTU/ft2/year
Residence Hall	32 kBTU/ft2/year

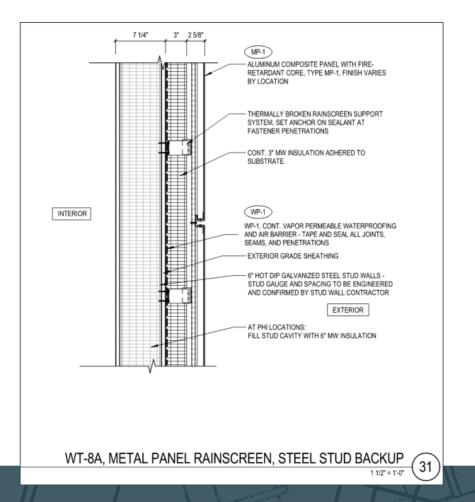
These Trainings

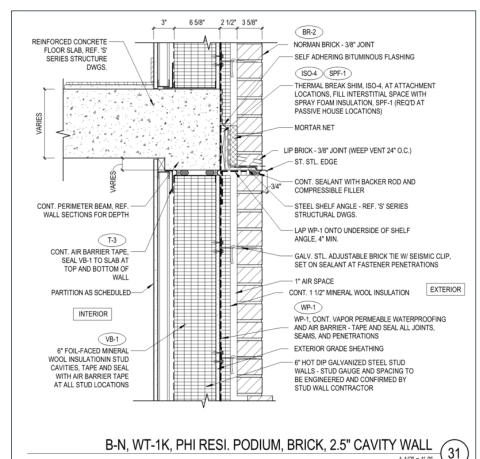
- Module 1: Overview of PH and Net Zero
- Module 2: Construction Methods and High-Performance Products and Details
- Module 3: Air Barrier Development & Implementation
- Module 4: Net Zero HVAC Strategies and Controls + DHW
- Module 5: Construction Documents and Bidding
- Module 6: Deep Energy Retrofits
- Module 7: Refrigerant Management in Design, Construction, and Operations
- Module 8.1: Building Envelope
- Module 8.2: Net Zero Mechanical, Electrical, and Plumbing
- Module 8.3: QA/QC Techniques for Ensuring Success
- Module 8.4: Field Training & Mockups

Clarifications

We may use Passive House and Net-Zero interchangeably Passive House principles are a great pathway to achieving Net-Zero


Questions?


Wall Mockups (Building Envelope)


Construction Type – Steel Studs

- Despite steel studs thermally conductive properties, they are still used on some high-performance buildings
- Steel studs are a back up wall alternative to CMU in large buildings
- It is possible to reach Passive House insulation levels with steel studs

Typical Construction Types – Steel Studs

16

Air Barrier for Brick, Rain Screen, Metal Panel, Etc.

EIFS System

Table of Uncommon Tools

- Wet film thickness gauge
- Counter roller
- Tape application tool
- Plastic taping knife set
- Putty knife
- Caulking spatulas

Table of Uncommon Tools

Air Barrier Instructions (Joints) – Rain Screen

Substrate Preparation

Surfaces shall be clean of oil, dust, dry, and sound with no excess mortar droppings. Concrete Masonry Joints shall be free of voids and shall be tooled or struck flush. Gaps from ¼" to 1" wide shall be fitted with backer rod. Joints receiving backer rod shall provide a sealant depth of at least a ¼" but not more than ½". Acceptable substrates include Concrete Masonry Units, mortar/grout, concrete, exterior grade gypsum board, plywood, OSB, wood, aluminum, galvanized metal, and anodized aluminum. Any damaged gypsum sheathing should be replaced. Voids or irregularities in concrete or masonry substrates should be patched using a cementitious patching compound as needed.

Membrane Thickness: CCW AVB & Applications: 40 mils	40 mils wet/ 38 mils dry

Detailing Sealant Applications (Sheathing Joints, Dissimilar Substrates, Non-Moving Cracks, Termination Mastic):

Elastomeric Joint Sealant Application (Expansion/Control Joints, Window-Rough Opening Joint):

Liquid Flashing Application (Rough Openings, Pipe/Duct Penetrations, Inside/Outside Corners)

Apply BarriBond in serpentine beads over the substrate. Spread BarriBond using a squeegee or a trowel to provide full, uniform coverage over the substrate. Apply to openings, pipe/duct penetrations and inside/ outside corners as shown in the respective CCW air barrier system standard details. Apply BarriBond at a uniform wet mil thickness of 40 mils (0.040 inch), continuously monitoring thickness with a CCW Wet Mil Thickness Gauge to assure adequate coverage. BarriBond can be applied in a single coat. To facilitate installation, joints and gaps between dissimilar substrates may be treated with BarriBond and allowed to cure firm before proceeding with trowel coverage of the liquid flashing area. Also, the raw edge of gypsum sheathing can be treated with CCW-702, 702 LV, or 702 WB to consolidate this substrate and facilitate coverage with BarriBond. In liquid flashing applications, BarriBond shall tie into the main CCW Air Barrier Membrane with a minimum 2 inch lap. CCW BarriBond can be applied over all CCW Air Barrier Membranes. or the CCW membranes can be applied over BarriBond, depending on construction progression.

Air Barrier Instructions (Field of Wall) – Rain Screen

Installation

In sheathing over stud construction, sheathing joints shall be detailed with either of the following methods: 1) 2" width x 40 mil thickness ribbon of Barribond centered over joint; 2) 4" DCH reinforcing fabric centered over joint and imbedded in Barritech VP. Window openings, inside-outside corners, base of wall, roofline, control joints and other transitions shall be covered with CCW self-adhered flashing, CCW liquid flashing or imbedded reinforcement as shown in Barritech VP details. P/S Elastoform may be used to detail expansion joints and window wall transitions.

Apply Barritech VP over surfaces at minimum 0.060" (60 mils) wet in a single or multiple coats through approved spray equipment. Recommended spray tip sizes are GHD 635 for high coverage and GHD 429 for detail coat. Please consult CCW's Spray Equipment Brochure for detailed information. Theoretical application rate is 25 ft²/gal in one coat. Barritech VP may also be applied with a paint roller. For roller application, apply a minimum of two 0.030" (30 mils) wet thickness coats. Theoretical application rate is 50 ft²/gal for each coat. For roller application, allow Barritech VP to dry firm between coats.

Air Barrier Instructions (Joints) Option 1 – EIFS

Surface Preparation

Surfaces must be clean, dry, and free of frost, damage and all bond-inhibiting materials, including dirt, efflorescence, form oil and other foreign matter. Damaged sheathing must be removed and replaced. Avoid application over irregular surfaces.

Substrate to be coated must be continuous without joints, holes, etc. exceeding 1/32" (0.8 mm) in size. Sheathing must be properly installed as required by applicable building codes or sheathing manufacturer.

Mixing

Mix with a clean, rust-free electric drill and paddle to a uniform consistency.

PRODUCT MUST NOT BE THINNED OR DILUTED

Application

Apply only to sound and clean, dry, properly prepared, frost-free surfaces.

Installation over Sheathed Wall Construction:

Place minimum 4 inch (101 mm) wide mesh at sheathing joints and minimum 9 inch (152 mm) wide mesh at rough openings and inside and outside corners (refer to Sto details. Immediately apply Sto Gold Fill by spray or trowel over the mesh and trowel smooth. Protect from rain and freezing until dry. Spot fasteners, knots, or other voids in sheathing surface with Sto Gold Fill. For waterproofing, apply one of the StoGuard air and moisture barrier options to the sheathing and to the Gold Fill. See StoGuard specifications and product bulletins for application instructions and limitations

Material Storage

Keep containers covered to protect from skinning. If skin forms, remove the skinned material from container; remaining material is unaffected by skinned material.

Curing/Drying

Sto Gold Fill is dry to touch and can be over coated within 4 hours under normal [70°F (21°C), 50% RH] conditions. Final drying varies depending on temperature/humidity and surface conditions.

Final drying time varies depending on temperature/humidity and surface conditions.

Protect from rain and freezing until completely dry.

Clean Up

Clean tools and equipment with water immediately after use. Dried material can only be removed mechanically.

Air Barrier Instructions (Joints) Option 2 – EIFS

Approximate Coverage

Gypsum Sheathing Joints-applied at 20-30 WFT at 2 inch (51mm) width:

60-90 If (18-27 m) / cartridge 40-60 If (12-18 m) / sausage

Rough Openings-applied at 12-20 WFT

2 x 4 framing

30-50 lf (9.1-15 m) / cartridge 21-34 lf (6.4-10.4 m) / sausage 2 x 6 Framing

22-35 lf (6.7-10.7 m) / cartridge 15-24 lf (4.6-7.3 m) / sausage

Coverage may vary depending on substrate conditions, sheathing joint gap, application technique, waste factor, and final film thickness.

Application

Sto RapidGuard may be applied over or under any of the Sto air and moisture barrier coatings: Sto Gold Coat, Sto Gold Coat-TA, Sto AirSeal, Sto EmeraldCoat, and Sto VaporSeal. Apply with a caulking gun. Spread with a dry joint knife, trowel or spatula while material is still wet, usually within 2-3 minutes of gun application. Seal voids or pinholes with additional material. Do not use soapy water when spreading. IMPORTANT: top coat with Sto air and moisture barrier coating when dry to touch or within 48 hours of drying for best adhesion.

Rough Opening Protection: apply a fillet bead of material at interior corners inside the opening to seal jamb/sill and jamb/head seams. Apply material in a zig-zag pattern along sill, jambs, and head to form a generous bead of material along the surface to be covered. Spread the material to a uniform thickness of 12-20 mils (0.3-0.5 mm) before the material skins. Treat the entire rough opening surface in this manner and overlap onto the face of the sheathing 2 inches (51 mm) minimum all the way around.

Sheathing Joints: apply a thick bead of Sto RapidGuard with a caulking gun along sheathing joints, or apply in a zig-zag pattern across and down the joints. Spread to a uniform thickness of 20-30 mils (0.5-0.8 mm) in a 2 inch (51 mm) width centered over the joints before the material skins. Follow the same procedure for inside and outside corners

Flashing Shiplap Detailing: Apply a thick bead of Sto RapidGuard across the flashing leg/wall surface seam or apply in a zig- zag pattern across the seam. Spread to create a seamless counterflashing that covers fastener penetrations and directs water away from the wall. Flashing may also be bedded in Sto RapidGuard and then counter-flashed.

Through Wall Penetrations (e.g., pipe, electrical box, and scupper penetrations): penetrations must be fitted snug against abutting wall surfaces. Apply a fillet bead of Sto RapidGuard around the penetration and spread onto both surfaces (wall surface and penetration). Create a bead profile that directs water away from the wall penetration with 1 inch (25 mm) minimum on the wall surface and ½ - 1 inch (13-25 mm) on the penetrating element.

Fasteners and Masonry Ties: spot fasteners to seal fastener penetrations. Bed masonry ties or apply from flange of masonry tie to the wall surface around the tie.

IMPORTANT: Sto RapidGuard fills static joints up to ½ inch (13 mm) wide. If larger gaps exist between sheathing joints, or between the penetration and the sheathing, alternative transition detailing may be used, or other steps may be necessary to correct the deficient condition. Refer to Sto details.

Curing and Drying: Product cures with moisture in the atmosphere. Full cure occurs within 24 hours and final physical characteristics at 7 days when installed at standard conditions (50% RH and 70°F [21°C]). Drying time and full cure time is slower with low temperature/low humidity and faster with high temperature/high humidity.

Clean Up: Clean tools by removing wet material with a rag before the material cures. Cured material can be removed with a citrus solvent, xylene or mineral spirits. Exercise care when handling cleansing agents and follow precautions on packaging.

Air Barrier Instructions (Field of Wall) – EIFS

Approximate Coverage

Glass Mat Gypsum: 450-550 ft² (42-51m²) per pail when applied at 10-12 wet mils (5-7 mil DFT)

Plywood: 550-600 ft² (51-56m²) when applied at 10-12 wet mils (5-7 mil DFT)

OSB: 350-550 ft² (32-51m²) when applied at 12-16 wet mils (8-10 mil DFT)

CMU: 100-300 ft² (9.3-28m² when applied in 2 coats at 10-30 wet mils (7-19 mil DFT) per coat

Coverage may vary depending on substrate condition, application technique, waste factor, and final film thickness. CMU substrates will generally be on the lower end of the coverage range.

Construct a mock-up under actual conditions of use to verify proper surface preparation, number of coats required, coverage, and method of application, for approval by the appropriate authority.

Application

For best results apply between 40° and 100°F (4° and 38°C) during application and drying period. Apply only to fully cured, structurally sound, clean, dry, properly prepared, frost-free surfaces.

Special Instruction for Cold Temperature Application

Sto Gold Coat has built-in weather protection that enables it to be applied at temperatures less than 40° down to 25°F (4° down to -3.8°C), provided certain conditions are met:

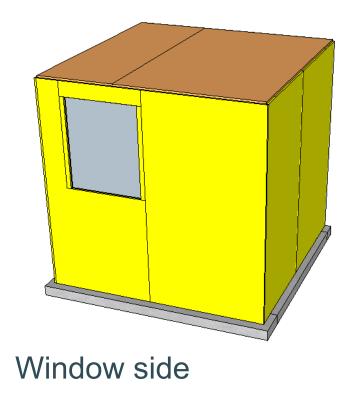
- 1. Material is pre-conditioned to 65°-75°F (18°-24°C)
- Substrate and ambient temperatures are minimum 25°F (-3.8°C) and rising at the time of application and do not fall below 25°F (-3.8°C) until material is fully dry.
- Materials are installed over standard sheathing substrates – glass mat gypsum, plywood, or OSB.
- Substrate surfaces are frost-free, dry and remain dry.
- 5. Materials are installed at the recommended wet film thickness of 10-12 (5-7 DFT).
- Materials are installed with StoGuard Fabric for joint and rough opening treatments.
- Materials are installed in dry weather and protected from rain or other precipitation for at least 24 hours and relative humidity (RH) remains at or below 50%.

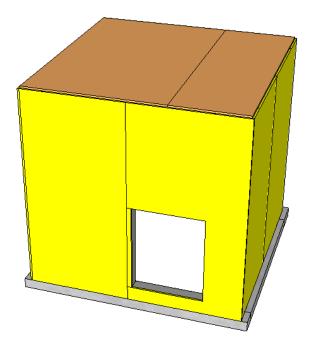
IMPORTANT: Final water barrier and air barrier properties, and film toughness, depend on temperatures rising above freezing.

Application

Exterior Gypsum Sheathing, Glass-Mat Sheathing, Exterior Plywood and Oriented Strand Board (OSB): apply Sto Gold Coat to the prepared substrate using a ½ inch (13mm) nap

roller or airless spray equipment that supports minimum 1 gallon (3.8 L) per minute. Suggested tip size is .031. Pressure and tip size may vary depending on equipment used. Apply uniformly at recommended wet mil thickness. CMU surfaces: apply minimum 2 coats uniformly by airless spray at 10-30 wet mils per coat, allowing the first coat to set slightly, then doubling back with a second coat. Alternatively allow the 1st coat to fully dry before applying the 2nd coat. CMU surfaces may require back rolling of the first pass with a \(\frac{1}{4} \) or 1 inch (19 or 25 mm) synthetic nap roller depending on porosity, joint profile, trueness of the wall surface, and other variables that may exist. IMPORTANT: OSB substrates may require touchup. CMU substrates may require more than 2 coats depending on joint profile. CMU porosity. unit weight, and other variables that may exist. For "rough" CMU wall surfaces skim coat the entire wall surface with one of Sto's cementitious levelers, then apply 1 coat of Sto Gold Coat. Achieve a VOID and PINHOLE FREE surface on all substrates.

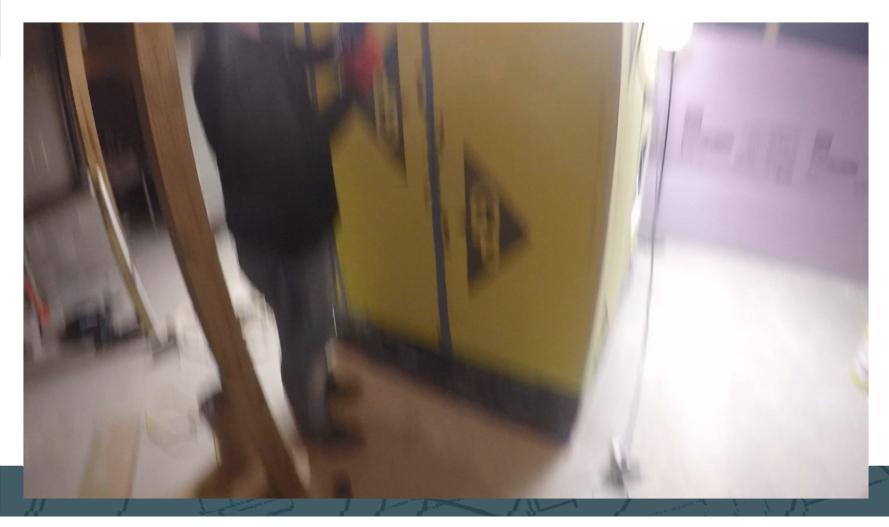

Clean Up


Clean tools and equipment with water immediately after use. Dried material can only be removed mechanically.

Drying

Product dries in 24 hours under normal drying conditions [70°F (21°C), 50% RH]. Final dry time varies depending on temperature/humidity, thickness of application, and surface conditions. Cold weather and/or damp conditions prolong drying. Protect from rain and temperatures less than 25°F (-3.8°C) until completely dry. If temporary heaters are used ventilate to the exterior to prevent water vapor from accumulating on or within the wall assembly components.

Mockup Schematic


Blower door fan side

Steel Stud Mockup Walkaround

Rain Screen Air Barrier Videos

Exterior Sheathing Seams

Rough Opening – Joint Treatment

Rough Opening – Serpentine Inside & Screwheads

31

Rough Opening – Serpentine Inside Continued

Rough Opening – Serpentine Outside

Rough Opening Spread

Rough Opening Mil Gauge

Fluid Applied Air Barrier – 1st Coat

Fluid Applied Air Barrier – 2nd Coat



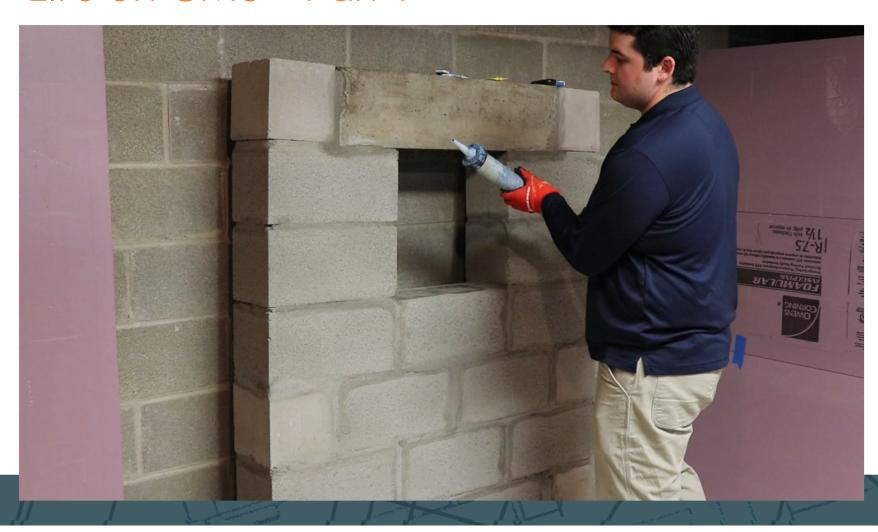
EIFS Air Barrier Videos

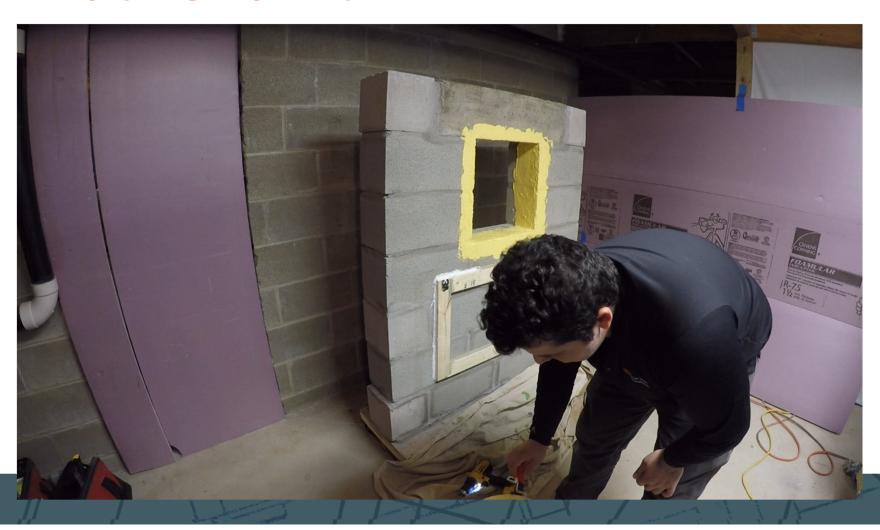
Reinforcing Mesh

Reinforcing Mesh Outside Corner

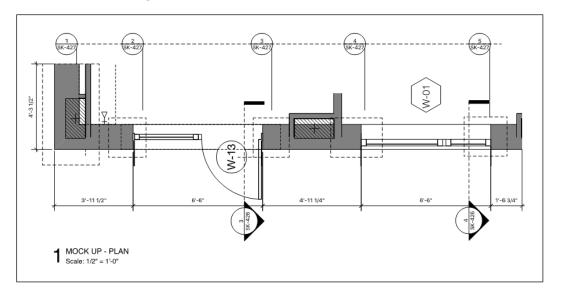
Fill Over Mesh

Alternative Seam Treatment Option


Fluid Applied Air Barrier


Final Views After Curing

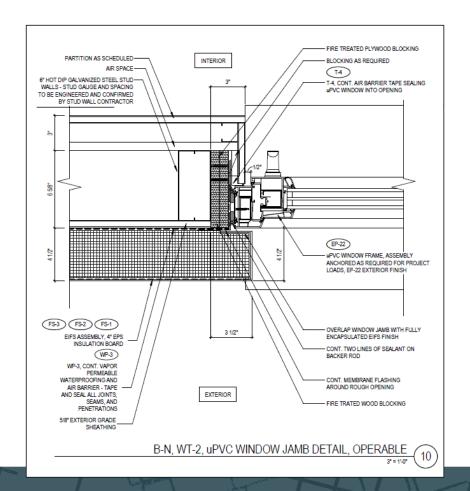
EIFS on CMU - Part 1


EIFS on CMU – Part 2

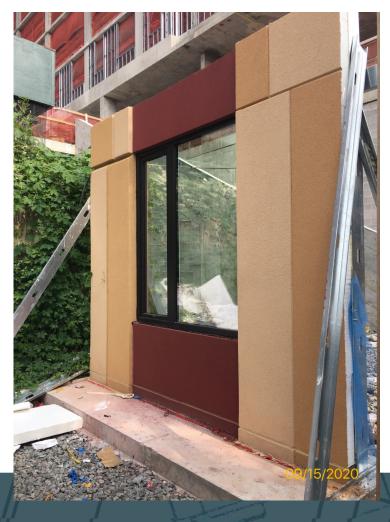
EIFS on CMU - Part 3

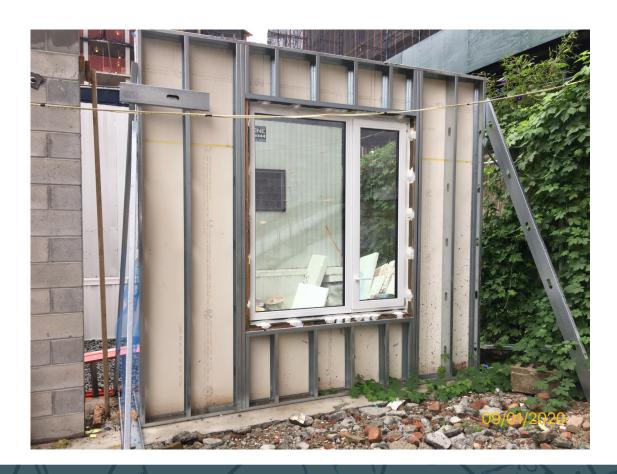
Mockups – In Real Life

211 W 29th Street - Mockup Vendor Contact List

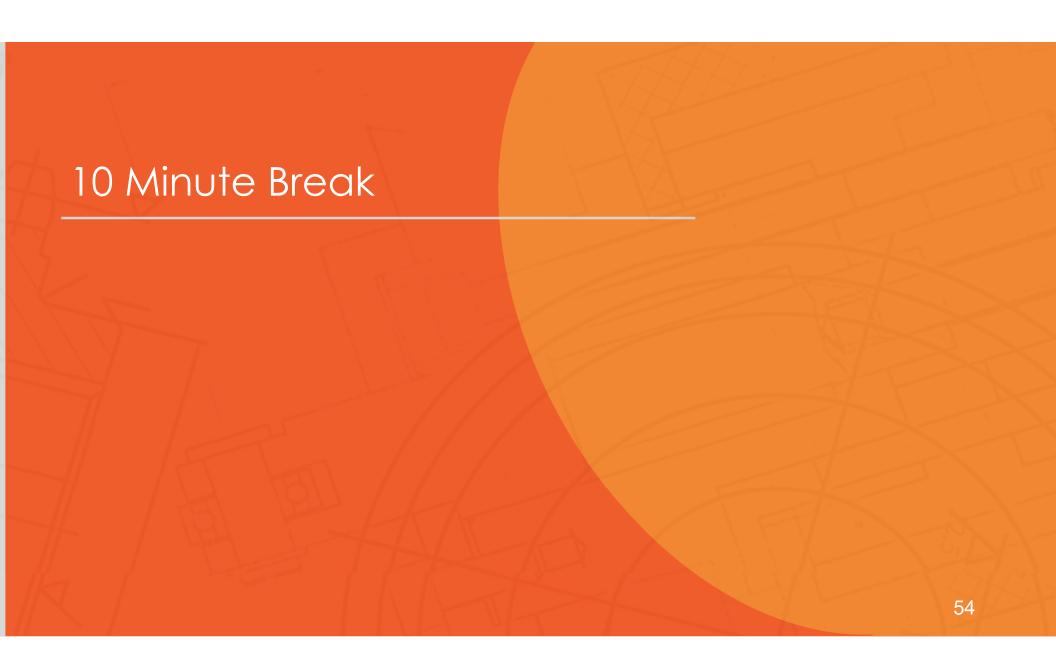

COMPONENT	CONTACT	NOTES
Cladding: Taktl Panels	Katherine Lynn Design + Applications Consultant, Northeast katherine.lynn@taktl-Ilc.com T 646·789·5626 M 609·462·0173 175 Varick Street New York, NY 10014 taktl-Ilc.com	Taktl Standard in Platinum - 2 textures, 2 finishes (4 types total)
Rainscreen Attachment: NVELOPE	Dave Sommer (206) 226-2311 cell international@nvelope.us dave@interra-facade.com	NV-1 System
Back Up Wall: Hebel AAC	Ricardo Gomez Director of Operations Telefon +1-2104023223 Mobil +1-2108658620 ricardo.gomez@xella.com Xella Aircrete North America, Inc Sales 900 Schneider Dr. US78108 Cibolo, Texas www.hebel-usa.com	6" Cored AAC and U Block
Sunshade: DAMS Inc	Shawn Bowman, CSI National Director of Sales and Marketing DAMS Incorporated - D. Architectural Metal Solutions Incorporated 5919 W. 118th St. Alsip, IL 60803 office: 708-224-4311 fax: 708-388-9392 mobile: 708-793-9107 shawn.bowmann@damsinc.com damsinc.com	Custom Extrusion and Flat Plate Aluminum
Windows & Doors: Fentrend	Sean Kennedy, CPHC Supplier/Client Manager sean@fentrend.com // 646.665.1478	One of Three options: Schuco AWS 90SI Zola Alu 90 Aluprof MB104
Door Sill: Alumat	Frank Hegan fhegan@ct-sol.com	Alumat MFAT
Insulation: Roxul (or Thermafiber)	SHAWN TORBERT, LEED AP, CPHD, CSI NY METRO SPECIFICATIONS MANAGER ROXUL INC. Cell: (732) 887-4079 www.roxul.com	Cavity Rock DD and Comfort Batt

Mock Ups are Critical



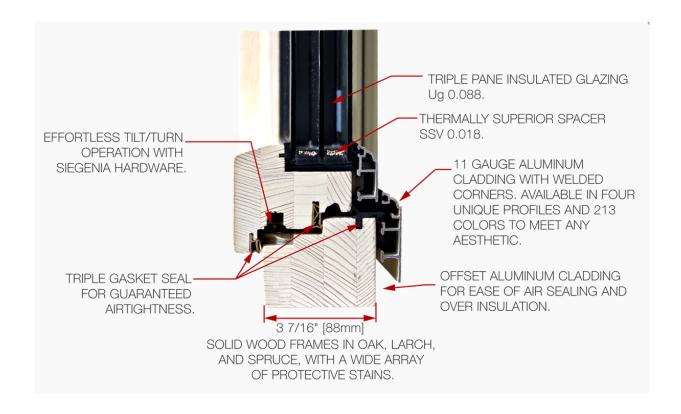

Windows - Steel Stud

Windows – Steel Stud

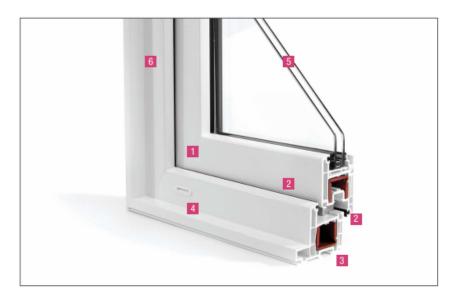

Do This

- Follow the manufacturer data sheets
- Reach out to the product reps for help if needed
- Ensure you have the proper tools needed for a quality installation
- Ensure someone is checking the air barrier after each application to ensure no areas are missed

Questions?

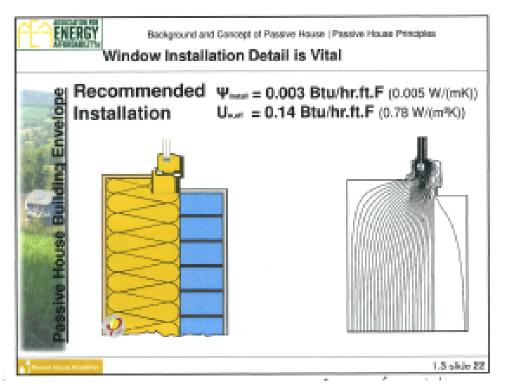


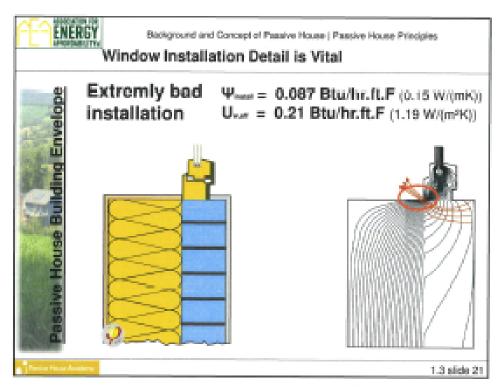
Wall Mockups (Windows, Insulation, Carpentry)


PH Windows & Doors

- U-value of glass as low as U-0.088 (R-11)
- U-value of frame 0.15 (R-6.7)
- Installation considerations (typical):
 - Thermal bridge free installation: frames covered with insulation (typically)
 - Airtightness of the window
 - Airtight installation
- Passive House doors, where applicable

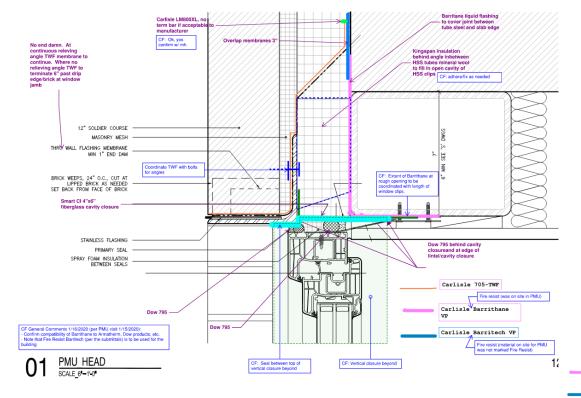
PH Windows

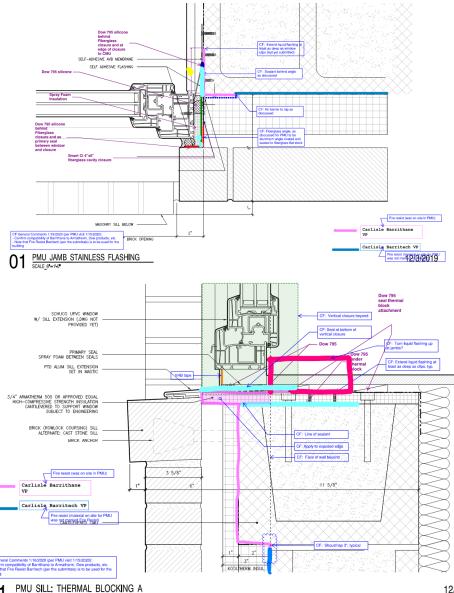

PH Windows



- 1 Unique tilt-turn hardware operates in both top-venting and inward-swinging positions
- Multiple locking points and dual weather seals provide optimal air and water tightness
- Charge chambers accommodate reinforcements required for large openings in heavy commercial applications
- Accessory groove accepts a variety of accessories such as brickmolds, extension jambs and for profiles to couple window elements
- 5 Up to 1 3/8 in (35 mm) glass increases energy efficiency and acoustical properties
- 3 1/4 in (83 mm) North American frame depth allows for hassle-free replacement installation; we also offer the 2 3/8 in (60 mm) European frame

Install Conditions





Good Install

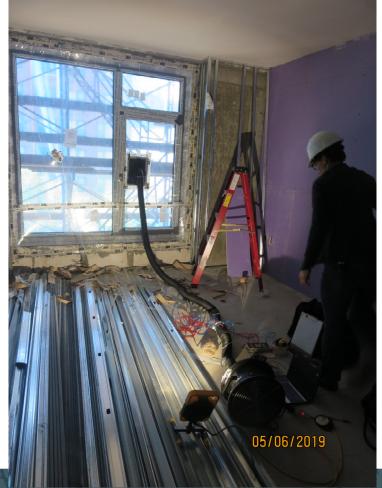
Bad Install

Window Shop Drawings

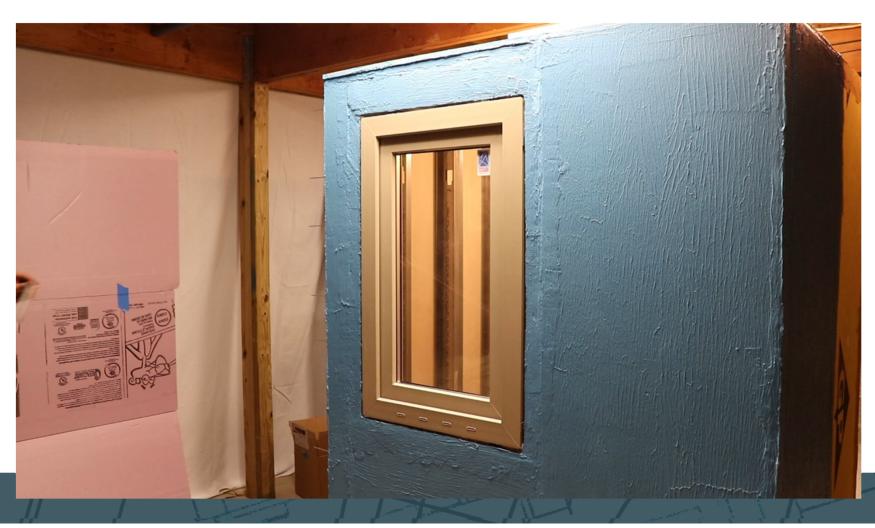
Window Installation

Window Air sealing

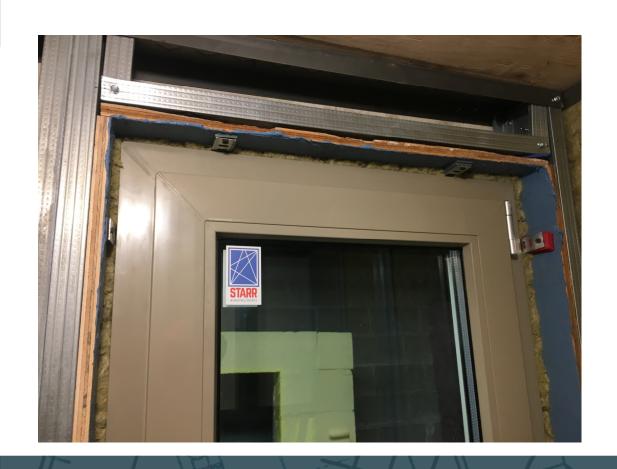
Windows - Taping


Windows - Mock Ups (AAC & CMU)

Windows – AAC (511) and balcony doors



Windows – Existing Buildings


Exterior Window Backer Rod

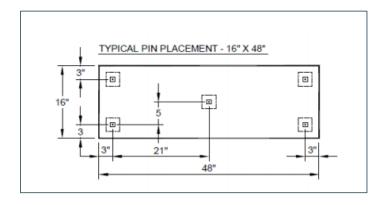
Exterior Window Caulking

Mineral Wool at Rough Opening Around Window

Interior Window Taping

Interior Window Caulking

Insulation



Rain Screen

Insulation Fastener Guidelines

Plastic Cap Nails

Metal Fasteners

with metal frame construction. Anti-

other precautions)

should be used with

Recommended for use

unwinding fasteners (or

metal frame construction.

Recommended for temporarily holding insulation and fastening insulation to wood and wood based substrates. wool insulation boards Fastener should be appropriate type for the substrate.

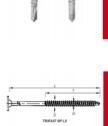
Clip & Z-Girt e.g. CASCADIA CLIPS

Recommended for thick exterior insulation (over 3")

Follow manufacturers recommendations for use

Insulation Fasteners

e.g. RAMSET INSULFAST Recommended for fastening insulation to concrete, masonry block and through gypsum sheathing (steel stud).


Brick-Tie & Wedge

Wedges or clips used with masonry ties can be used to attach CAVITYROCK® insulation.

Impaling Pin

Mechanically attached or bonded to structure. Recommended for use with all types of ROCKWOOL stone wool insulation boards. Adhesive "stick" pins should be avoided.

-иншишини-

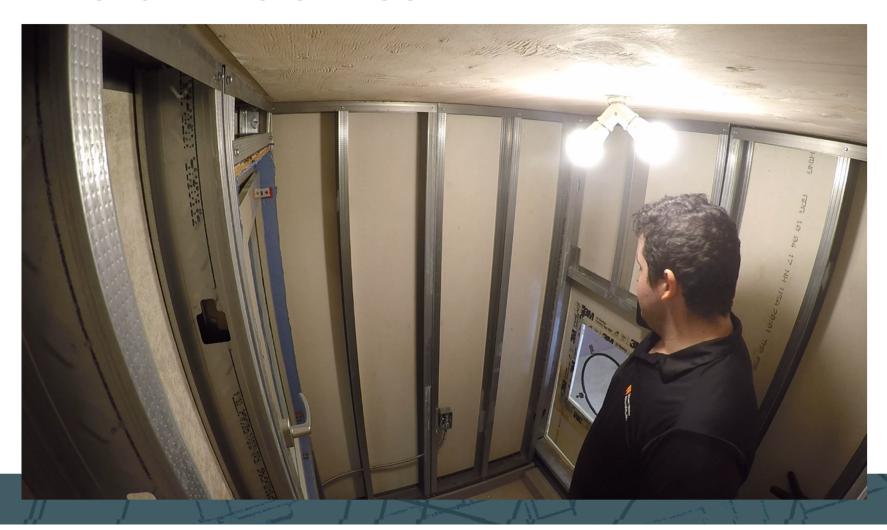
Regular

Wood Screws Concrete Screws Concrete Nails

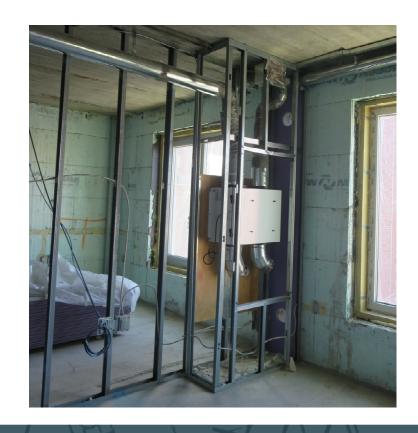
Must be right type for the substrate and suitable for outside use if not being used inside.

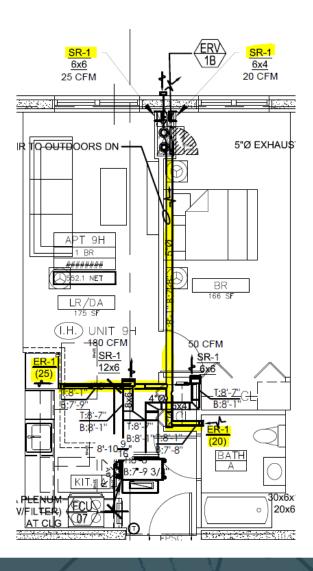
Dual-Thread Fasteners e.g. Heco-Topix

Recommended for use with wood strapping to reduce risk of compression deflection.

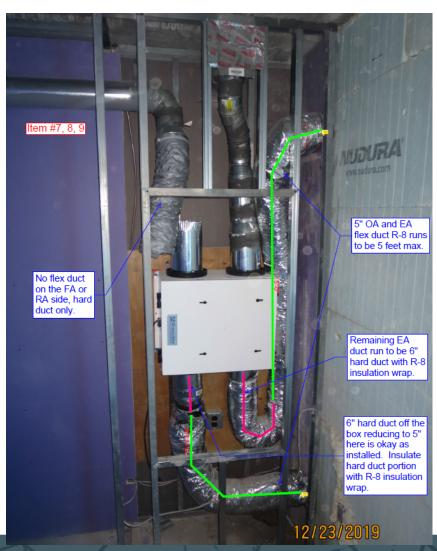

Exterior Mineral Wool – Part 1

Exterior Mineral Wool – Part 2




Interior Mineral Wool

Mechanical Penetrations


Individual Ventilation

Mechanical Penetrations

- Individual Ventilation Concerns
 - Cramped ERV closets
 - Difficulty in properly insulating and air sealing exterior wall connections
 - 2x wall penetrations per apartment
 - Future maintenance (filter changes)

Mechanical Penetrations

80

Additional Support - When Needed

307 7th Avenue, Suite 1701, New York, NY 10001

MEMO

Date: 12/23/2019

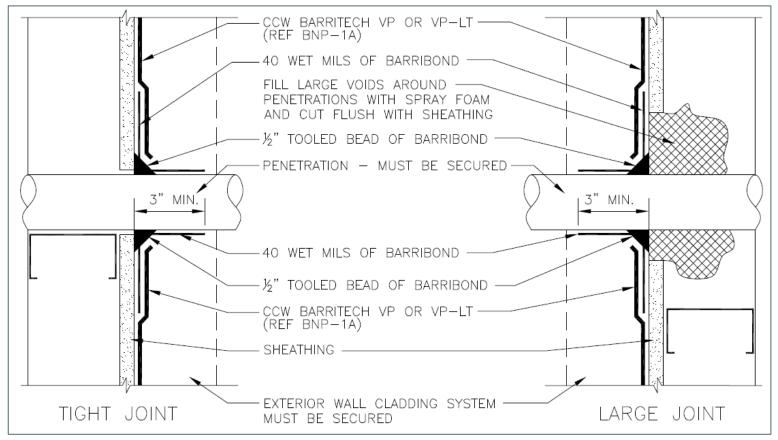
To:

From: Mike O'Donnell (SWA)

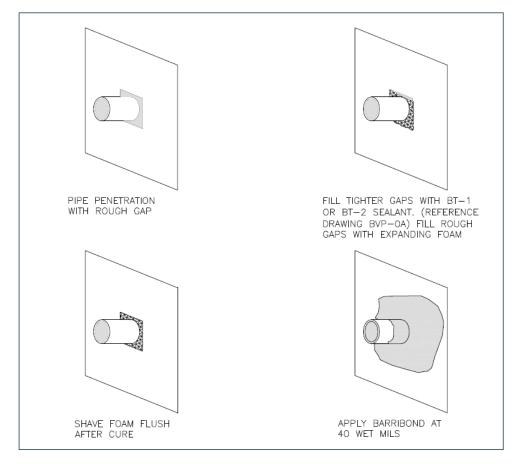
Re: ERV and VRF Installation Practices for Project Success -

ERV Systems

- Seiho exterior vent cap hoods to have a short run of ductwork attached, with duct seam sealed and duct to vent cap connection sealed with mastic. These will be given to the EIFS contractor for installation from the outside. See photo, page 3.
- Install spray foam in the entire gap space between the duct and the cored holes after hoods with duct are installed. Caulk the hood on the exterior (EIFS contractor).
- General duct sealing: All joints, seams, branch connections, taps, screw heads, and duct connections to equipment are to be fully sealed with mastic at all locations.
- 4. Per clarification from the engineer, no backdraft dampers need to be installed.
- Connect 5" flex duct, with R-8 insulation jacket, where the duct stubs through the cored wall hole at the OA and EA locations. Zip tie to hold in place, then seal with mastic at the seam between the flex duct and the hard duct. See example photo, page 4.
- Pull the insulation silver jacket to drywall, and tape around the entire perimeter using short strips of tape. The tape needs to be fully flat against both the insulation jacket and drywall.
 See photo, page 5. https://www.energyconscious.com/3m-all-weather-flashing-tape-tan-slit-liner-3-insy-75-fl-16266 that
- Limit the 5" flex duct to 5 feet. For the OA connection, this should not be an issue as this is a short duct run. Come off the ERV unit with 6" hard duct, reduce down to 5" and then connect flex duct. Seal joint between the flex duct and the hard duct, similar to #4. See photo, page 6.
- For the EA connection, make the section closest to the exterior wall 5" flex with the remaining duct run in hard duct. Utilize 6" hard duct for a long as possible. See photo, page 6.
- Insulate the remaining portions of the OA and EA hard duct with R-8 foil faced insulation wrap, with all seams of the insulation taped. See photo, page 6.
- 10. At the ERV unit, pull the insulation jackets up and tape the connection between the plastic lip on the unit and the silver foil face of the insulation. See photo, page 7.
- 11. On the FA (supply side), each register box to get its own CAR damper. Utilize wye connections as needed to ensure each box is separate from any other boxes. See photo, page 8. All duct work to be hard duct on FA and RA sides (no flex).
- 12. On the RA (exhaust side), note the following:
 - A. Kitchen register locations need to be 6' distance away from the center of the stove
 B. Kitchen registers are to have MERV 4 washable filters installed. Cut to size as needed.
 See photo, page 9. https://www.hardwareworld.com/pmh75m/True-Blue-Budget-Washable-
- Duct to sheetrock connections to be sealed with caulking or tape prior to installation of final grilles. See photo, page 10.
- 14. Car dampers to go right inside the register box, typical for all locations. See photo, page 10.


Steven Winter Associates, Inc.

Improving the Built Environment Since 1972


VRF Systems

- 1. The KoolDuct systems of ductwork look to be well sealed. However, note the following locations to be sealed as these were found to be leaky during preliminary duct testing:
 - a. Connection from the KoolDuct to the flexible fabric connection (supply side)
 - b. Connection from the flexible fabric connection to the air handler unit (supply side)
 - c. Connection from the hard-ducted return to the air handler unit (return side)
- It was noted in some apartments on 12/6/19 that the KoolDuct only had the main trunk and one branch but was missing one or more additional branch connections to bedrooms. It was discussed that these would be added with flex duct.
 - Please ensure flex duct selections align with pressure drop and original duct size assumptions from the engineer.
- All duct to sheetrock connections (supplies and return) to be sealed with caulking or tape prior to installation of final grilles.
- SWA needs to test the duct work at rough-in stage for VRF systems, when all supply branches and returns installed as required by PHIUS.
- 5. MERV 8 filters and face grilles with balancing to be installed at final.

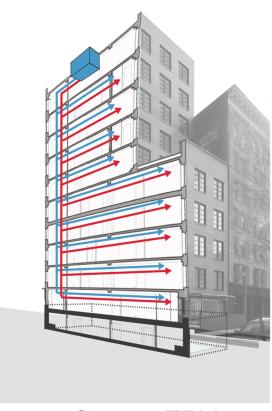
Pipe Penetrations

Pipe Penetrations

Do This

- Understand window install details and full install sequence
- Make sure insulation wraps the frame if called for and any insulation between window and rough opening is installed
- Test installed windows throughout construction to ensure project is on track for whole building BD test
- Keep insulation to Grade I quality, exterior and interior

Questions?

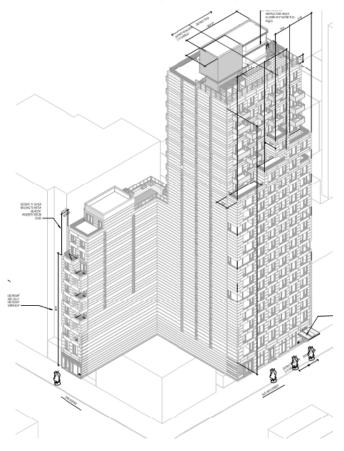


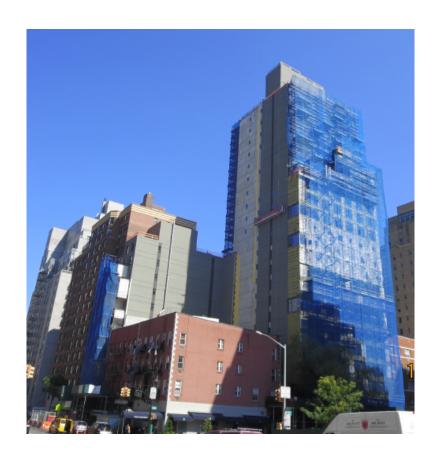

Duct Mockups

87

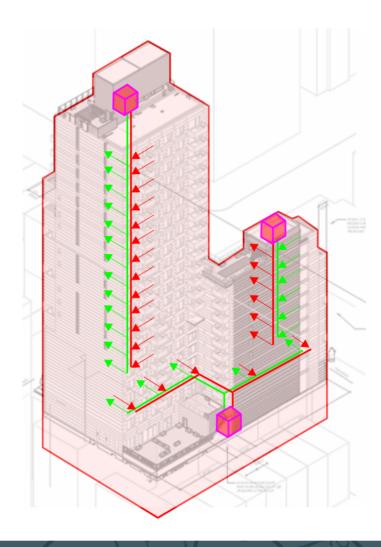
Ventilation - Balanced

Central ERV


Individual ERVs


Ventilation (211)

- Central Ventilation
 - Swegon Gold RX 35 on main roof serving apartment floors
 - Swegon Gold RX 5 on mechanical mezzanine serving retail, lobby and lower amenities
 - Demand control ventilation (DCV) utilized in exercise space with CO2 sensors
 - DX coil added to ERV supply to help with pre-conditioning and dehumidification


Ventilation (511)

Ventilation (511)

- Central Ventilation
 - Swegon Gold RX50 on main roof serving apartment spaces in main tower
 - 2x Ventacity VS1000 on roof of "sliver" building serving apartment spaces
 - Swegon Gold RX25 in cellar serving commercial space and lower amenities
 - DCV in main amenity spaces tied to occupancy sensors

Ventilation

IF YOU REMEMBER ANYTHING, REMEMBER THIS LIST

- Ductwork must be Aerosealed in order to achieve balancing and ALL DUCTWORK SHOULD BE INSTALLED
- Constant airflow regulating (CAR) dampers must be used at all registers and must be ACCESSIBLE
- Ductwork behind registers must be CLEARLY connected to drywall
- Do not combine AHU and ERV ductwork
- Account for buffer on top of design flowrate in energy model

CAR Damper: CAR dampers must be used at all registers to achieve proper balancing. Make sure to use CAR dampers like the one pictured here, with a set screw to adjust the flap.

https://eflowusa.net/product/constant-air-flow-regulators-3/

Well sealed ductwork to drywall: If ductwork is not properly sealed to drywall behind registers, air will dump into ceiling or wall cavities, drastically increasing total fan power required to achieve proper balancing.

Ventilation

Aeroseal at 511 E. 86th Street

Dates of Sealing: 2/24/20 thru 3/5/20

Summary

Despite excessive leakage conditions, all risers at 511 E. 86th Street have now been sealed. Multiple days were spent troubleshooting large holes or disconnected sections of the ductwork.

Duct Identifier	Initial Leakage (CFM)	Final Leakage (CFM)	Reduction
TX-RR-12	862.5	21.4	97.5%
TX-RR2-12	946.9	27.6	97.1%
TX-RL12	1145.0	35.9	96.9%
TX-RL2-12	639.2	24.1	96.2%
TX-R3	998.1	33.1	96.7%
TX-R2	737.4	31.7	95.7%
TX-1	762.4	91.8	88.0%
Cellar Return	1140.4	48.3	95.8%
Cellar Supply	568.1	36.9	93.5%

B&L Manpower Onsite Most Days

Ryan Oakey - Lead Technician

Romario Auguste - Project Technician

Raashid Weeks - Project Technician

All staff onsite from 7 AM - 3 PM most days

Findings & Recommendations for Future Sealing Events

- Multiple duct termination points were found to be open to atmosphere. Ducts should be prepared in the same manner as would be for duct pressurization testing
- Multiple risers had disconnections or holes that were greater than 5/8". Aeroseal duct sealing is
 effective only for holes < 5/8", ductwork should be inspected prior to beginning Aeroseal
 services so extensive troubleshooting efforts are mitigated

Ventilation

Aeroseal at 511 E. 86th Street

Dates of Sealing: 2/24/20 thru 3/5/20

Certificate of Completion

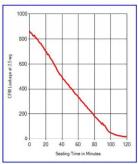
Duct Sealing Performed For: 511 East 86th St

511 East 86th St New York, NY 10028

Overall Sealing Results

When we arrived, YOUR DUCTS HAD:

862.5 CFM of Leakage, equivalent to a 23.6 Square Inch Hole


After we finished,

YOUR DUCTS HAVE: 21.4 CFM of Leakage, equivalent to a

0.6 Square Inch Hole

This corresponds to a 97.5% Reduction in Duct Leakage.

Note: Duct Leakage results are calculated in Cubic Feet per Minute (CFM) measured at a standard OPERATING PRESSURE of 2.5 wg.

Aeroseal Technician RO Aeroseal Case ID 3427 Date of Seal 3/4/2020 System Description TX-RR-12 Seal Description Seal 1 Hardware Gen2

Duct Sealing Performed By:

B&L Testing and Balancing 2735 Academy Street Brooklyn, NY 11572 Phone: 917.359.3810

Aeroseal at 511 E. 86th Street

Dates of Sealing: 2/24/20 thru 3/5/20

Certificate of Completion

Duct Sealing Performed For: 511 East 86th St

511 East 86th St New York, NY 10028

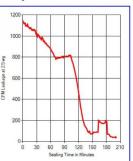
Overall Sealing Results

When we arrived, YOUR DUCTS HAD:

1145.0 CFM of Leakage, equivalent to a 31.4 Square Inch Hole

After we finished,

YOUR DUCTS HAVE:


35.9 CFM of Leakage, equivalent to a 1.0 Square Inch Hole

This corresponds to a 96.9% Reduction in Duct Leakage.

Note: Duct Leakage results are calculated in Cubic Feet per Minute (CFM) measured at a standard OPERATING PRESSURE of 2.5 wg.

AEROSEAL.

Duct Sealing From The Inside

Aeroseal Technician RO Aeroseal Case ID 3427 Date of Seal 3/3/2020 System Description TX-RL 12

Seal Description Seal 1 Hardware Gen2

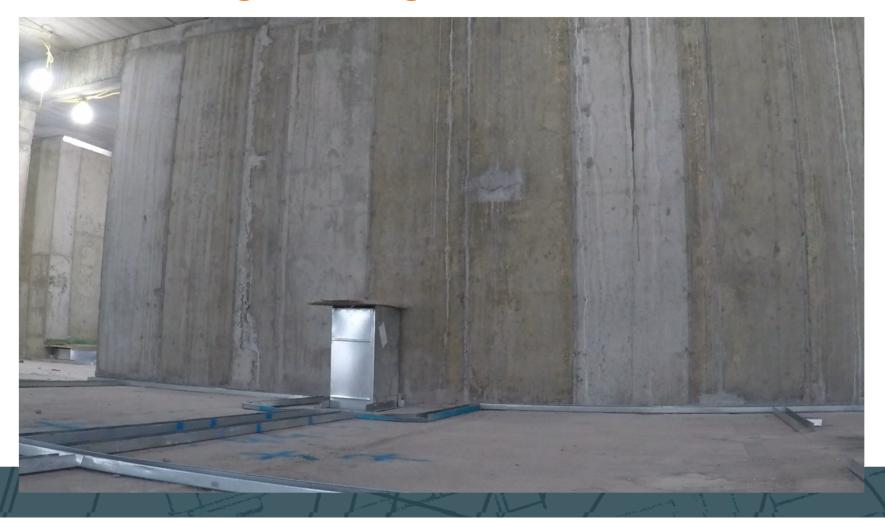
Duct Sealing Performed By:

B&L Testing and Balancing 2735 Academy Street Brooklyn, NY 11572 Phone: 917.359.3810

B&L Testing and Balancing, LLC 516.724.3630

2735 Academy Street, Oceanside, NY 11572 info@bltab.com

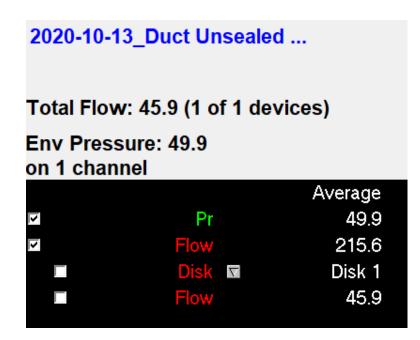
B&L Testing and Balancing, LLC 516.724.3630


2735 Academy Street, Oceanside, NY 11572 info@bltab.com

Aeroseal Too Early

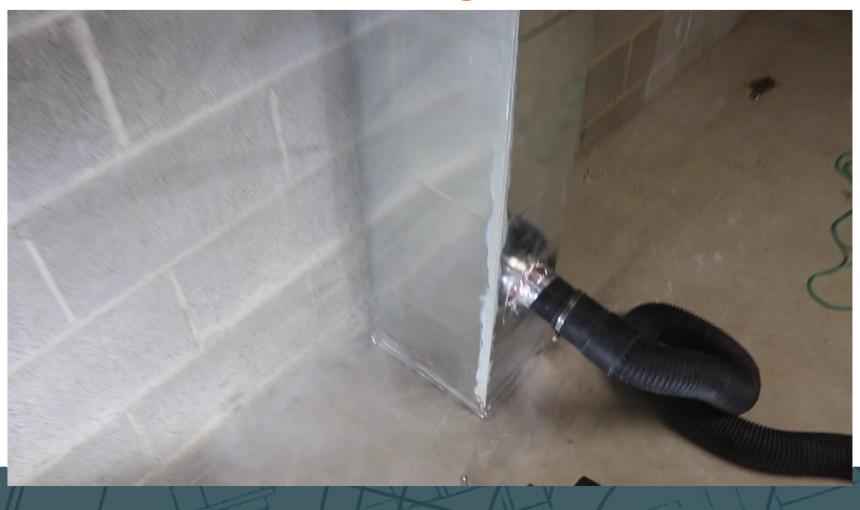


Duct Leakage Testing


96

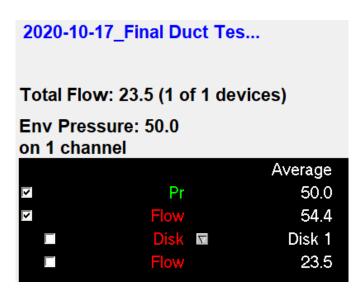
Duct Testing

Duct Testing – Result (No Seams Sealed)


Duct Sealing

Duct Leaks After Sealing - Overview

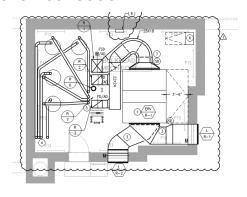
Duct Leaks After Sealing – Closer View



101

Duct Testing – Result (Seams Sealed, no back

seam)


Duct Sealing - Ventilation

211 West 29th Street

Obstacle 1: Timing of Aeroseal

Obstacle 2: Final balancing

Obstacle 3: Initial design much higher than mechanical code

Obstacle 2: During balancing, the total CFM measured at the unit will likely be higher than the design CFM because of leakage in ductwork and higher static to overcome tight mechanical rooms. To minimize this, sharp turns in ductwork should be reduced when possible and extra fan power should be accounted for in energy models.

Obstacle 1: Due to the sequencing of the project, it is very difficult to schedule Aeroseal at a time when all riser and branch ductwork has been installed. Scheduling of Aeroseal should be coordinated with HVAC contractor early in construction.

TABLE 403.3—continued

OCCUPANCY CLASSIFICATION	OCCUPANT DENSITY #/1000 FT ² *	PEOPLE OUTDOOR AIRFLOW RATE IN BREATHING ZONE, R _p CFM/PERSON	AREA OUTDOOR AIRFLOW RATE IN BREATHING ZONE, R _s CFM/FT ²⁺	EXHAUST AIRFLOW RATE CFM/FT ² *
Private dwellings, single and multiple	1			
Garages, common for multiple units ^b	_	_	_	0.75
Garages, separate for each dwelling ^b	_	_	_	100 cfm per car
Kitchens ^b	_	-	_	25/100 ^r
Living areas ^e	Based upon number of bedrooms. First bed- room, 2; each addi- tional bedroom, 1	0.35 ACH but not less than 15 cfm/person	-	_
Toilet rooms and bathrooms ^g	_	_	-	20/50 ^r
Public spaces				
Corridors	_	_	0.06	_
Elevator car	_	-	_	1.0
Shower room (per shower head) ^g	_	_	_	50/20
Smoking lounges ^b	70	60	_	
Toilet rooms — public ^g		_	_	50/70°

Obstacle 3: The initial ventilation design included rates in BOH and amenity spaces that were much higher than required by the IMC. This results in unnecessary fan energy use.

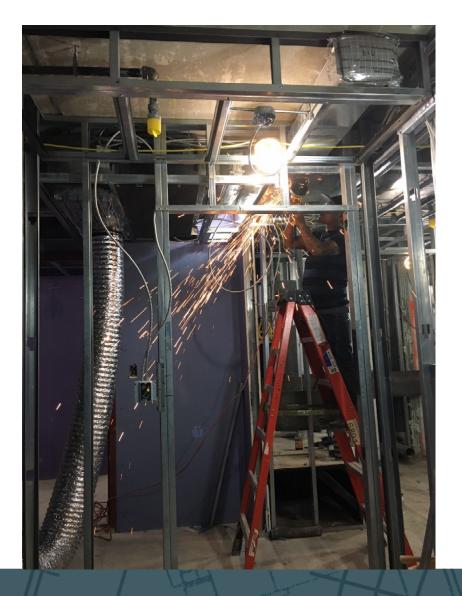
Aeroseal

Constant Airflow Regulator

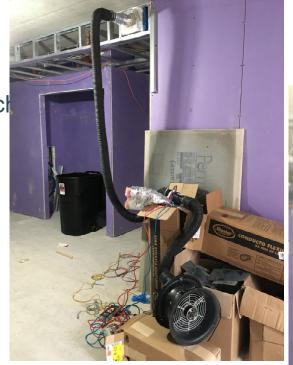
SUBMITTAL DATA eFlow-Constant Airflow Regulator (CAR)

Application and Design eFlow-CAR is factory set Constant Airflow Regulator designed to save significant amount of energy and money by precisely controlling airflow into or out of space, regardless of static pressure, and all along providing high Indoor Air Quality (IAQ). eFlow CAR is composed of fire resistant ABS plastic. It contains a self regulating aero-wing and spring piston design to maintain a factory preset air flow. These CAR's are designed to operate in pressure range Low Pressure (.08"-.4"w.c.), Standard Pressure (0.2"-1" w.c) and High Pressure (0.6"-2.4" w.c). They automatically adjust for variable duct pressures caused by building pressure, thermal SIDE VIEW stack effect, dust build up and other variable factors. This Constant Airflow Regulator creates cost effective answer to balancing air systems for HVAC and ventilation in high rise buildings, without the requirement for on-site balancing, electrical/pneumatic controls or sensors. eFlow-CAR may contribute to meeting USGBC LEED Building and Passive House Certification. eFlow CAR requires no maintenance under normal conditions. Standard Construction eFlow-CAR: Classified UL R38307 / UL-2043 for heat release rate and smoke optical density. С | 3 (76) 3.0 (76) 2.2 (55) | 4 (101.6) 3.8 (96.5) 2.8 (70) | 5 (127) 4.8 (121.9) 3.4 (86) 6 (152.4) 5.8 (147.2) 3.6 (91) 8 (203.2) 7.7 (195) 3.6 (91) 10 (254) 9.6 (245) 4.7 (120) **Size in inches(millimeters) Low Pressure Range of Operation Static Pressure Standard Pressure Range of Operation Static Pressure High Pressure Range of Operation Static Pressure Minimum .05" w.c. Maximum 0.4" w.c. Minimum 0.6" w.c. Minimum 0.2" w.c. Maximum 1.0" w.c. Maximum 2.4"w.c. Job Name □ eFlow-Constant Airflow Regulator(CAR) (Supply, Exhaust) Location: Architect: Engineer: DATE: REV. DATE: 12-08-2018 02-19-2019 REV. NO. APPROVED BY: DWG. NO. Contractor:

		Augilable in Standard	iard Pressure (0.2" w.	o 10" w o)		
	CAR Diameter	CAR Diameter	CAR Diameter	CAR Diameter	CAR Diameter	CAR Diameter
eFlow-CAR	3"	4"	5"	6"	8"	10"
CFM Range	10-30 CFM	10-30 CFM	10-30 CFM	10-30 CFM	10-30 CFM	10-30 CFM
CFM Range		30-60 CFM	30-60 CFM	30-60 CFM	30-60 CFM	30-60 CFM
CFM Range			60-105 CFM	60-105 CFM	60-105 CFM	60-105 CFM
CFM Range				105-175 CFM	105-175 CFM	105-175 CFM
CFM Range					175-295 CFM	175-295 CFM
CFM Range						265-470 CFM
		land.	***			and a land and an
- blue nignlighte	d CFM Range = stand	Jaro	***yellow highlighted C	rini riange = can be	accomidated by sp	ecial order
eFlow-CAR	CAR Diameter	CAR Diameter	CAR Diameter 5"	CAR Diameter	CAR Diameter	CAR Diameter 10"
CFM Range	15-53 CFM	15-53 CFM	15-53 CFM	15-53 CFM	15-53 CFM	15-53 CFM
CFM Range	10 00 01 111	53-100 CFM	53-100 CFM	53-100 CFM	53-100 CFM	53-100 CFM
CFM Range			105-176 CFM	105- 176 CFM	105- 176 CFM	105- 176 CFM
CFM Range				176-295 CFM	176-295 CFM	176-295 CFM
CFM Range					295-500 CFM	295-500 CFM
CFM Range						500-765 CFM
******	4.0544.0	to at	***yellow highlighted C	F14 D		and all and an
**blue highlighte						
Tolue nightighte	CAR Diameter		ation Available in Low	Pressure (0.08" w	.c 0.4° w.c.)	
eFlow-CAR	CAR Diameter	Special Configure CAR Diameter	ation Available in Low CAR Diameter 5"	Pressure (0.08" w	.c 0.4° w.c.)	10"
		CAR Diameter	CAR Diameter			10" 5-18 CFM
eFlow-CAR	3"	CAR Diameter	CAR Diameter 5"	6" 5-18 CFM 18-35 CFM	8" 5-18 CFM 18-35 CFM	5-18 CFM 18-35 CFM
eFlow-CAR CFM Range	3"	CAR Diameter 4" 5-18 CFM	CAR Diameter 5" 5-18 CFM	6" 5-18 CFM	8" 5-18 CFM	5-18 CFM
eFlow-CAR CFM Range CFM Range CFM Range	3"	CAR Diameter 4" 5-18 CFM 18-35 CFM	CAR Diameter 5" 5-18 CFM 18-35 CFM	6" 5-18 CFM 18-35 CFM 35-70 CFM	8" 5-18 CFM 18-35 CFM 35-70 CFM	5-18 CFM 18-35 CFM 35-70 CFM
eFlow-CAR CFM Range CFM Range CFM Range ***blue highlighte	3" 8-18 CFM	CAR Diameter 4" 5-18 CFM 18-35 CFM	CAR Diameter 5" 5-18 CFM 18-35 CFM 38-70 CFM ****yellow highlighted C	6" 5-18 CFM 18-35 CFM 35-70 CFM FM Range = can be	8" 5-18 CFM 18-35 CFM 35-70 CFM accomidated by sp	5-18 CFM 18-35 CFM 35-70 CFM ecial order
eFlow-CAR CFM Range CFM Range CFM Range	3" 8-18 CFM	CAR Diameter 4" 5-18 CFM 18-35 CFM	CAR Diameter 5" 5-18 CFM 18-35 CFM 35-70 CFM ****yellow highlighted C	6" 5-18 CFM 18-35 CFM 35-70 CFM	8" 5-18 CFM 18-35 CFM 35-70 CFM accomidated by sp	5-18 CFM 18-35 CFM 35-70 CFM ecial order
eFlow-GAR CFM Range CFM Range CFM Range ""blue highlighte b Name:	3" 8-18 CFM	CAR Diameter 4" 5-18 CFM 18-35 CFM	CAR Diameter 5" 5-18 CFM 18-35 CFM 35-70 CFM ****yellow highlighted C	6" 5-18 CFM 18-35 CFM 35-70 CFM FM Range = can be	8" 5-18 CFM 18-35 CFM 35-70 CFM accomidated by sp	5-18 CFM 18-35 CFM 35-70 CFM ecial order


CAR Dampers

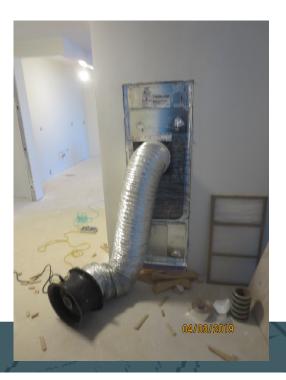
Heating & Cooling - Duct Sealing


Duct Sealing & Testing

In unit duct testing required by PHIUS

Heating & Cooling - Ductwork

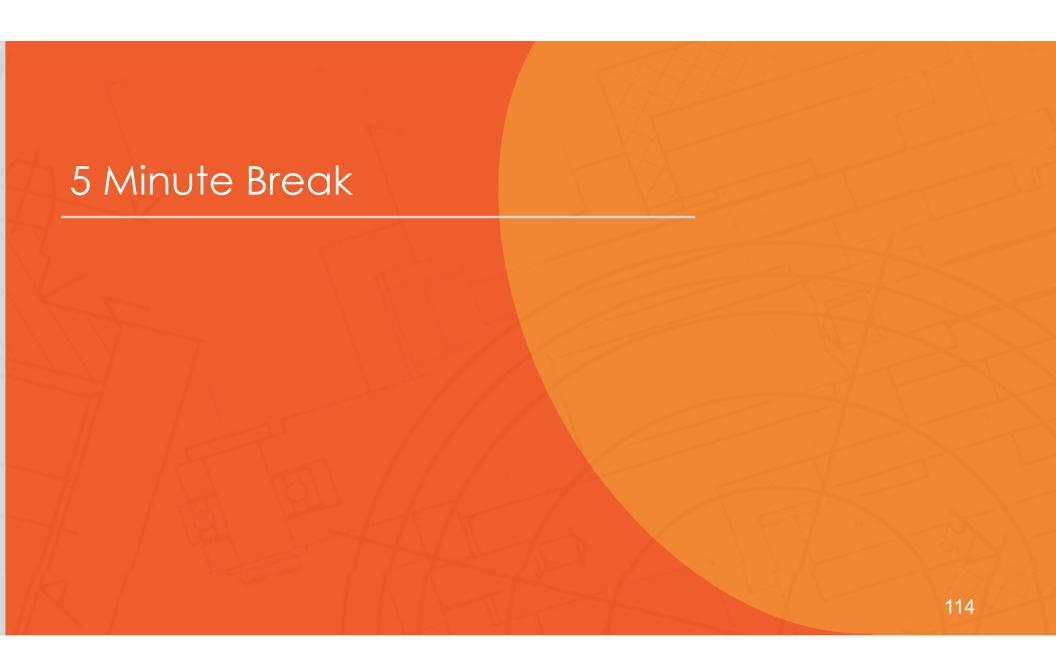
 The Kingspan KoolDuct System is an advanced and innovative pre-insulated rectangular HVAC ductwork system, which is installed in a single fix.



Ductwork - Sealing

- Duct work sealing is critical for both heating/cooling and ERV system operations and achieving the desired air flows
- PHIUS requires in-unit duct testing of heating and cooling systems

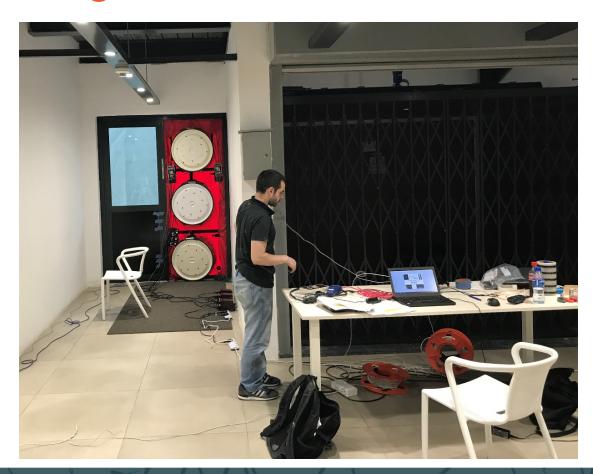
Heating & Cooling – Testing at Rough in or Final


Do This

- Ensure CAR dampers are apart of the design
- Ensure Aeroseal is included in the specs and discuss when it needs to take place during the construction process
- Provide a duct mockup of in unit heating/cooling duct work and ventilation duct work early in the project for review
- Commissioning of ventilation systems is crucial to proper performance

Questions?

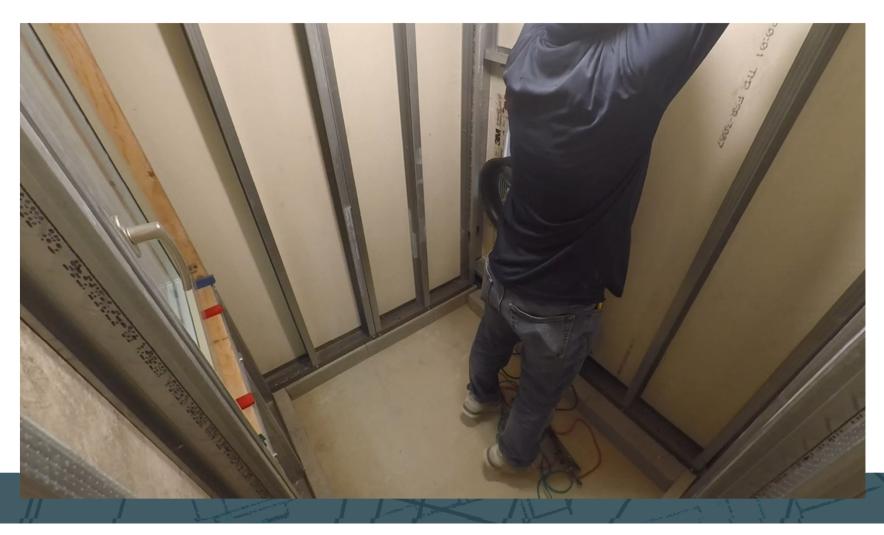
Air Leakage Testing


Blower Door Testing

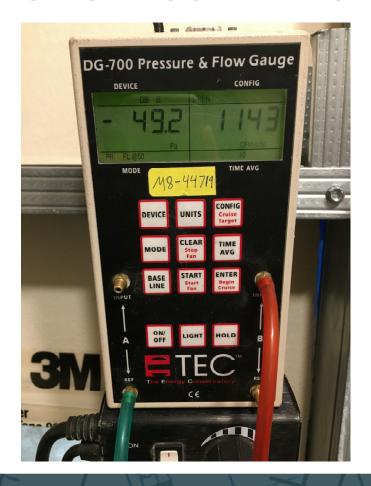
- Basic Components
 - Gauge (manometer)

 - Frame ————
 - Fan ______

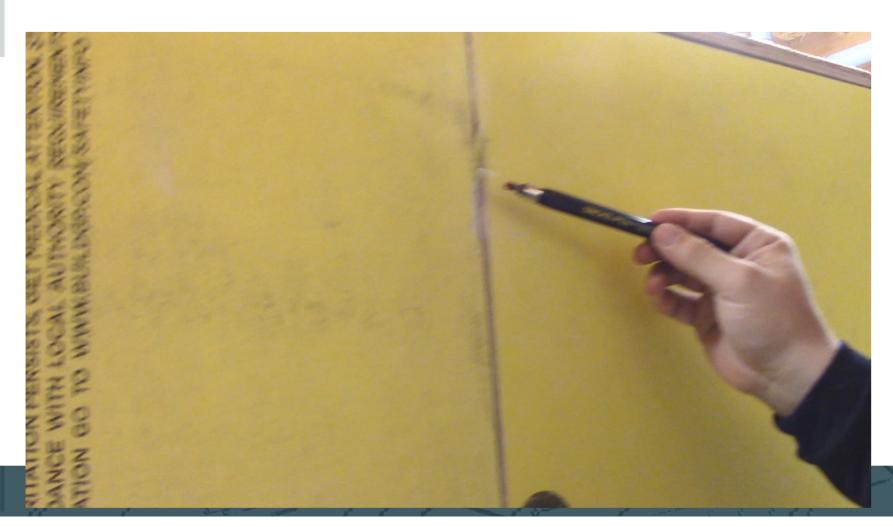
Whole Building Blower Door Test



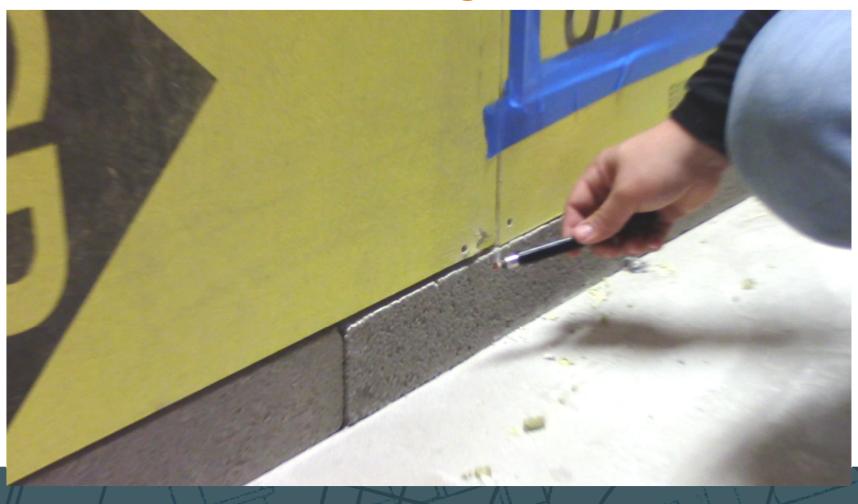
Air Tightness


- Requirement: < 0.6 ACH@50 or 0.08 CFM/SF enclosure (PHIUS large bldgs)
- What does this mean?
 - @50 refers to 50 pascals pressure difference between indoors and out during a blower door test, ≈ 20mph wind on all sides of house
 - 0.6 ACH50 = 5 times tighter than ENERGY STAR®
- Method A and Method B Testing
 - A: Configures building to operation during the heating and cooling seasons
 - B: Any intentional openings in the building envelope are sealed

Blower Door – Initial Test



Blower Door – Initial Test Result



Blower Door – Searching for Air Leaks 1

Blower Door – Searching for Air Leaks 2

122

Blower Door – Searching for Air Leaks 3

Walkaround (Seam Sealing Only)

Blower Door – Test (Seam Sealing Only)

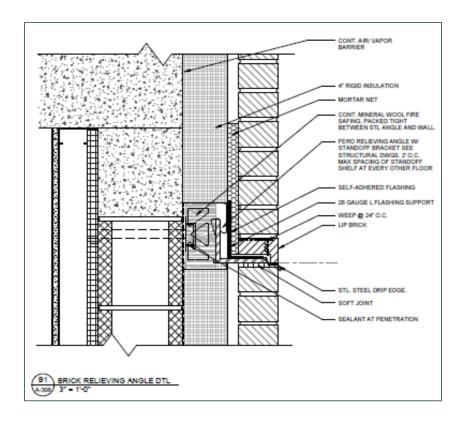
Final Conditions

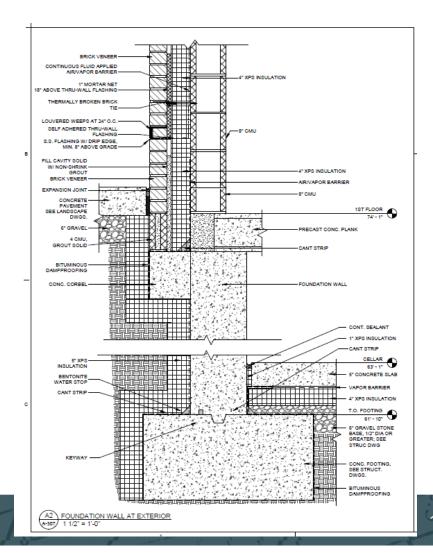
Final Conditions

Blower Door – Test (Final)

```
2020-10-17_BD Hut Final T...

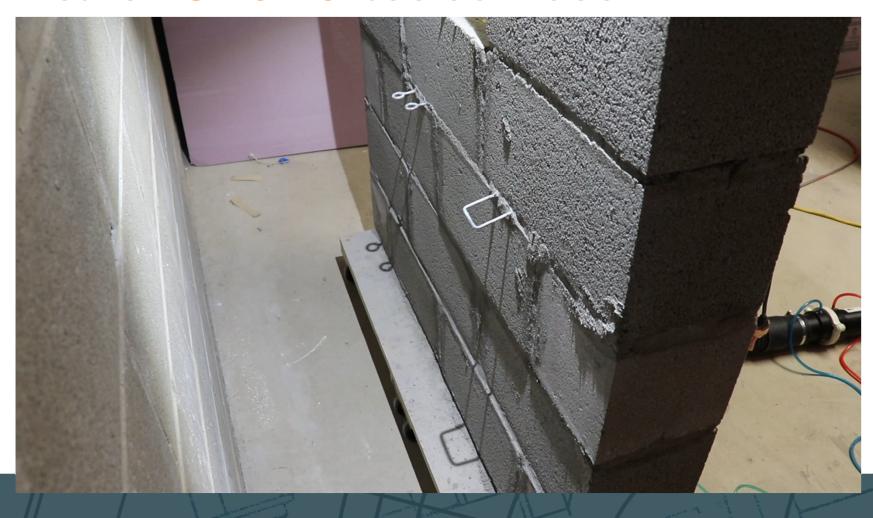
Total Flow: 3.7 (1 of 1 fans)


Env Pressure: -49.9
on 1 channel

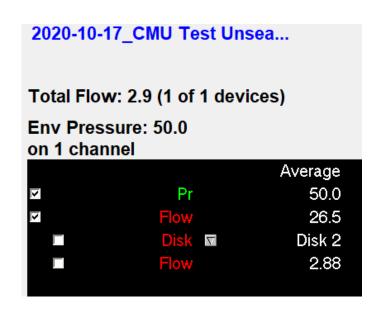

Average

Pr -49.9
Flow -12
Ring ■ Ring 4
Flow 3.7
```

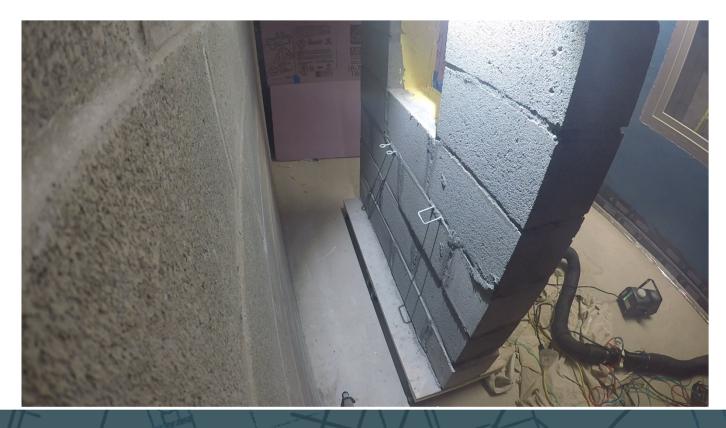

Test on CMU



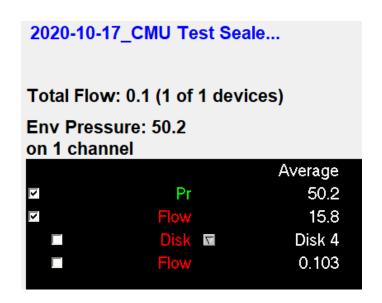
Test on CMU – Unsealed



Test on CMU – Unsealed Video



Test on CMU – Unsealed Result



Test on CMU – After One Coat

Test on CMU – Sealed Result

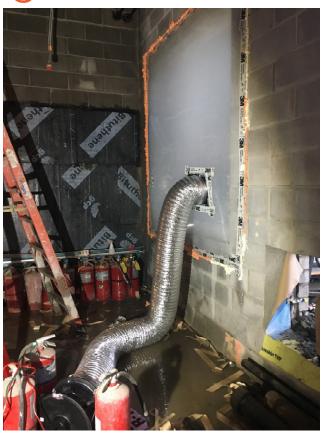
Importance of Interim Testing

Windows – AAC (211)

Windows – AAC (211)

Windows – AAC (211)

Windows – AAC (511) and balcony doors



Windows – Testing and More Testing

Blower Door Test Conditions

Kev: HVAC Contractor: Plumber: GC / Builder

Intentional Opening	Test Setting	Notes
Windows, doors, skylights in the building enclosure	Closed and latched	
Doors and operable windows inside the test enclosure	Open	Use stairways to connect all zones of the building
Fire dampers	Remain as found	
Dryer doors	Closed and latched	
Gas meter room	Door to gas meter room closed and weather stripped	
Waste handling system	Trash chute termination at roof taped off. Door to trash rooms closed.	
ERVs (apartments)	Fan off, any dampers closed. Ducts to the outside sealed inside the ERV cabinet in each apartment.	Ventilation is continuous, so can remain taped off
Motorized dampers: ERV-4 (cellar)	Fan off, dampers closed. Taped off from the exterior	Ventilation is continuous, so dampers closed and sealed off
Motorized dampers: ERV-5 (1st floor)	Fan off, dampers closed. Taped off from the exterior	Ventilation is continuous, so dampers closed and sealed off
Motorized dampers: ERV-2A (1st floor)	Fan off, dampers closed. Taped off from the exterior	Ventilation is continuous, so dampers closed and sealed off
Motorized damper: Laundry Room (2 nd floor)	Fan off, dampers closed. Taped off from the exterior	Untaped for Method A test
Motorized damper: ERV-2 (2nd floor)	Fan off, dampers closed. Taped off from the exterior	Ventilation is continuous, so dampers closed and sealed
Motorized dampers: EMR (1st floor), Stair A, Star B, Elevator, Boiler Room (roof)	Taped off from the exterior	Untaped for Method A test
EDM 2 /ranh	Ean off dampara alacad	Vantilation is continuous, as

Whole Building Test Logistics and Execution

 A great resource is Blower Door Applications Guide: Beyond Single Family Residential PDF (Brennan, Clarkin, Nelson, Olson,

Morin)

Blower Door Applications Guide: Beyond Single Family Residential

By Terry Brennan and Mike Clarkin of Camroden Associates
And
Gary Nelson. Collin Olson and Paul Morin of The Energy Conservatory

Whole Building Test Resources

me QAP About ABAA

Newsletters

Join ABAA

Events

Education

Technical Information

Search Members

Conf

Whole Building Air Tightness Testing

Air tightness testing is a process in which the building envelope is tested to quantify the air tightness. The test measures air leakage rates through a building envelope under controlled pressurization and depressurization.

Building testing is not a mandatory test prescribed in building codes, but a performance-based option that many designers are requiring. The only requirements for whole building testing are in the State of Washington, the United States General Services Administration and all United States Army Corps of Engineers projects.

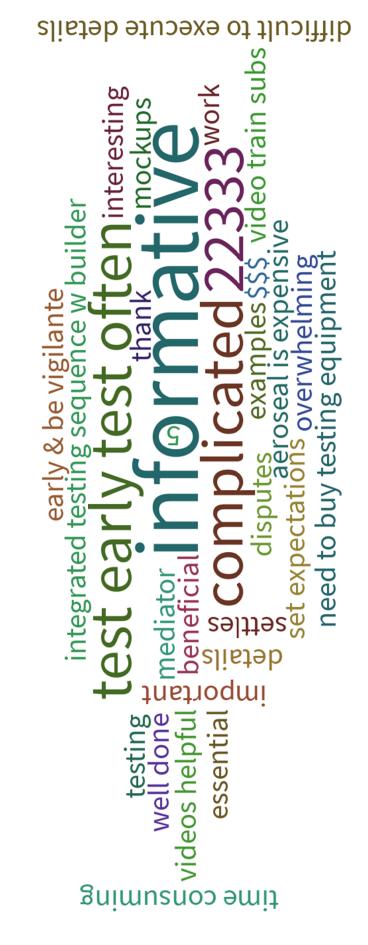
There are many standards worldwide that detail how to perform this test, some of these include:

- The United States Army Corps of Engineers Air Leakage Test Protocol for Building Envelopes
- ISO 9972:2006 Thermal performance of buildings Determination of air permeability of buildings — Fan pressurization method
- ASTM E779 Standard Test Method for Determining Air Leakage Rate by Fan Pressurization
- ASTM E1827 Standard Test Methods for Determining Airtightness of Buildings Using an Orifice Blower Door
- ASTM E3158 Standard Test Method for Measuring the Air Leakage Rate of a Large or Multizone Building
- ATTMA Measuring Air Permeance of Building Envelopes (Dwellings)
- . ATTMA Measuring Air Permeance of Building Envelopes (Non-Dwellings)

For more recourses on whole building testing, please visit the Whole Building Design Guide (whole provided the National Institute of Building Science (NIR)

Questions?

Product Donations – Thank You!



What are your final thoughts and takeaways from the presentation today?

Questions & Final Discussion

Contact Us

Steven Winter Associates, Inc

307 7th Ave., New York, NY 10001

Michael O'Donnell

Senior Building Systems Consultant | CEM, BPI MFBA

modonnell@swinter.com

212.564.5800 x1360

www.swinter.com

Resources

- <a href="https://www.imiweb.org/masonry-detailing-series-3/masonry-detail
- https://www.airbarrier.org/technical-information/whole-building-air-tightness-testing-2/